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Background: The therapeutic efficacy of an intervention is often assessed in clinical trials by scales measuring
multiple diverse activities that are added to produce a cumulative global score. Medical communities and health
care systems subsequently use these data to calculate pooled effect sizes to compare treatments. This is done
because major doubt has been cast over the clinical relevance of statistically significant findings relying on p values
with the potential to report chance findings. Hence in an aim to overcome this pooling the results of clinical
studies into a meta-analyses with a statistical calculus has been assumed to be a more definitive way of deciding

Methods: We simulate the therapeutic effects as measured with additive scales in patient cohorts with different
disease severity and assess the limitations of an effect size calculation of additive scales which are proven

Results: We demonstrate that the major problem, which cannot be overcome by current numerical methods, is
the complex nature and neurobiological foundation of clinical psychiatric endpoints in particular and additive
scales in general. This is particularly relevant for endpoints used in dementia research. ‘Cognition’ is composed of
functions such as memory, attention, orientation and many more. These individual functions decline in varied and
non-linear ways. Here we demonstrate that with progressive diseases cumulative values from multidimensional
scales are subject to distortion by the limitations of the additive scale. The non-linearity of the decline of function
impedes the calculation of effect sizes based on cumulative values from these multidimensional scales.

Conclusions: Statistical analysis needs to be guided by boundaries of the biological condition. Alternatively, we
suggest a different approach avoiding the error imposed by over-analysis of cumulative global scores from additive

Keywords: dementia, neurodegeneration, clinical studies, meta-analysis, effect sizes, Cohen's d

Background

Analysis of treatment efficacy is warranted to guarantee
the quality of medical treatment and effective spending
of resources. Across diseases, meta-analyses are assumed
to be one the major tools to achieve this [1-4]. Meta-
analyses are performed to come to an overall conclusion
on clinical studies with different numerical results or
using different assessment methods. One critical step in
performing meta-analyses is to calculate the effect sizes
for the studies to be included in the meta-analysis [5].
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Degenerative diseases are of long duration and the
diversity of their symptoms pose methodological diffi-
culties not known in other fields of medicine: symptoms
vary over time, fluctuate for random reasons, and may
be replaced by new and different ones. To illustrate the
reasoning on whether effect sizes and meta-analyses are
suited to resolve the ambiguity of clinical study results
in degenerative disease one of the most prevalent degen-
erative diseases, Alzheimer’s disease (AD), will be used.

AD is the most frequent cause of dementia in old age
and typifies the variability in clinical presentation and
symptom changes over time that occurs in a degenera-
tive disease. At onset of AD the medial temporal lobe is
affected [6]. This results in the episodic memory deficit
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wihich is an early clinical hallmark of the disease [7]. As
the disease spreads, other brain regions such as the
frontal and parietal cortex are affected as well. The par-
ietal cortex mediates activities such as spatial orientation
and visuo-spatial functions [8,9]; the frontal cortex med-
iates executive functions, planning, attention, and work-
ing memory [10-12]. Spread of AD beyond the temporal
lobe thus is characterized in functional terms by accru-
ing deficits of spatial orientation, attention and executive
functions as well as working memory and language [7].
This affliction of different brain regions and functions
can be visualized using advanced imaging methods
[13-15]. Despite an overall progress, symptoms may also
fluctuate over the course of progressing dementia for
random reasons. Apathy may turn to agitation which
may disappear and followed by apathy, again. Regardless
of this complexity, effect size calculation and meta-ana-
lyses of different studies use the addition of scores from
many disparate functions to provide a global score for
problems like ‘cognition’, ‘behavior’, or ‘activities of daily
living’. ‘Cognition” comprises a multitude of activities
such as episodic or working memory, attention, calcula-
tion, cognitive flexibility, praxis; ‘behavior’ comprises
affect and emotion, delusion, agitation, irritability, and
‘activities of daily living’ comprise a wide variety of tasks
for which the performance not only depends on the
actual capabilities of the patient but also on her or his
prior habits. Over the whole course of the disease, ‘cog-
nition’ or ‘behaviour’ may be appropriate to assess over-
all dementia but over the time frame of clinical studies,
usually one to two years, individual cognitive functions
need to be focused on as the disease process over such
short time spans is confined to specific functions and
specific regions rather than the whole brain. At present,
however, and for the last 30 years, clinical studies in AD
have used global scales, i.e. multidimensional scales, to
appraise the efficacy of interventions using instruments
such as the Alzheimer’s Disease Assessment Scale
(ADAS) [16], the Mini-Mental-Status Examination
(MMSE) [17], the Severe Impairment Battery (SIB) [18],
the Neuropsychiatric Inventory (NPI) [19], the Katz
activities of daily living scale (Katz-ADL) [20] amongst
others.

