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Abstract

Background: Linear mixed effects models (LMMs) are a common approach for analyzing longitudinal data in a
variety of settings. Although LMMs may be applied to complex data structures, such as settings where mediators
are present, it is unclear whether they perform well relative to methods for mediational analyses such as structural
equation models (SEMs), which have obvious appeal in such settings. For some researchers, SEMs may be more
difficult than LMMs to implement, e.g. due to lack of training in the methodology or the need for specialized SEM
software. It therefore is of interest to evaluate whether the LMM performs sufficiently in a scenario particularly
suitable for SEMs. We focus on evaluation of the total effect (i.e. direct and indirect) of an exposure on an outcome
of interest when a mediating factor is present. Our aim is to explore whether the LMM performs as well as the
SEM in a setting that is conducive to using the SEM.

Methods: We simulated mediated longitudinal data from an SEM where a binary, main independent variable has
both direct and indirect effects on a continuous outcome. We conducted analyses with both the LMM and SEM to
evaluate the performance of the LMM in a setting where the SEM is expected to be preferable. Models were
evaluated with respect to bias, coverage probability and power. Sample size, effect size and error distribution of
the simulated data were varied.

Results: Both models performed well in a range of settings. Marginal increases in power estimates were observed
for the SEM, although generally there were no major differences in performance. Power for both models was good
with a sample of size of 250 and a small to medium effect size. Bias did not substantially increase for either model
when data were generated from distributions that were both skewed and kurtotic.

Conclusions: In settings where the goal is to evaluate the overall effects, the LMM excluding mediating variables
appears to have good performance with respect to power, bias and coverage probability relative to the SEM. The
major benefit of SEMs is that it simultaneously and efficiently models both the direct and indirect effects of the
mediation process.

Background
A common method of handling longitudinal data is
through linear mixed effects models (LMMs) [1]. These
models account for the correlation of observations and
allow estimation of the effect of predictor variables on
repeated outcomes. They are relatively easy to imple-
ment and their regression parameters have a clear
interpretability.
Complex relationships often exist among the variables

studied, however, and it may be of interest to explicitly
model the hypothesized causal pathways between

independent variables and outcomes. Although multiple
mixed effects models can be fit to evaluate mediation
(see e.g. Krull and MacKinnon [2] and Baron and Kenny
[3]), methods for mediational analyses, such as Struc-
tural Equation Models (SEMs), are necessary to simulta-
neously model mediated relationships. However, when
the primary aim of an analysis is to determine the total
effect (i.e. direct and indirect) of an exposure on an out-
come of interest, it is unclear what the impact of explicit
modeling of the mediated relationship is on power, bias,
and on coverage probability for the main research aim.
SEMs are a well known and commonly used data ana-

lysis technique in the social sciences, and is becoming
increasingly popular in many clinical research areas. The
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SEM framework is a general modeling framework and
allows the modeling of potentially complex relationships
among observed and latent variables and can be applied
in the longitudinal data setting.
There has been much previous work in applying

SEMs to longitudinal data analyses [4-9], and the
equivalence of LMMs and special cases of SEMs in set-
tings without mediating variables has been well docu-
mented in the SEM literature [5,7,10-15]. The major
advantages of SEMs are that they have the capability
to incorporate measurement error on the variables in
the model [5,8,13], allow explicit modeling of relation-
ships involving mediating variables [16] and are able to
decompose direct and indirect effects [11]. Disadvan-
tages of SEMs that have been previously noted include
potentially large sample size requirements and poten-
tial problems with skewed data. It is also essential for
SEMs that investigators have clear hypotheses on the
causal pathways between variables [9]. In addition,
SEMs may be more difficult than LMM to implement,
e.g. due to a lack of training in the methodology or the
need for specialized SEM software. Given these poten-
tial limitations, it is of interest to explore whether a
LMM performs well relative to an SEM in settings
where mediation is present.
The purpose of this paper is to conduct a simulation

study in a mediated longitudinal setting to evaluate
whether a LMM performs sufficiently with respect to
power, bias and coverage in a scenario that is conducive
to using an SEM.

