Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

The quality of the evidence base for clinical pathway effectiveness: Room for improvement in the design of evaluation trials

  • Thomas Rotter1Email author,
  • Leigh Kinsman2,
  • Erica James3,
  • Andreas Machotta4 and
  • Ewout W Steyerberg5
Contributed equally
BMC Medical Research Methodology201212:80

DOI: 10.1186/1471-2288-12-80

Received: 20 July 2011

Accepted: 16 May 2012

Published: 18 June 2012



The purpose of this article is to report on the quality of the existing evidence base regarding the effectiveness of clinical pathway (CPW) research in the hospital setting. The analysis is based on a recently published Cochrane review of the effectiveness of CPWs.


An integral component of the review process was a rigorous appraisal of the methodological quality of published CPW evaluations. This allowed the identification of strengths and limitations of the evidence base for CPW effectiveness. We followed the validated Cochrane Effective Practice and Organisation of Care Group (EPOC) criteria for randomized and non-randomized clinical pathway evaluations. In addition, we tested the hypotheses that simple pre-post studies tend to overestimate CPW effects reported.


Out of the 260 primary studies meeting CPW content criteria, only 27 studies met the EPOC study design criteria, with the majority of CPW studies (more than 70 %) excluded from the review on the basis that they were simple pre-post evaluations, mostly comparing two or more annual patient cohorts. Methodologically poor study designs are often used to evaluate CPWs and this compromises the quality of the existing evidence base.


Cochrane EPOC methodological criteria, including the selection of rigorous study designs along with detailed descriptions of CPW development and implementation processes, are recommended for quantitative evaluations to improve the evidence base for the use of CPWs in hospitals.


What are clinical pathways?

Clinical pathways (CPWs) are evidence-based multidisciplinary care plans which describe the essential steps needed in the care of patients with a specific clinical problem. They are used to translate clinical guidelines into local protocols and clinical practice [1]. Whereas clinical guidelines provide generic recommendations, CPWs are specifically tailored to the local hospital structures, systems and time-frames used.

Clinical pathways have been proposed as a strategy to optimise resource allocation in a climate of increasing healthcare costs [2]. Other terms used to describe clinical pathways include ‘integrated care pathways, ’ ‘critical pathways, ’ ‘care plans, ’ ‘care paths’ and ‘care maps.’


The first objective of this article is to report on the methodological quality of the existing evidence base regarding the effectiveness of CPW research in the hospital setting. An international, multidisciplinary team of researchers conducted a systematic review of the effectiveness of CPWs in hospitals, with the findings recently published in the Cochrane library [3]. The second objective is to test the hypothesis that simple pre-post studies tend to overestimate CPW effects reported.


We followed the validated Cochrane Effective Practice and Organisation of Care Group (EPOC) methodology for considering and analysing studies [4]. The primary systematic review aimed to catalogue the international evidence to assess the effect of clinical pathways on professional practice, patient outcomes, length of hospital stay and hospital costs. We searched the Database of Abstracts of Reviews of Effectiveness, the Effective Practice and Organisation of Care Register, the Cochrane Central Register of Controlled Trials and bibliographic databases including MEDLINE, EMBASE, CINAHL, NHS EED and Global Health. Details of the electronic search strategy for the identification of studies are presented in detail in the EPOC review, recently published in the Cochrane Library [3]. Our team developed and validated five minimum criteria to define a CPW to ensure that only appropriate studies were sourced and included in the review [5]. An integral component of the review process was a rigorous appraisal of the study designs and methodological quality of all relevant CPW evaluations. This allowed the identification of strengths and limitations of the evidence base for CPW effectiveness with regard to the first study objective.

Assessment of study design

For the purpose of the systematic review on CPWs in hospitals, four study designs were considered for inclusion: randomized controlled trials (RCTs), controlled clinical trials (CCTs), controlled before and after studies (CBAs) and interrupted time series analysis (ITS).