Physicians and statisticians not well acquainted with
the administration of neuropsychological tests neglect
the impact of test difficulty on neurobiological associa-
tions. Task difficulty has a profound impact on the
neural substrates engaged to solve the task. It was
shown recently, that task difficulty is associated with
recruitment of different neural patterns even in healthy
subjects [21]. Thus, despite being similar activities, two
tasks may rely on the integrity of different brain areas if
the tasks vary in difficulty. Clearly then, the likelihood
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of maintaining performance on a specific task being
measured with a particular instrument is dependent on
disease severity and on time since diagnosis. The task
may rely on different areas of the brain being recruited
as degeneration reduces the relative amount of input
from areas normally engaged in that function and show-
ing a non-linear decline in dementia patients [22,23].

Multidemensional clinical scales combine different
tasks, i.e. different activities, to assess overall severity of
brain dysfunction. The cumulative score for these multi-
dimensional scales results from summation of sub-
scores representing specific activities. The relative con-
tribution of the sub-scores to the total score, however,
is variable, as is the task difficulty to assess specific
activities in the different scales (e.g. the MMSE has a
total score of 30 and scores 3 points for the recall of
three words on single presentation and that task which
is preserved till very late in the disease carries the same
weight as the three points that could be obtained from
recalling those words 5 minutes later a task that is very
often one of the earliest signs of impairment, the ADAS-
cog asks for recall of ten words on threefold presenta-
tion of the test and together with other memory items
the function memory is represented with 27 points out
of 70).

It was our goal to address the impact of non-linearity
of disease progression and construction of multidimen-
sional scales on the analysis of these additive global
scales.

Methods

Basic model for the representation of function

Modeling the decline of function needs to reflect that
tasks that are easy show a ceiling effect in assessment in
early disease (i.e. the task is so easy or the underlying
brain circuits are so insensitive to the disease process
that the score does not decline over the initial time of
the degenerative process) and in the later stages a floor
effect (i.e. the task is so difficult or the underlying brain
circuits are so severely affected from the disease process
that the score is not sensitive enough to pick up further
decline). Such a pattern was demonstrated for the items
of the Mini-Mental-Status Examination [23,24], repeat-
ing of words is task with an early ceiling effect and
delayed recall of memorized words is a task with an
early floor effect. Accordingly we used an inverse expo-
nential rule for modeling the decline of function with

-1
progressing disease:  fi(t;a;, bj, ¢;) = (di + biteci/t> ,

where i = 1, 2, tyin < t < fmao G < 0.

Different f; represent different symptoms (e.g. mem-
ory, praxis, and so forth) declining over time according
to parameters a;, b;, and c;, accessible by empirical
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studies, and t indicating time. Qualitatively, the argu-
ments outlined below are also valid for various other
functions than the inverse exponential function.

Results

Vulnerability and difficulty

Two examples for the decline of performance over time
using the basic model are shown in Figure 1.