Methods
Setting
We consider a longitudinal setting similar to a study by
Samet et al [17] evaluating the impact of heavy alcohol
consumption on HIV disease progression. The data arise
from a prospective cohort study in which the primary
outcome, CD4 cell count, is assessed every 6 months for
three years (i.e. 6 measures of CD4 count across time
for each subject) and heavy alcohol consumption, the
main independent variable, is assessed only at baseline.
A potential mediator of the relationship between heavy
alcohol consumption and HIV disease progression is
adherence to antiretroviral therapy (ART) as it has been
demonstrated that alcohol consumption may worsen a
patient’s ability to adhere to ART thereby leading to
worse disease progression. In the current setting we
assume that ART is assessed only at baseline. In addi-
tion to an indirect effect mediated by ART, alcohol con-
sumption could also have a direct biological effect on
CD4 cell count. The primary objective of the analysis is
to evaluate the overall impact (direct plus indirect effect)
of heavy alcohol use on CD4 cell count. Figure 1 shows
a simple diagram illustrating the relationship between

heavy alcohol consumption, ART adherence and the
outcome CD4 cell count.
A standard analytic approach for analyzing these data

would be to fit a LMM, which can account for correla-
tion due to repeated assessments of CD4 cell count
from the same subject and adjust for potential confoun-
ders. Alternatively, an SEM could be fit to the data
which would explicitly model the hypothesized pathways
between heavy alcohol consumption and CD4 count.
In this setting, where the main objective is to deter-

mine the total effect of heavy alcohol use on CD4 cell
count, it is unclear whether a LMM can perform as well
as an SEM, a method often preferred for analyzing
mediated longitudinal data.

General SEM Formulation
There are two components to an SEM, the measurement
model and the structural model. The measurement
model relates unobserved latent variables and covariates
to outcomes and exposure indicators. This model
attempts to capture measurement error in observed vari-
ables. The structural model relates covariates and latent
variables to latent variables. This model attempts to cap-
ture individual variation in the latent variables.
Using the same notation as Sanchez [15], the general

model is expressed as:

Measurement Model

X

Y
U KZi

i
i i i









      ε (1)

Structural Model

U BU Zi i i i     (2)

In the above equations, i indexes the individual, with
i = 1,..., N where N is the number of individuals. For the
ith individual, Yi is a vector of observed outcomes, Xi is a
vector observed exposure indicators. Ui is a vector of
latent variables and Zi is a vector of observed, fixed

Figure 1 Mediated effect of alcohol on CD4 count. Alcohol may
directly impact CD4 count or may have an indirect effect through
its effects on ART adherence.
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covariates. Although Ui appears on both sides of the
matrix equation, the diagonal elements of B are zeros so
that the same element of Ui would not appear on both
the left- and right-hand side of a given equation. is a
matrix of coefficients associated with Ui, K is a matrix of
coefficients associated with Zi and εi is a vector of ran-
dom residual errors for the measurement model. In the
structural model, B is a matrix of coefficients (where the
diagonal elements are zeros) associated with Ui, Γ is a
matrix of coefficients associated with Zi and ζi is a vector
of random residual errors for the structural part of the
model. The mean of random residual errors for both the
measurement and structural models are assumed to be
zero. Σ is the covariance matrix of the residual errors of
the measurement model (εi), and Ψ is the covariance
matrix of the residual errors of the structural model (ζi).
The Xi and Yi are assumed to be multivariate normal
(MVN). The errors in Equations 1 and 2 are assumed to
be independent. Parameters are usually estimated via
maximum likelihood, with the objective of minimizing
the distance between the observed and model-based
mean and covariance structure [16].

SEM Simulation Model
The SEM framework was used to generate the mediated
longitudinal data for the simulation studies since the
aim is to evaluate whether a LMM performs sufficiently
in the setting where an SEM is presumed to be optimal.

The scenario in which we simulated data is an extension
of a specific SEM often referred to as a latent growth
curve model or latent curve model [4,18]. In the latent
growth curve model, the outcome variables are influ-
enced by random intercept and slope variables. These
variables are latent and can be influenced by predictors
and other covariates. Let i index the individual (i = 1,...,
N) and j index the time-point (j = 1,..., T), where T is
the number of measurement times. In the current study,
we considered a setting with a single continuous covari-
ate (z1i), such as age, and a single binary independent
variable (z2i) of primary interest, heavy alcohol con-
sumption, predicting repeated observations of the out-
come (Yij), CD4 cell count. Heavy alcohol use influences
the outcome CD4 cell count through the random inter-
cept and slope variables. In addition, ART adherence is
a mediating variable (xi) which influences CD4 count
through the random intercept and slope variables. The
variable ART adherence is said to be a mediator because
the primary independent variable, heavy alcohol use,
may affect CD4 count not only directly but also indir-
ectly through ART adherence. We considered a setting
with 6 time-points (T = 6) and illustrate the SEM model
with the path diagram in Figure 2. Using the notation
we have described above for SEMs and eliminating the
subject index i for simplicity, our measurement and
structural model for the scenario illustrated in Figure 2
can be written as:

Figure 2 Path diagram for mediated longitudinal data. path diagram for mediated longitudinal data with the outcome (Y) measured at six
occasions, a continuous covariate (z1) measured once, a dichotomous main independent predictor (z2) measured once variable and a
continuous mediator (x) measured once.
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Measurement Model
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Structural Model
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(4)

or in matrix notation as:

Measurement Model

Y Ui i i 

 ε

x U3

Structural Model

U BU Zi i i i   

The latent intercept and slope are represented by U1

and U2, respectively. The continuous covariate (age)
and main independent variable (heavy alcohol use) are
represented by z1 and z2, respectively. Based on the
model formulation presented in Equations 1 and 2,
ART adherence (x) is considered both an outcome (as
it is influenced by the main independent variable) and
a predictor (as it influences the random intercept and
slope), and therefore appears on the right- and left-
hand side of the above equations. However, using the
above formulation, only latent variables can be both
outcomes and predictors. Thus to incorporate x as a
mediator and stay within the framework defined by
Sanchez [15], we must add an additional latent variable
(U3) to the model that is exactly equal to x; x can then
be viewed as an indicator of this latent variable. Time
is incorporated into the model by populating the Λ
matrix from Equation 1 with the fixed times of mea-
surements (tj).
It can be shown that for a given outcome, Yj, at time

tj, the predictive formula is:

Y b b z z z

b t b z t z t
j

j j j

    

 
13 31 13 33 2 12 1 13 2

23 31 23 33 2 23 2

   

  

    ( ) ( )   1 13 3 2 23 3b b t j jε

(5)

The interpretation of the key model parameters of
interest are as follows:

1. b13 is the effect of the mediating variable on the
latent intercept.
2. b23 is the effect of the mediating variable on the
latent slope.
3. g33 is the effect of the main independent variable
on the mediating variable.
4. g23 is the effect of the main independent variable
on the latent slope.
5. g13 is the effect of the main independent variable
on the latent intercept.

Under the assumption of MVN errors in both the
measurement and structural model, the distribution of
Y is MVN as well. The mean for any given Yj is:

E( ) ( ) ( )

( ) (

Y b z b z

b t b
j

j
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   ))z t j2

and the covariance matrix for the vector of Yj’s is:

Cov T( )Y W W  

where
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The primary setting we considered in our simulations
assumed a constant effect of heavy alcohol use (the
main independent variable of interest) over time. If
there is no alcohol by time interaction (i.e. g23 = 0 and
b23 = 0), the total effect of heavy alcohol use on CD4
count is represented by g 13 + b13 g33, which is the sum
of its direct (g13) and indirect (b13 g33) effect through
ART adherence.
Secondary analyses assuming the effect of heavy alco-

hol use changes over time were also performed. In this
setting, the interaction between alcohol and time is the
primary interest. The total effect of alcohol use on the
change of CD4 count over time is represented by coeffi-
cients corresponding to the interaction between alcohol
use and time, g23 + b23 g33, the sum of the direct and
indirect effects, respectively.

Linear Mixed Effects Models
The LMM can be used to evaluate the total effect of
heavy alcohol consumption on CD4 cell count, however,
the mediated relationship is not explicitly modeled with
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a single LMM. Two mixed models were considered for
comparison to the SEM. The first model, which we will
refer to as LMM1, includes the mediator (x) as a covari-
ate in the model. In the formula below we have again
eliminated the subject index (i) for simplicity and let
j = 1,..., 6 index time-point. The first model is:

Y z z t x z t

r r t e
j j j

j j

      

 

     0 1 1 2 2 3 4 5 2

1 2
(6)

where bj’s are unknown regression coefficients relating
covariates to the mean of Yj, r1 and r2 denote the ran-
dom intercept and random slope, respectively and ej is
the random error with zero mean representing deviation
of responses from the corresponding predicted means.
In matrix form e = (e1, e2,..., e6)

T is the vector of
unknown random errors with E(e) = 0 and Cov(e) = E;
r = (r1, r2)

T is the vector of the random intercept and
slope coefficients with E(r) = 0 and Cov(r) = G. In the
primary setting we explore, where the effect of alcohol
is assumed constant and therefore the alcohol by time
interaction in (6) is excluded, the effect of the main
independent variable on the outcome is represented by
b2. In the secondary setting explored where there is an
alcohol by time interaction, the parameter of interest is
b5. Variables in the causal pathway are often omitted as
they otherwise artificially attenuate the effect of the
main independent variable of interest. Thus, we also
considered a second mixed model, which we refer to as
LMM2, where we refit the model given in Equation 6
excluding the term for ART adherence (b4x).
The LMM assumes MVN errors, therefore the distri-

bution of Y is MVN as well. For the LMM1 in Equation
(6), the mean for any given Yj is:

E( )Y z z t x z tj j j          0 1 1 2 2 3 4 5 2

and the covariance matrix of the vector of Yj’s is:

Cov T( )Y ZG Z E 

where
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In a comparison of the means of the SEM and LMM
under the assumption of multivariate normality, there
are two notable differences. First, the mean for the
SEM is explicitly modeled as a function of both the
direct and indirect effects of the main independent

variable z2 (i.e. g13 + b13 g33) whereas in the LMM it is
simply a function of its total effect (i.e. b2). Second, in
a LMM that includes the mediating variable (LMM1),
the mean of the outcome is a function of the mediat-
ing variable itself, but this is not the case for the SEM
where the mean depends instead on the effect of the
mediating variable on the latent intercept and slope
(i.e., b13 and b23). With regard to covariance matrices,
in the LMM the covariance depends on the values of
time and the covariance matrix of the latent intercept
and slope. In contrast, the covariance from the SEM
depends explicitly on the mediating variable and its
effects. That is, it is a function of the values of time,
the parameters associated with the effect of the med-
iating variable on the random intercept and random
slope, as well as the covariance matrix of the latent
intercept, slope, and the mediating variable. Thus, the
magnitude of the mediated effect and the covariance of
the mediator and latent variables influence the covar-
iance of Y in the SEM but this is not the case in the
LMMs.
We simulated data under the mediated SEM and then

fit the data with both the LMM1 and LMM2 models.
The SEM model was also fit as a reference standard to
compare with the LMM results. The goal was to identify
advantages and disadvantages of using the LMM relative
to the SEM in a longitudinal data setting where a med-
iator was present. In evaluating model performance, we
focused on the parameters representing the total effect
of heavy alcohol use on CD4 cell count.

Data Characteristics to be Varied in Simulated Data
We simulated datasets assuming the mediated longitudi-
nal relationship described in the path diagram (Figure
2). The data were generated under the SEM model as
the objective was to evaluate the performance of the
mixed model when the SEM is expected to be prefer-
able. The factors we evaluated were sample size, effect
size and distributional assumptions.
Sample Size
A range of sample sizes was evaluated. We considered
sample sizes as small as 25 and increased values up to 500
at which point both the SEM and LMM performed well.
Effect Size and Total Effect Distribution
When the effect of heavy alcohol use is constant over
time, the total effect of the main independent variable
on the latent intercept is given by g13 + b13 g33. We
defined the effect size by scaling this quantity by the
total standard deviation of the latent intercept:

Effect Size Intercept
U i

:
var( )


 13 13 33

1

b
(7)
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where

var( ) var( ) var( ) var( )
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When the effect of heavy alcohol use changes over
time, the direct effect of the main independent variable
on the latent intercept is set to zero, and thus the effect
size on the latent slope was defined as:

Effect Size Slope
U i

:
var( )


 23 23 33

2

b
(8)

where
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We examined a range of effect sizes including small
(approximately 0.2), medium (approximately 0.5) and
large (approximately 0.8), as defined by Cohen [19]. In
addition, within each effect size we varied the distribu-
tion of the direct and indirect effects and explored the
following three scenarios: equally distributed direct and
indirect effects; primarily direct effect; primarily indirect
effect.
Distribution of the Outcome Variable
Both SEMs and LMMs assume normally distributed
errors of the outcome variables. We compared the per-
formance of each type of model when this assumption
was not met. For each distribution evaluated we consid-
ered two scenarios: i) only the errors from the measure-
ment model were non-normal and ii) errors of both the
measurement and structural models were non-normal.
The following distributions were evaluated:

1. Uniform(  3 3, ) distribution- the parameters
of the uniform distribution were chosen to obtain a
mean of zero and a variance of one to be compar-
able to the standard normal setting.
2. Lognormal(0, 0 4812. ) distribution- the log-
normal parameters were chosen such that the mean
of the residual errors was equal to zero and the var-
iance was equal to one. To achieve a mean of zero,
exp(0.4812/2) was subtracted from all generated log-
normal values.
3. Contaminated normal(0.4, 10) distribution- a mix-
ture of a standard normal and normal with variance
of 10, where 40% of the data were from the latter
distribution [20].
4. Fleishman/Mattson method. The Fleishman [21]
method describes a way to generate non-normal ran-
dom variates with known skewness and kurtosis.