While there are many well developed and well accepted critical appraisal criteria for experimental studies, fewer exist for non-experimental studies such as CBAs and ITS. Both designs are subject to a lack of control and high risk of bias so EPOC developed criteria to facilitate their quality assessment and inclusion (where appropriate) in systematic reviews. For example, CBAs are required to have more than one control group and ITS require at least three time points before and after an intervention. Validated criteria for the assessment of these designs have been developed by EPOC and are available from the EPOC website [6] and the four different study designs are briefly outlined in Table 1. In addition, the simplified EPOC gold standard of study designs considered for inclusion in the present review are depicted in Figure 1[4].
Table 1

EPOC study designs considered for inclusion

Patient randomized controlled trials


The individual patients are allocated by random to the intervention or control group. Individual randomisation facilitates equally distributed patient characteristics and comparability. Only the exposure to the intervention should be the factor that distinguishes between both groups.

Cluster randomized controlled trials (C-RCT):

This is a robust study design that prevents contamination of professionals by randomising groups of professionals (i.e. different practices, wards or hospitals). However, this means the fundamental assumption of independence is violated because patients within a cluster are more likely to respond in a similar manner. This lack of independence, statistically called “intracluster correlation,” also means a specific adjustment for clustering effects is required to assure comparability with individually randomized trials.

Non-randomized controlled trials (CCTs):

Patient or cluster trials where allocation to experimental and control groups is quasi-random (i.e. alternated allocation).

Controlled before and after studies (CBAs):

CBAs are experimental studies with two or more control groups compared with one or more experimental groups but allocation is not random. Data is collected on the control and intervention groups before the intervention is introduced and then further data is collected after the intervention has been introduced. The reliability of the intervention effect is questionable because there may be unidentified differences between the experimental intervention and control groups which may have modified the observed effect. Note: EPOC has recently changed the policy about inclusion of CBA studies with only one intervention site. Specific details about design criteria can be found at the website (

Interrupted time series designs (ITS):

This represents a robust method of measuring the effect of an intervention as a trend over time. It is a useful design when recruitment of a control cohort is impractical, e.g. due to changes in hospital policy. Three or more data points are collected before and after the intervention as a minimum standard. The intervention effect is measured against the pre-intervention trend.

Source: Bero L, Eccles M, Grimshaw J, Gruen RL, Mayhew A, Oxman AD, Tavender E, Zwarenstein M, Shepperd S, Paulsen E, Pantoja T, Lewin S, Ballini L. Cochrane Effective Practice and Organisation of Care Group (Cochrane Group Module). About The Cochrane Collaboration (Cochrane Review Groups (CRGs)). The Cochrane Library. Oxford: John Wiley, 2009; adopted by the authors.
Figure 1

Simplified EPOC standard of study designs considered for inclusion in the present review. Source: Bero L, Eccles M, Grimshaw J, Gruen RL, Mayhew A, Oxman AD, Tavender E, Zwarenstein M, Shepperd S, Paulsen E, Pantoja T, Lewin S, Ballini L. Cochrane Effective Practice and Organisation of Care Group (Cochrane Group Module). About The Cochrane Collaboration (Cochrane Review Groups (CRGs)). The Cochrane Library. Oxford: John Wiley, 2009; adopted by the authors.

Risk of bias assessment

We developed a quality assessment and data abstraction instrument incorporating the EPOC risk of bias criteria [4]. Quality assessment was conducted on full-text articles once initial literature searching and screening indicated that articles were research-based and referred to a CPW and were, subsequently, potentially relevant. The EPOC approach for judging risk of bias of randomized and non-randomized studies is a two-part assessment tool, concerning specific domains and quality criteria (i.e. RCTs: sequence generation, allocation concealment, blinding, et cetera). The validated risk of bias criteria can be found in the Cochrane EPOC Group module [4] and are presented in detail in additional file 1.

Comparison of CPW interventions

We compared patients managed according to CPW to those managed by usual care, and patients treated within a multifaceted intervention including a CPW compared to usual care.