These curves can be interpreted in two different ways:
I) function f; and f, represent different tasks, e.g. mem-
ory and praxis. In this interpretation, f; represents an
activity that early and rapidly declines with progression
of disease (e.g. episodic memory in patients with Alzhei-
mer’s disease). The function f, represents an activity
that is upheld early during progression of disease with
decline only occurring later (e.g. praxis in patients with
Alzheimer’s disease). Within this framework the neuro-
biological reason for the distinct time course of decline
of function is selective vulnerability of brain regions. II)
Alternatively, it may be assumed that the two curves
represent the same task (e.g. spatial orientation). With
this interpretation f; represents measurement of the task
with an instrument without a ceiling effect but with an
early floor effect (e.g. spatial orientation in an unknown
environment in patients with Alzheimer’s Disease). The
function f, in this interpretation represents an instru-
ment with an early ceiling effect and a late floor effect
(e.g. spatial orientation in a known environment in
patients with Alzheimer’s Disease). In other words, f
has a high task difficulty (reflecting disease progression

normalized score
/

time fa.u)

Figure 1 Selective vulnerability and task difficulty.

-1
ﬁ(t, a;, bi, Ci) = (Lli + bitecl/t> =12, Tnin << [mavaor

the orange curve the parameters of the formula in Figure 1 are: a;
= by, =1, ¢ =-1/6. For the green curve the parameters are: a, = b,
=1, ¢, =-1/20. The orange curve represents a symptom with a
ceiling effect at the beginning of clinical disease (e.g. praxia in
Alzheimer's disease), the green curve represents a symptom with a
floor effect early during progression of disease (e.g. episodic
memory in Alzheimer's disease).
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or design of instrument) and f, has a low task difficulty
(reflecting disease progression or design of instrument).

Multidimensional additive scales

We now assume two scales (e.g. the MMSE and the
ADAScog), one scale represented by F4 and another
scale represented by Fp, both comprised of two tasks
following functions f; (a task that declines early and
rapidly over the course of disease) and f, (a task that
declines later during the course of disease) but weighted
differently in F, and Fp:

Fi (& ai, by ¢y Ajp i = 1, 2) = Aufi(t ay, by, 1) + Apfs
(t a2, by, ¢,) for j € {A, B} where A;; Aj> with which the
functions f; and f; are weighted in the scales F4 and Fp,
respectively. Without loss of generality: 1;; + 1, = for j
e {A, B}.

To illustrate it: the cognitive part of the Alzheimer’s
Disease Assessment Scale (ADAScog) weights ‘memory’
with 27 out of 70 points: (word recall (max. 10), word
recognition (max. 12), remembering test instructions
(max. 5)). The Severe Impairment Battery (SIB) weights
‘memory” with a maximum of 14 out of 100 points. The
Mini Mental State Examination weights ‘memory’ with 6
out of 30 points. In contrast, ‘orientation’ is reflected in
these scales with a maximum of 8 out of 70, 6 out of
100, and 10 out of 30, respectively.

How combination of assessment of different tasks into
one scale affects assessment of disease progression as
measured with these scales is shown in Figure 2.

Treatment effects

We now assume treatment affects by scaling factors 1 +
0y i = 1, 2, such that reflecting a purely symptomatic
treatment effect on the progression of the disease for
the treated group is described as (1 +9; ) f; (& a; b, )