The Mattson [22] method provides a way to gener-
ate non-normal random variates with specified cor-
relation from non-normal random variates with
known skewness and kurtosis. The method also pro-
vides a formula for the skewness and kurtosis of the
randomly generated correlated values. The combined
method [23] allowed us to change only the distribu-
tion of the errors while keeping the overall variance
and correlation the same. We used two Fleishman/
Mattson distributions. The first had a moderate level
of skewness and low level of kurtosis. The second
was highly skewed and highly kurtotic. The first
results in a variance of 1, a skewness of 0.75 and
kurtosis of 0 for the residual errors of the measure-
ment model and skewness of (0.53, 0.5 and 0.75)
and kurtosis of (-1.5, -1.9 and -3) for the three resi-
dual errors of the structural model, respectively. The
second Fleishman/Mattson distribution we used
results in a variance of 1, skewness of 1.75 and kur-
tosis of 3.75 of the residual errors of the measure-
ment model and skewness of (1.2, 1.4 and 1.8) and
kurtosis of (0.4, 0.5 and 0.8) for the three residual
errors of the structural model, respectively.

Data Simulation
To generate a dataset under the mediated SEM data
structure, the following steps were taken.

1. Two multivariate normal random variates were
generated, one to be the residual error of the latent
intercept and one to be the residual error of the
latent slope. When evaluating the impact of distribu-
tional assumptions, the non-normal distributions
defined in the previous section replaced the multi-
variate normal distribution in this step. The Mattson
method [22] was used to keep the covariance
between the random intercept and random slope at
the same level as was used for the normal
simulations.
2. The value of the latent intercept and latent slope
were computed according to the structural model
given in Equation 4.
3. Independent normal errors were created to be the
residual errors for each of the repeated measures of
outcome. When evaluating the impact of distribu-
tional assumptions, the non-normal distributions
defined in the previous section replaced the multi-
variate normal distribution in this step.
4. The values of the longitudinal outcome variables
were computed according to the measurement
model given in Equation 3.
5. Steps 1 through 4 were repeated 1000 times to
create 1000 datasets.
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6. Each generated dataset was fit with the SEM, the
LMM1 (i.e. with the mediator as a covariate), and
the LMM2 (i.e. without the mediator as a covariate).
7. Model performance was assessed with the follow-
ing: i.) Bias- the difference between the true para-
meter value and the mean observed parameter value
divided by the true parameter value. ii.) Coverage
probability - the percentage of the 1000 95% confi-
dence intervals that contained the true parameter
value. iii.) Power - the percentage of the 1000 data-
sets in which a hypothesis test of the parameter of
interest was statistically significant. With a sample
size of 1000, and a true power of 80%, the width of
a 95% confidence interval around a power estimate
based on the simulations would be approximately
5.0 percentage points. For a true 95% coverage prob-
ability, the width of a 95% confidence interval
around a coverage probability estimate would be
approximately 2.7 percentage points.

Results
The results from the mixed effects models focus primar-
ily on the models that do not adjust for the mediator
(i.e., LMM2) because these models capture the total
effect of the main independent variable. Results from
the mixed model adjusting for the mediator (LMM1)
appear to capture the direct rather than total effect of
the primary independent variable and are therefore only
included in the sample size results to demonstrate this
result. However, since the primary objective of the ana-
lysis was to evaluate the total effect of the main inde-
pendent variable, we present only the comparison of the
SEM and the mixed model that excludes the mediator
in the remainder of the results. Typically, variables asso-
ciated with the outcome are included in a model,
including independent predictors and confounders.
However, because mediators are in the causal pathway,

it is recommended that such variables be excluded from
a model to avoid attenuating the true association
between an exposure and outcome [24]. Thus the
LMM2 model is consistent with the general practice of
excluding as a covariate variables thought to be in the
causal pathway.

Sample Size
The results from the sample size variation are displayed
in Table 1. With sample sizes of 25, 50 and 100, the
estimated power to detect the total effect for all models
was quite low (14%-65%). We note that for the SEM,
with a sample size of 100, the power for the total effect
was 65%, while the power to detect the direct and indir-
ect effects were 26% and 71% (data not shown), respec-
tively. With a sample size of 200, the power for the
SEM and LMM2 were both high and similar in magni-
tude (91% and 89%, respectively), although the power
for the LMM1 remained low at 41%. The estimated
power of the LMM1 for a sample size of 500 was less
than 80%. With a sample size of 500 the power for the
SEM and LMM2 models were 99%, therefore we did not
evaluate larger sample sizes.
The estimated coverage probabilities for the total

effect for all sample sizes for the SEM were high, ran-
ging from 92% to 96%. For the LMM2, these coverage
probabilities range from 91% to 95%. For the LMM1,
the coverage probabilities were much lower than either
the SEM or the LMM2 and decreased with increasing
sample size. This trend is likely due to the large bias of
the estimate for the LMM1 and resulting confidence
intervals that are not centered at the true value. Thus
the wider confidence intervals from smaller sample sizes
are more likely to include the true value.
Because the model performance was good for the

SEM and LMM2 with a sample size of 250 subsequent
simulations evaluating effect sizes and distributional
assumptions were conducted using this sample size.