Secondary analysis

The aim of the secondary analysis was to determine whether pre-post study design was associated with an overestimate of the effects of CPW. Other researchers also compared the findings of randomized evaluations vs. non-randomized study designs and concluded that such studies potentially overestimate the effects reported and there were systematic differences between effects estimated [79]. To test the hypothesis, we compared 14 primary studies [1023], included in the Cochrane review, grouped into category 1 (patients managed according to CPW compared to usual care), and reporting on length of stay (LOS) as the most commonly employed outcome measure with a randomly selected sample of 14 excluded pre-post CPW evaluations also reporting LOS [2437]. The selection of a random sample of studies was taken from those studies excluded on the basis of a simple pre-post design not meeting EPOC quality criteria (see Table 2). We used a computer generated random sample (RAND function in Excel) [38] of 14 excluded pre-post studies reporting LOS as a primary study outcome [2437].
Table 2

Reasons for exclusion stage one (n = 2954)







Not study



Not hospital



EPOC minimum study design criteria not met



Other (e.g. qualitative study)






Statistical pooling (meta-analysis)

A Cochrane web-based program, Review Manager (RevMan), was used to calculate a pooled estimate of the combined intervention effect on LOS, called weighted mean difference (WMD) [39]. We used a random effects model since this model estimates the effect with consideration to the variance between studies, rather than ignoring heterogeneity by employing a fixed effect model [40]. Statistical inconsistency within both subgroups was assessed by calculating a test of heterogeneity (I square (I2)).


All potentially relevant studies were assessed using the CPW definition [5] and EPOC review inclusion criteria for acceptable study designs [4]. Using two independent reviewers, we rejected 2954 of the 3214 potential papers and only 260 primary studies were initially identified as potentially relevant and full text copies were retrieved. Figure 2 illustrates the described trial flow.
Figure 2

Trial flow.

The majority (79.1 %) of the rejected studies (2335 out of 2954) had to be excluded because they failed to meet our definition of CPW. Table 2 illustrates the reasons for exclusion following title and abstract review. Out of the 260 primary studies meeting CPW content criteria following review of the full text, only 27 studies met the EPOC study design and risk of bias criteria.

Assessment of study design

Out of 27 CPW evaluations included, nineteen of the included studies were randomised controlled trials (RCTs) [10, 11, 1322, 4148], including two cluster randomised trials (C-RCT) [20, 47]. Four studies were CBAs [4952], two were CCTs [12, 23] and two ITS [53, 54].

Of the original studies which met the CPW content criteria, more than 70 % were excluded from the review as they were simple pre-post evaluations, mostly comparing two or more yearly patient cohorts (see Table 3).
Table 3

Reasons for exclusion following full text review (n = 228)







Simple pre-/post evaluations



High risk of bias

5 (1RCT)


Not study



Not hospital






Risk of bias assessment

Out of the 228 studies excluded in phase two following full text review (see Table 3) only four non-randomized studies [5558] and one randomised clinical study (RCT) [59] were excluded because of high risk of bias. The RCT from Bittinger (1995) did not meet EPOC quality criteria as only 50 % of study patients were followed up after randomization and there was a high risk of attrition bias. Four time series studies were excluded as data was not analyzed appropriately. The studies from Joiner (1996), Smith (1999), Summers (1998) and Warner (2002) had a high risk of bias because no statistical control was used [5558].

Table 3 illustrates the reasons for exclusion in stage two after meeting CPW content criteria in stage one.

Secondary analysis

In Figure 3 we provide the detailed results of the methodological comparison of the 14 included primary studies which utilised Cochrane EPOC study design quality criteria [4] and reporting on LOS [1023] vs. 14 randomly selected pre-post studies excluded from the review and reporting on LOS as a primary outcome [2437]. We observed considerable statistical inconsistency within both subgroups of CPW studies, so the calculated estimates in LOS per subgroup should be treated with caution (I² = 62% Cochrane EPOC subgroup vs. 98% randomly selected subgroup.)
Figure 3

Comparison meta analysis LOS COCHRANE vs. Excluded pre-post studies.

We observed greater reported LOS effects within the random subgroup of excluded pre-post studies after meeting CPW content criteria (WMD – 2.85 (95%CI: – 3.58 to – 2.11)), versus the pooled LOS data recently published in the Cochrane library (group 1 clinical pathway vs. usual care WMD – 1.23 (95%CI – 1.73 to – 0.72)) [3]. Moreover, the pre-post studies in the randomly selected subgroup tend to report more consistently on significant reductions in LOS (see Figure 3). Statistically, the chi-squared test for subgroup differences also reached a significant level (P = 0.0004).


Why is it important to critically appraise study designs in a systematic review?

