The cure proportion is an important and interesting measure of cancer patient survival. Many of the cure models used for population-based cancer survival today rely on finding a parametric distribution flexible enough to capture the shape of the survival function, which in some scenarios is difficult to do. We here present a flexible parametric cure model, which is an extension of the flexible parametric survival model. This new method gives similar results to the Weibull non-mixture cure model, when it is reliable, and better fit when the Weibull non-mixture cure model gives biased estimates. This is illustrated here for the oldest age group where the Weibull non-mixture model gives biased estimates, but the flexible parametric survival model fits the data well.

Since the flexible parametric cure model uses splines to model the underlying survival, it is important that the model is not overly sensitive to the location of the knots. We have investigated the sensitivity and the model seems to be fairly robust to the number and location of the knots, but some care needs be taken regarding the location of the last knot. The cure proportion is estimated from the cumulative excess hazard at the last knot, so it is important not to place the last knot too early, but preferably at the last observed death time or later. It is also good to make sure that the knots are distributed along the whole follow-up time, since the model needs to fit well at the end of the follow-up, even if most of the events are at the beginning.

The mixture and non-mixture cure models are sometimes used in situations when cure is not reached within the available follow-up time in the data. This can be done since the models estimate an asymptote for the relative survival function, but estimates of cure can be very sensitive to the parametric distribution chosen. We do not recommend extrapolation in this way when using the flexible parametric cure model since the point of cure has to be chosen. Even though the position of the last knot can be outside the data the cure point should be reached within the available follow-up time.

As with other cure models, the flexible parametric cure model will give an estimate of the cure proportion even when cure is not reasonable. It is therefore important to always compare results from cure models with standard methods for relative survival and to make sure that there seem to be a proportion of patients that are cured (see Figure 2). This is not a specific drawback for the flexible parametric cure model, but for cure models in general. In contrast to the mixture and non-mixture cure model, it is for the flexible parametric cure model possible to informally test the assumption of a cure proportion since it is a restricted standard flexible parametric survival model. But these tests should be interpreted with some caution, since the comparison is based on the fit over the whole time-scale and not just towards the end where the cure proportion is estimated.

We have presented the flexible parametric cure model within a relative survival setting, since that is the method of choice for population-based studies. However, the flexible parametric survival model and the flexible parametric cure model can also be used for non-relative survival data. For example when cause of death is known and reliable, or when the background mortality is very low which is the case for childhood cancer.

To enable application of the method we have updated the Stata command for flexible parametric survival models [15], and added an option that will fitflexible parametric cure models.