Table 1 Impact of sample size.

Simulated
Data

Mediated SEM LMM with Mediator as Covariate LMM1 LMM without Mediator LMM2

Sample Size Bias
(%)

Coverage Probability
(%)

Power
(%)

Bias
(%)

Coverage Probability
(%)

Power
(%)

Bias
(%)

Coverage Probability
(%)

Power
(%)

25 1.5 92 26 -48 85 14 2.1 91 26

50 1.5 93 41 -49 84 16 2.0 93 42

100 1.2 94 65 -49 75 26 1.7 94 65

200 -1.2 96 91 -51 56 41 -1.1 95 89

250 -1.6 94 95 -52 48 47 -1.6 93 94

500 -1.0 95 100 -51 21 78 -1.0 95 100

Impact of sample size on model performance in evaluating the total effect of the main independent variable on random intercept.

Based on 1000 simulated datasets with medium effect size equally distributed between direct and indirect effects.
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Effect Size and Total Effect Distribution
The results from the set of simulation studies varying
the effect of the main independent variable on the ran-
dom intercept are displayed in Table 2.
In evaluating the effect of the main independent vari-

able on the random intercept, the power for the SEM
and the LMM2 (i.e. LMM without the mediating vari-
able) was > 99% when the effect size was large, regard-
less of whether the effect was primarily direct, primarily
indirect or equally distributed between the direct and
indirect paths. The coverage probabilities were also very
similar between the SEM and LMM2 (≥ 93% in all
cases).
For a medium effect, the point estimate of power was

slightly higher for the SEM compared to the LMM2
regardless of how the effect was distributed. For exam-
ple, when the effect was equally distributed the power
was 94% for the LMM2 and 95% for the SEM. Although
the power for all models was high (≥ 92%), the power
for the SEM and the LMM2 appeared to increase as the
proportion of the direct effect increased. When the
effect was primarily indirect the power was 92% for the
LMM2 and 93% for the SEM. The coverage probabilities
for the total effect were again ≥ 93% for both the SEM
and the LMM2. The higher point estimates of power in
the SEM appeared to be due to the larger standard
error of the effect estimate in the LMM2. Similar trends
were observed with the medium-small and small effect
sizes although the power for all models dropped mark-
edly with the small effect size. For example, power was
approximately 32% for both models in the case of a
small effect size, equally distributed between direct and
indirect effects.

Distributions
In simulations evaluating the effect of distributional
assumptions, we used a sample size of 250 and a med-
ium-small effect size that was equally distributed in
direct and indirect effects (see Table 3). Results from
the model with a normal distribution (and the same
sample size and effect distribution as described above)
had power of 80% and bias of -2.0% for both the SEM
and the LMM2 and a coverage probability of 94% for
the SEM and 93% for the LMM2. This is referred to
below as the normal comparison model.
Assuming a uniform distribution on the residual

errors of the measurement model the power to detect
the total effect was estimated to be 82% for the SEM
and 81% for the LMM2. Both of these models had simi-
lar estimates of power which were slightly greater than
the power estimate of the comparison models with nor-
mal residual errors. This was likely due to an underesti-
mation of the standard error of the parameters. For the
model with normal residual errors, the mean of the
standard errors of the total effect was 0.16 whereas the
mean of the standard errors for the uniform was 0.15.
The coverage probability was very similar for both the
SEM and the LMM2 (96%). These estimates were
slightly higher than those for the normal comparison
models. The bias was small (< 1%) for both SEM and
LMM2. The results were similar when a uniform distri-
bution was used for the residual errors of both the mea-
surement and structural models.
Model performance was good overall for both the

SEM and LMM2 when errors followed a log-normal dis-
tribution (see Table 3), although not as good as under
the uniform distribution.

Table 2 Impact of effect size and effect distribution.

Simulated Data Mediated SEM Mixed Model without Mediator

Effect Size Effect Distribution Effect Bias
(%)

Coverage Probability
(%)

Power
(%)

Bias
(%)

Coverage Probability
(%)

Power
(%)

Large Equal Total -0.8 94 100 -0.8 94 100

Direct Total -0.8 94 100 -0.8 93 100

Indirect Total 0.9 94 100 -0.6 94 100

Medium Equal Total -1.5 94 95 -1.5 93 94

Direct Total -1.5 94 97 -1.5 93 96

Indirect Total -1.3 94 93 -1.3 93 92

Medium-Small Equal Total -2.0 94 80 -2.0 93 80

Direct Total -0.9 94 84 -0.9 93 83

Indirect Total -1.8 94 80 -1.8 93 79

Small Equal Total -3.7 94 32 -3.7 93 32

Direct Total -3.9 94 36 -4.0 93 35

Indirect Total -3.7 94 34 -3.7 93 33

The impact of effect size and its distribution on model performance in evaluating the total effect of the main independent variable on the random intercept.