We followed the validated Cochrane EPOC criteria for randomized and non-randomized CPW evaluations [4, 6]. The finding that the vast majority of studies failed to meet methodological quality criteria strongly indicates that low quality study designs are too often used to evaluate CPWs and contribute very little to the evidence base regarding CPWs.

Many of such excluded CPW evaluations claimed to provide evidence for the effectiveness of the pathway intervention under consideration but, with a methodologically weak study design, it remains unclear if the reported effect was really attributable to the CPW effectiveness or any other unknown factors. Possible confounding factors might have been the case-mix introduction, hospital quality improvement initiatives or changes in hospital policy [2]. The uncontrolled nature and exposure to bias convey that such studies contribute very little to the evidence-base.

Implications of including weak study designs

Based on our review experience, we reaffirm that uncontrolled pre-post designs are commonly used to evaluate the effectiveness of CPWs. Such designs are likely to be misleading and contribute little to understanding the reported effects of pathways. Considering the second objective of this article, the meta-analytic comparison supports other evidence [79] that simple pre-post study designs tend to overestimate intervention effects reported.

There is a place for well designed process-evaluations also referred to as interrupted time series (ITS) to explore and provide more insights into the varying pathway components and their causal effectiveness to determine how CPW interventions actually work. Carefully designed time series studies are less resource-intensive than RCTs, do not require a control group, and allow for the use of retrospective data. While requiring more advanced statistical techniques than simple pre-post studies, ITS supports research outcomes that are more likely to contribute to the evidence base, including systematic reviews. Better designed, conducted and reported CPW evaluations will contribute to a better understanding of the key elements of CPWs that impact on patient, provider and economic outcomes.


The majority of included studies employed LOS as a performance measure. Hence, we compared the magnitudes of CPW effects on length of stay (n = 14 primary studies) rather than patient outcomes such as mortality (n = 4 studies) or in-hospital complications (n = 5 studies) [3]. The low number of primary CPW evaluations included in the review which reported on patient outcomes prevented further testing of the robustness of this methodological comparison.


Cochrane EPOC methodological inclusion criteria should be considered for quantitative evaluations into the impact of CPWs in hospitals. Based on our review experience, the EPOC methodological gold standard is infrequently transferred into research practice. Future evaluators could hereby contribute significantly to the understanding of factors associated with the reported effects of clinical pathways in hospitals by incorporating EPOC criteria into study design. Whilst experimental methods such as randomised trials are recommended they may be considered beyond the capacity of many clinicians and researchers. A well designed evaluation such as ITS or CBA that meets the EPOC gold standard methodological criteria can produce meaningful, rigorous results with the use of relatively few resources. In terms of the second study objective, the methodological comparison of Cochrane vs. non Cochrane study designs (see Figure 3) also support the finding that simple pre-post study designs tend to overestimate CPW effects reported.




The authors wish to acknowledge the support provided via the Group of 8/DAAD German Research Exchange program for facilitating essential face-to-face meetings of the review team.

Authors’ Affiliations

Office of the Dean, School for Public Health and Primary Care (CAPHRI), Faculty of Health, Medicine & Life Sciences, Maastricht University
School of Rural Health, Monash University
School of Medicine and Public Health, Priority Research Centre in Health Behaviour, Priority Research Centre for Physical Activity and Nutrition, Hunter Medical Research Institute, University of Newcastle
Department of Anesthesiology, Sophia Childrens Hospital, Erasmus University Rotterdam
Center for Medical Decision Making, Department of Public Health, Erasmus MC – University Medical Center Rotterdam