nommalized score

tume (a.u.)
Figure 2 Composite Scales. Functions f; and f, as in Figure 1.
Scale Fa Falt; @, by, ¢, i =1, 2) = 3/8 fi(t; ay, by, ¢1) + 5/8 £, (t; ay, by,
C,). Scale Fg: Fg (t; @, b, ¢, i =1,2) =2/3 fi(t; ay, by, ;) + 1/3 6 (¢,
a,, by, ¢o). Hence, the scale F, is dominated by function f2 and
scale Fg is dominated by function f1. The graph shows normalized
scores over time.
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for i =1, 2, tyin < t < L Comparison of effect sizes or
calculation of a common effect size in a meta-analysis
naturally has to assume time-independence of the effect
size - otherwise the result of bringing together results
from multiple studies would strongly depend on how
many studies with milder or more advanced severity of
patients, respectively, are brought together in the analysis.
The mathematical analysis below shows that a sufficient
condition in the mathematical sense to achieve time inde-
pendent effects is to assume that the standard deviation is
proportional to the mean of the observed data. From a
practical point of view this can be interpreted as a con-
stant relative deviation. More precisely, Theorem 1 states
that the effect size Cohen’s d of both measurements is
independent of the time of observation, i.e., d;(£) = d;
Hence, the necessary condition for applying for applying
meta-analysis is satisfied. However, in general meta-ana-
lyses can also be performed with cumulative values of
multidimensional scales and the question of time-indepen-
dent effects have to be answered again. For this consider
the additive scales F; (¢, a; b, ¢, Ajy i = 1, 2) = A fi(t; a,
by, c1) + Ap fo(t; azbocs) for j e {A, B} introduced before.
Time-independence would follow if the effect sizes needs
to be calculated in the intuitive way as d(t) = 1;; dy(t) +
Aja do(t). “Unfortunately”, mathematical analysis (see
below for more details) yields in that the effects size is a
function depending on the weights A1, A; j € {4, B} of the
functions f; and f; in the composite scales F4 and Fp, the
treatment effects d,, d5, and in contrast to the intuition in
general on the functions f;, i = 1, 2, and - most important -
the time t (Figure 3).

It is natural to ask, under which assumptions we can
get rid of the general statement on time-dependence
and still can guarantee time-independence for additive
scales. The mathematical analyses shows that this is the
case if we assume that over time the observed data are
perfectly correlated with respect to the different scales
and in addition if 0; = J, (this means that the treatment
effect is identical for both functions f;, i = 1, 2, repre-
senting different cognitive functions) or A; = 0, i € {1, 2}
The latter assumption means that function of interest is
no longer multidimensional. Whether these assumption
are either realistic or of relevant interest has to be
decided in a preprocessing step.

However, in order to be able to calculate the time-
dependent scaling factor in the general case, this would
require to know the treatment effect on individual func-
tions with given task difficulty and the exact weights of
the individual functions in the composite scales as well
as the time-dependency of the individual functions.

For example: a treatment effect of 30% improvement in
function f; or function f, yields quite different effect sizes
for early and late patients as assessed with scales F4 or Fg
with results between 0.4624 and 0.6039 (Table 1).
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Figure 3 Treatment effects. Functions f; and f, and Scales F, and
Fg as in Figure 2. A treatment effect of 30% is assumed for f
(Treatment 1) or £, (Treatment 2). Upper panel) Effects on Scale f4
at early and late time points. Lower panel) Effects on Scale F at
early and late time points. The graph shows normalized scores over
time. The graph shows that the size of the treatment effect
depends on the scale that is used.

Inductive mathematical proof

If we assume the average progression of a disease with
regard to two instruments within some specified period
of time can be described by

-1
ﬁ(t} ai, bi, Ci) = (ﬂi +biteci/t> v =1, 2, thin <E < fnax

and that for any time ¢ the underlying distribution of
the random variable X;(¢) is a normal one with mean y;

(8): = fio).

Table 1 Calculation of effect sizes (Cohen'’s d) for early
and late treatment as assessed with scale F, and Fg.

Scale Fu Scale Fg
Treatment 1 early 04796 0.5693
Treatment 1 late 0.5736 0.6039
Treatment 2 early 0.5579 04624
Treatment 2 late 0,6005 0.5681

In scale Fy: Falt; a;, b, ¢, i =1, 2) =3/8 f1(t; ay, by, ¢;) + 5/8 5 (t; a,, by, ). In
scale Fg: Fg (t; a; b, ¢, i = 1,2) = 2/3 fi(t; ay, by, ¢1) + 1/3 £, (t; ay, by, ¢3). A
treatment effect of 30% is assumed for f; (Treatment 1) or £, (Treatment 2).
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For its standard deviation o;(f) we assume that always
a percentage of 1- « of the distribution has a relative
deviation from the mean from at most 3 percent. To be
more precise, if z,,, denotes the (1-a/2) -quantile of the
standard normal distribution, then o,(t) can be deter-

Xi(t) — wi(t
mined by the equations 1 —a = P( i(0) = i) < za/2>
oi(t)

it
=P | |Xi(t) — ni(t)] < 0i(t) - 22 | . hence oi(t) = Buil ),

e e’ Zalz

=pui(t)

whence for any time t we

2

haveX;(t) ~ N(ui(t), o2(1)) = N (i(0), (Bius(®) /zep2)° ).