Based on 1000 simulated datasets with a sample size of 250.
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Power declined noticeably for both models when
errors of the measurement model followed a contami-
nated normal distribution, however, the coverage prob-
ability and bias remained good (power ≤ 18%, coverage
probability ≥ 95% and bias ≤ 0.2%). The coverage prob-
ability remained high likely due to the large standard
error estimates yielding wide 95% confidence intervals.
Similar trends were observed for the contaminated nor-
mal distribution on the residual errors of the measure-
ment and structural models although model
performance declined for both the SEM and LMM2.
The lower power of both the SEM and the LMM2 fit to
the contaminated normal data may be explained by the
relatively large values of the residual variances created
by the contaminated normal. For example, the estimated
mean values for the residual variance was 40.6 in the
SEM and the LMM2 compared to around 1 in the mod-
els based on a normal distribution. The effect of a large
residual variances is a decrease in the true effect size of
the main independent variable.
Both models performed well when measurement and

structural errors followed Fleishman/Mattson distribu-
tion. The power was similar for the SEM and LMM2
(79% and 78%, respectively). Both models had the same
coverage probabilities and bias, 94% and -3%, respec-
tively. Similar values and trends were seen with the sec-
ond Fleishman/Mattson distribution.
The results of an SEM are generally presented with at

least two fit indices [25]. Commonly used fit statistics
are the chi-square statistic, the AIC, the root mean
square error of approximation (RMSEA) and the stan-
dardized root mean square residual (SRMR). LMM
models are not usually presented with fit statistics,
although during model specification, fit indices like the
log-likelihood, AIC and BIC have been used for model

selection [26]. The fit statistics for the SEM and LMM2
under different error distributions for both the measure-
ment and structural models are given in Table 4.
Lower values suggest better model fit for each of the

fit statistics presented. RMSEA values of < 0.05 and
SRMR values of < 0.1 are considered good fit [25]. How-
ever, all of the fit statistics from the SEM with the
exception of the AIC indicate that the log-normal, the
most skewed distribution, had the worst fit followed by
the second Fleishman/Mattson model which also has a
skewed distribution. The AIC from the SEM and all of
the fit statistics from the LMM2 were less affected by
the skewness of the log-normal.

Results when Effects of the Main Independent Variable
Change Over Time
The simulation results for the effect of the main indepen-
dent variable on the random slope did not differ qualita-
tively from the results for the random intercept (data not
shown). Overall, the point estimates of power were
slightly higher for all models (SEM and LMM) likely due
to the fact that no covariate by time interaction was
included in the models. The lack of this additional inter-
action term results in higher true power for the effect of
the main independent variable on the random slope. In
general, the simulation results were similar to those
observed in the primary setting where the main indepen-
dent variable had a constant effect across time.

Discussion
Linear mixed effects models are often used to analyze
longitudinal data. Although LMMs can be applied in
settings where mediation is present, it is unclear
whether they perform sufficiently well relative to SEMs
which have a framework that explicitly allows for

Table 3 Impact of distributional assumptions.

Simulated Data Mediated SEM Mixed Model without Mediator

Distribution Non-normal
Residual Error

Bias
(%)

Coverage Probability
(%)

Power
(%)

Bias
(%)

Coverage Probability
(%)

Power
(%)

Uniform Measurement 0.7 96 82 -0.8 96 81

Measurement & Structural 1.4 97 87 1.6 96 85

Log-normal Measurement -1.3 94 82 -1.3 94 80

Measurement & Structural -0.7 95 82 -0.7 95 81

Contaminated Normal Measurement -0.2 95 18 0.07 95 17

Measurement & Structural 9.5 96 8 11.1 95 8

Fleishman/Mattson 1 Measurement & Structural -2.9 94 79 -3.0 94 78

Fleishman/Mattson 2 Measurement & Structural -2.4 94 80 -2.6 94 78

The impact of distributional assumptions on model performance in evaluating the total effect of the main independent variable on the random intercept.

Based on 1000 simulated datasets with a medium-small effect size, equally distributed and a sample size of 250.

The Fleishman/Mattson 1 distribution is moderately skewed and slightly kurtotic.