  1. Campbell H, Hotchkiss R, Bradshaw N, Porteous M: Integrated care pathways. BMJ. 1998, 316: 133-137. 10.1136/bmj.316.7125.133.View ArticlePubMedPubMed CentralGoogle Scholar
  2. Kimberly J, De De Pouvourville G, D'Aunno T: The globalization of managerial innovation in healthcare. 2009, Cambridge: University PressGoogle Scholar
  3. Rotter T, Kinsman L, James E, Machotta A, Gothe H, Willis J, Snow P, Kugler J: Clinical pathways: effects on professional practice, patient outcomes, length of stay and hospital costs. Cochrane Database Syst Rev. 2010, CD006632-Google Scholar
  4. Bero L, Deane K, Eccles M, Grimshaw J, Gruen R, Mayhew A, Oxman A, Pantoja T, Paulsen E, Sheppered S, et al: About The Cochrane Collaboration (Cochrane Review Groups (CRGs)). Cochrane Effective Practice and Organisation of Care Review Group (Cochrane Group Module). 2009, Oxford: The Cochrane LibraryGoogle Scholar
  5. Kinsman L, Rotter T, James E, Snow P, Willis J: What is a clinical pathway? Development of a definition to inform the debate. BMC Med. 2010, 8: 10.1186/1741-7015-1188-1131.Google Scholar
  6. Cochrane Effective Practice and Organisation of Care Group. EPOC) []
  7. Deeks JJ, Dinnes J, D'Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG: Evaluating non-randomised intervention studies. Health Technol Assess. 2003, 7: 1-173. iii-xView ArticleGoogle Scholar
  8. Greenland S: Interval estimation by simulation as an alternative to and extension of confidence intervals. Int J Epidemiol. 2004, 33: 1389-1397. 10.1093/ije/dyh276.View ArticlePubMedGoogle Scholar
  9. Henry D, Moxey A, O’Conell D: Agreement between randomized and non-randomized studies: the effects of bias and confounding. 2001, Lyon (France): 9th Cochrane ColloquiumGoogle Scholar
  10. Aizawa T, Kin T, Kitsukawa SI, Mamiya Y, Akiyama A, Ohno Y, Okubo Y, Miki M, Tachibana M: Impact of a clinical pathway in cases of transurethral resection of the prostate. Jpn J Urol. 2002, 93: 463-468.View ArticleGoogle Scholar
  11. Brook AD, Ahrens TS, Schaiff R, Prentice D, Sherman G, Shannon W, Kollef MH: Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med. 1999, 27: 2609-2615. 10.1097/00003246-199912000-00001.View ArticlePubMedGoogle Scholar
  12. Choong PF, Langford AK, Dowsey MM, Santamaria NM: Clinical pathway for fractured neck of femur: a prospective, controlled study. Med J Aust. 2000, 172: 423-426.PubMedGoogle Scholar
  13. Delaney CP, Zutshi M, Senagore AJ, Remzi FH, Hammel J, Fazio VW: Prospective, randomized, controlled trial between a pathway of controlled rehabilitation with early ambulation and diet and traditional postoperative care after laparotomy and intestinal resection. Dis Colon Rectum. 2003, 46: 851-859. 10.1007/s10350-004-6672-4.View ArticlePubMedGoogle Scholar
  14. Dowsey MM, Kilgour ML, Santamaria NM, Choong PF: Clinical pathways in hip and knee arthroplasty: a prospective randomised controlled study. Med J Aust. 1999, 170: 59-62.PubMedGoogle Scholar
  15. Falconer JA, Roth EJ, Sutin JA, Strasser DC, Chang RW: The critical path method in stroke rehabilitation: lessons from an experiment in cost containment and outcome improvement. QRB Qual Rev Bull. 1993, 5: 8-16.Google Scholar
  16. Gomez MA, Anderson JL, Karagounis LA, Muhlestein JB, Mooers FB: An emergency department-based protocol for rapidly ruling out myocardial ischemia reduces hospital time and expense: results of a randomized study (ROMIO). J Am Coll Cardiol. 1996, 28: 25-33. 10.1016/0735-1097(96)00093-9.View ArticlePubMedGoogle Scholar
  17. Johnson KB, Blaisdell CJ, Walker A, Eggleston P: Effectiveness of a clinical pathway for inpatient asthma management. Pediatrics. 2000, 106: 1006-1012. 10.1542/peds.106.5.1006.View ArticlePubMedGoogle Scholar
  18. Kim MH, Morady F, Conlon B, Kronick S, Lowell M, Bruckman D, Armstrong WF, Eagle KA: A prospective, randomized, controlled trial of an emergency department-based atrial fibrillation treatment strategy with low-molecular-weight heparin. Ann Emerg Med. 2002, 40: 187-192. 10.1067/mem.2002.126169.View ArticlePubMedGoogle Scholar
  19. Kiyama T, Tajiri T, Yoshiyuki T, Mitsuhashi K, Ise Y, Mizutani T, Okuda T, Fujita I, Masuda G, Kato S, et al: Clinical significance of a standardized clinical pathway in gastrectomy patients. J Nippon Med Sch. 2003, 70: 263-269. 10.1272/jnms.70.263.View ArticlePubMedGoogle Scholar
  20. Marrie TJ, Lau CY, Wheeler SL, Wong CJ, Vandervoort MK, Feagan BG: A controlled trial of a critical pathway for treatment of community-acquired pneumonia. CAPITAL Study Investigators. Community-Acquired Pneumonia Intervention Trial Assessing Levofloxacin. JAMA. 2000, 283: 749-755. 10.1001/jama.283.6.749.View ArticlePubMedGoogle Scholar
  21. Roberts RR, Zalenski RJ, Mensah EK, Rydman RJ, Ciavarella G, Gussow L, Das K, Kampe LM, Dickover B, McDermott MF, et al: Costs of an emergency department-based accelerated diagnostic protocol vs hospitalization in patients with chest pain: a randomized controlled trial [see comments]. JAMA. 1997, 278: 1670-1676. 10.1001/jama.1997.03550200046030.View ArticlePubMedGoogle Scholar
  22. Sulch D, Perez I, Melbourn A, Kalra L: Randomized controlled trial of integrated (managed) care pathway for stroke rehabilitation. Stroke. 2000, 31: 1929-1934. 10.1161/01.STR.31.8.1929.View ArticlePubMedGoogle Scholar
  23. Usui K, Kage H, Soda M, Noda H, Ishihara T: Electronic clinical pathway for community acquired pneumonia (e-CP CAP). Nihon Kokyuki Gakkai zasshi = the journal of the Japanese Respiratory Society. 2004, 42: 620-624.PubMedGoogle Scholar
  24. Abe T, Tsuchida N, Ishibashi H, Yamamoto S: [Comparison between the short program and the long program of post-operative rehabilitation of hip fracture for making the critical path]. [Japanese]. Nippon Ronen Igakkai Zasshi - Japanese Journal of Geriatrics. 2001, 38 (4): 514-518. 10.3143/geriatrics.38.514.View ArticlePubMedGoogle Scholar
  25. Board N, Caplan G: Implications of decreasing surgical lengths of stay. Aust Health Rev. 2000, 23 (2): 62-76. 10.1071/AH000062.View ArticlePubMedGoogle Scholar
  26. Card SJ, Herrling PJ, Matthews JL, Rossi ML, Spencer ES, Lagoe R: Impact of clinical pathways for total hip replacement: a community-based analysis. J Nurs Care Qual. 1998, 13 (2): 67-76. 10.1097/00001786-199812000-00009.View ArticlePubMedGoogle Scholar
  27. Crunden E, Boyce C, Woodman H, Bray B: An evaluation of the impact of the ventilator care bundle. Nurs Crit Care. 2005, 10 (5): 242-246. 10.1111/j.1362-1017.2005.00134.x.View ArticlePubMedGoogle Scholar
  28. Joh HJ, Moon IS, Park HR, Kim NC, Yang S: The effects of the critical pathway for inguinal hernia repair. Yonsei Med J. 2003, 44: 81-88.View ArticlePubMedGoogle Scholar
  29. Kelly CS, Andersen CL, Pestian JP, Wenger AD, Finch AB, Strope GL, Luckstead EF: Improved outcomes for hospitalized asthmatic children using a clinical pathway. Ann Allergy Asthma Immunol. 2000, 84: 509-516. 10.1016/S1081-1206(10)62514-8.View ArticlePubMedGoogle Scholar
  30. Namiki S, Ito A, Ishidoya S, Satoh M, Saito S, Arai Y, Tochigi T, Kuwahara M, Ioritani N, Koinuma N: [The perioperative charge equivalence of radical prostatectomy with 1-year follow up since the diagnosis of prostate cancer]. [Japanese]. Hinyokika Kiyo - Acta Urologica Japonica. 2004, 50 (2): 71-75.PubMedGoogle Scholar