The Fleishman/Mattson 2 distribution is highly skewed and kurtotic.
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mediational analyses. The objective of this paper was to
evaluate the performance of the LMM in the analysis of
longitudinal data with a single mediating variable, a set-
ting conducive to the use of SEMs.
The simulation studies were conducted to assess

whether the mixed effects model adequately modeled the
mediated longitudinal relationships or if employing SEMs
was necessary. The LMM and SEM were compared under
a range of settings evaluating sample size, effect size and
distributional assumptions. The results of our simulation
study suggest that the mixed effects model performs com-
parably to the SEM with respect to power, bias and cover-
age probability in the analysis when the objective is to
estimate the total effect of a primary independent variable.
In addition, we demonstrated that mixed effects models
used for the purpose of estimating total effects should not
include mediating variables as covariates, since resulting
coefficients represent the direct effect of the main inde-
pendent variable on the outcome and erroneous conclu-
sions could be drawn if these effects were interpreted as
the total effect.
Both the LMM and SEM were robust to violations of

the normality assumption. For the SEM, lack of normal-
ity had a larger impact on the model fit statistics than
on power, coverage probability and bias. The uniform
distribution, an example of a kurtotic, but not skewed
distributions, had little effect on the SEM fit statistics
compared to the negative impact observed for the log-
normal and Fleishman/Mattson distributions, which
were both skewed and kurtotic. Generally, the highest
levels of skewness had the worst fit. For this reason,
caution should be used in applying the SEM when the
normality of the data is in question, particularly if the
distribution of the data is skewed.
There are several considerations in deciding whether to

use an SEM or a mixed model to analyze longitudinal data
when a mediating factor is present. The SEM may provide
a marginal increase in power, although the difference may
not be statistically significant. More importantly, it

efficiently evaluates the mechanism of the total effect,
decomposing direct and indirect pathways, in a single
model. However, larger sample sizes are required to make
inferences about the specific direct and indirect effects. If
the sample size is limited and the goal is to evaluate only
the total effect of a primary independent variable, rather
than delineating direct versus indirect effects, then the
mixed model provides similar power and coverage prob-
ability to the SEM. Although direct and indirect effects
could be evaluated by fitting additional mixed models (e.g.
models with and without mediating factors), it is a less
efficient approach compared to the SEM. In addition,
there are broader issues that may influence choice of
model such as clinical context, study design and sample
size.
Complex SEMs may be difficult to implement without

specialized software. Although common software
packages such as SAS and R have the capability to run
SEMs, software designed specifically for SEMs (e.g.
Mplus, LISREL and AMOS) may be more intuitive and
user-friendly in model specification, particularly in the
development of highly complex models.
The current study examines one specific setting of

mediated longitudinal data. Other situations with differ-
ent data structures where mediation is present could
also be explored, e.g. situations where the mediator and
the primary independent variable as well as the outcome
are repeatedly measured, categorical outcomes, and set-
tings with more complex pathways between variables. In
addition, we specifically explored the question of
whether the LMM performs sufficiently in a setting
favorable to the SEM. Future studies examining broader
settings where the data arise from non-SEMs would
provide further insight into the use of the LMM and
SEM in mediated longitudinal settings.

Conclusions
In general, both SEMs and LMMs were robust methods
with similar power in a variety of scenarios. The main

Table 4 Goodness of fit.

Distribution

Model Fit Statistic Uniform Lognormal Fleishman/Mattson 1 Fleishman/Mattson 2

SEM Chi-square 36.6 58.0 38.4 43.7

RMSEA 0.010 0.040 0.023 0.021

SRMR 0.039 0.043 0.041 0.041

AIC 7309 7288 7307 7307

Mixed Model without Mediator -2LogLikelihood 5550 5537 5549 5547

AIC 5566 5553 5565 5563

BIC 5594 5581 5593 5591

Assessing goodness of fit of SEMs and LMMs with datasets with non-normal error distributions.

Normal comparison model has SEM values of Chi-square = 38.2, RMSEA = 0.012, SRMR = 0.040, AIC = 7306 and LMM values of Negative 2Loglikelihood = 5548,
AIC = 5564 and BIC = 5592.

Blood et al. BMC Medical Research Methodology 2010, 10:16
http://www.biomedcentral.com/1471-2288/10/16

Page 10 of 11



advantage of the SEM is the ability to estimate the
direct and indirect pathways of the effect of the primary
independent variable on the outcome, given sufficient
sample sizes. Despite not directly modeling the mediated
pathways, LMMs excluding mediating variables per-
formed well with respect to power, bias and coverage
probability in modeling the total effect of the primary
independent variable on the outcome.
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