  31. Ogawa T, Terada A, Yamada Y, Ijichi K, Hasegawa Y, Fujimoto Y: The meaning clinical pathway of the operation for thyroid tumor and parotid tumor. Pract Otorhinolaryngol. 2004, 97: 555-561.Google Scholar
  32. Perlstein PH, Kotagal UR, Schoettker PJ, Atherton HD, Farrell MK, Gerhardt WE, Alfaro MP: Sustaining the implementation of an evidence-based guideline for bronchiolitis. Arch Pediatr Adolesc Med. 2000, 154: 1001-1007.View ArticlePubMedGoogle Scholar
  33. Pestian JP, Derkay CS, Ritter C: Outpatient tonsillectomy and adenoidectomy clinical pathways: an evaluative study. Am J Otolaryngol. 1998, 19: 45-49. 10.1016/S0196-0709(98)90065-5.View ArticlePubMedGoogle Scholar
  34. Turley K, Tyndall M, Roge C, Cooper M, Turley K, Applebaum M, Tarnoff H: Critical pathway methodology: effectiveness in congenital heart surgery. Ann Thorac Surg. 1994, 58 (1): 57-63. 10.1016/0003-4975(94)91072-3. discussion 63–5View ArticlePubMedGoogle Scholar
  35. Walsh MD, Barry M, Scott TE, Lamorte WW, Menzoian JO: The role of a nurse case manager in implementing a critical pathway for infrainguinal bypass surgery. Jt Comm J Qual Improv. 2001, 27 (4): 230-238.PubMedGoogle Scholar
  36. Wilson SD, Dahl BB, Wells RD: An evidence-based clinical pathway for bronchiolitis safely reduces antibiotic overuse. Am J Med Qual. 2002, 17 (5): 195-199. 10.1177/106286060201700507.View ArticlePubMedGoogle Scholar
  37. Yamauchi H, Inokuchi H, Matsumoto H, Matsumoto A, Nishio M, Abe Y, Matsushita M: Clinical pathway for inpatients with gastric ulcer: evaluation of usefulness]. [Japanese. Nippon Shokakibyo Gakkai Zasshi - Japanese Journal of Gastroenterology. 2003, 100 (7): 844-851.Google Scholar
  38. Excel: MS Office. 14.0 version for Windows edition. 2011, Redmont, WA: Microsoft CooperationGoogle Scholar
  39. Review-Manager: (RevMan) [computer program]Version 5.0. Copenhagen: The Nordic Cochrane Centre. 2008, The Cochrane Collaboration: John Wiley & Sons, LtdGoogle Scholar
  40. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR: Introduction to Meta-Analysis. Chichester, West Sussex. 2009, Hoboken NJ: John Wiley & SonsView ArticleGoogle Scholar
  41. Chen SH, Yeh KW, Chen SH, Yen DC, Yin TJ, Huang JL: The development and establishment of a care map in children with asthma in Taiwan. J Asthma. 2004, 41: 855-861. 10.1081/JAS-200038471.View ArticlePubMedGoogle Scholar
  42. Bauer MS, McBride L, Williford WO, Glick H, Kinosian B, Altshuler L, Beresford T, Kilbourne AM, Sajatovic M, Program CS: Collaborative care for bipolar disorder: part I (& II) Intervention and implementation in a randomized effectiveness trial. Psychiatr Serv. 2006, 57: 927-936. 10.1176/ ArticlePubMedGoogle Scholar
  43. Cole MG, McCusker J, Bellavance F, Primeau FJ, Bailey RF, Bonnycastle MJ, Laplante J: Systematic detection and multidisciplinary care of delirium in older medical inpatients: a randomized trial. CMAJ. 2002, 167: 753-759.PubMedPubMed CentralGoogle Scholar
  44. Kampan P: Effects of counseling and implementation of clinical pathway on diabetic patients hospitalized with hypoglycemia. J Med Assoc Thai. 2006, 89: 619-625.PubMedGoogle Scholar
  45. Kollef MH, Shapiro SD, Silver P, John RE, Prentice D, Sauer S, Ahrens TS, Shannon W, Baker-Clinkscale D: A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med. 1997, 25: 567-641. 10.1097/00003246-199704000-00004.View ArticlePubMedGoogle Scholar
  46. Marelich GP, Murin S, Battistella F, Inciardi J, Vierra T, Roby M: Protocol weaning of mechanical ventilation in medical and surgical patients by respiratory care practitioners and nurses: effect on weaning time and incidence of ventilator-associated pneumonia. Chest. 2000, 118: 459-467. 10.1378/chest.118.2.459.View ArticlePubMedGoogle Scholar
  47. Philbin EF, Rocco TA, Lindenmuth NW, Ulrich K, McCall M, Jenkins PL: The results of a randomized trial of a quality improvement intervention in the care of patients with heart failure. The MISCHF Study Investigators. [see comments]. Am J Med. 2000, 109: 443-449. 10.1016/S0002-9343(00)00544-1.View ArticlePubMedGoogle Scholar
  48. Sulch D, Melbourn A, Perez I, Kalra L: Integrated care pathways and quality of life on a stroke rehabilitation unit. Stroke. 2002, 33: 1600-1604. 10.1161/01.STR.0000017144.04043.87.View ArticlePubMedGoogle Scholar
  49. Bookbinder M, Blank AE, Arney E, Wollner D, Lesage P, McHugh M, Indelicato RA, Harding S, Barenboim A, Mirozyev T, Portenoy RK: Improving end-of-life care: Development and pilot-test of a clinical pathway. J Pain Symptom Manag. 2005, 29: 529-543. 10.1016/j.jpainsymman.2004.05.011.View ArticleGoogle Scholar
  50. Chadha Y, Mollison J, Howie F, Grimshaw J, Hall M, Russell I: Guidelines in gynaecology: evaluation in menorrhagia and in urinary incontinence. BJOG. 2000, 107: 535-543. 10.1111/j.1471-0528.2000.tb13275.x.View ArticlePubMedGoogle Scholar
  51. Doherty S: Evidence-based implementation of evidence-based guidelines. Int J Health Care Qual Assur Inc Leadersh Health Serv. 2006, 19: 32-41.View ArticlePubMedGoogle Scholar
  52. Smith BJ, Cheok F, Heard AR, Esterman AJ, Southcott AM, Antic R, Frith PA, Hender K, Ruffin RE: Impact on readmission rates and mortality of a chronic obstructive pulmonary disease inpatient management guideline. Chron Respir Dis. 2004, 1: 17-28.PubMedGoogle Scholar
  53. Brattebo G, Hofoss D, Flaatten H, Muri AK, Gjerde S, Plsek PE: Effect of a scoring system and protocol for sedation on duration of patients' need for ventilator support in a surgical intensive care unit. BMJ. 2002, 324: 1386-1389. 10.1136/bmj.324.7350.1386.View ArticlePubMedPubMed CentralGoogle Scholar
  54. Tilden VP, Shepherd P: Increasing the rate of identification of battered women in an emergency department: use of a nursing protocol. Res Nurs Health. 1987, 10: 209-224. 10.1002/nur.4770100403.View ArticlePubMedGoogle Scholar
  55. Joiner GA, Salisbury D, Bollin GE: Utilizing quality assurance as a tool for reducing the risk of nosocomial ventilator-associated pneumonia. In Am J Med Qual. 1996, 11: 100-103. 10.1177/0885713X9601100208.View ArticleGoogle Scholar
  56. Smith DM, Gow P: Towards excellence in quality patient care: A clinical pathway for myocardial infarction. In J Qual Clin Pract. 1999, 19: 103-105. 10.1046/j.1440-1762.1999.00311.x.View ArticleGoogle Scholar
  57. Summers D, Soper PA: Implementation and evaluation of stroke clinical pathways and the impact on cost of stroke care. In J Cardiovasc Nurs. 1998, 13: 69-87.View ArticleGoogle Scholar
  58. Warner BW, Rich KA, Atherton H, Andersen CL, Kotagal UR: The sustained impact of an evidenced-based clinical pathway for acute appendicitis. In Semin Pediatr Surg. 2002, 11: 29-35. 10.1053/spsu.2002.29364.View ArticleGoogle Scholar
  59. Bittinger JP: Case management and satisfaction with nursing care of patients hospitalized with congestive heart failure. 1995, School of Nursing: University of AlabamaGoogle Scholar
  60. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:


© Rotter et al.; licensee BioMed Central Ltd. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.