While the above models the case of untreated patients
the effect of a proper medication is expressed by scaling
factors 1 + 0, i = 1, 2, i.e., on the average the progres-
sion of the disease for the treated group is described by
(1 + 0;) fits as, by ¢)), i = 1, 2, tpin < t < Lax Where we
assume like before that for any time ¢ the random vari-
able Xf"(t) that describes the observed data at time ¢ is

again normally distributed with mean (1 + 9;) y;(¢) and,
since the calculation of Cohen’s d requires unchanged
standard deviations, the same standard deviation like
Bui(t)

Zaf2 .

Accepting the assumptions made above we obtain the
following result for the effect size “Cohen’s d“ d,(t) of
the treatment at time ¢ for instrument i, i = 1,2.

before, i.e., 0i(t) =

Theorem 1

The effect size Cohen’s d is independent of the time of
observation, i.e., d;(t) = d;.

Proof 1

From the definition of Cohen’s d we straightforward
obtain

(1 +8;) pi(t) — pi(t) _ Sii(t) _ Zq)20i
oi(t) Bui(t)/zap2 B

Next consider the case that we are interested in the
composed function

di(t) =

f(t;ai bi,ci, diyi=1,2) = Mfi(t; a1, b1, ¢1) + Aafa (6 a2, b2, ¢2),

where 1;, 1, are non-negative scaling factors with, say,
A1 + Ay = 1. From an intuitive point of view we expect
29282 Zap2

Zg/20
2o + A2 oy (A181 + A282)

d(t) = )lel (t) +)\.2d2(t) =M ﬂ ﬂ

for the effect size d(t) of the composed scale. And in
case our intuition is correct, time-independence as a
desirable prerequisite for meta-analysis on, say, additive
scales would immediately follow.
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To compute d(¢t) for fit; a;, b;, c;, A;, i = 1, 2) we have
to consider the random variable X() = 1,.X1(£) + A,X5(¢)
for untreated patients and X°(t) = )LIX‘? (1) + xzxgzm for
treated patients. Obviously, both variables are normally
distributed with mean p(£) = A1p41(¢) + Aopo(£) and /45 ()
= A1(1 + dp)p1(t) + Ay (1 + O9)po(2) respectively. For the
variance o(t) of X(¢) and hence by assumption also of
X°(#), we have the basic formula

o2(t) = Ao (t) + 2h1 Aac0r (X1(0), X2(1)) o1 ()02 (1) + 233 (1),

where cor (X;(t), X,(t)) denotes the correlation of X;
(8), and X, (),

In the general case, i.e. without any restrictions on the
correlation we obtain time-dependence on the effect size d
(¢) of the composed scale. To be more precise, we have

1) = () _ Mdrpa (1) + 22824 (1)

) = ,
a(9) \/xgaf(t) + 221 hacor (X1 (£), Xa (1) o (D)o (1) + 2302(1)

To become more specific and to answer the question,
whether time-independence can be guaranteed also for
composed scales under special assumptions we consider
as a simple example the case cor (X;(¢), X5(¢)) = 1 This
assumption yields

a2(t) = Ao (t) + 2012001 (D)o (t) + A0 (t) = (Klal(t) + )qaz(t))z,

hence o(f) = (1,0.(£) + 1,05(¢)) and we can calculate

Cohen’s d:
(o) - W) = (t) A (1 +80) pa(t) + Az (1+82) pa(t) — (M1 (1) + 2apa(2)) ~ Madipa(t) + Aadapa(1)
O Jo1 (1) + 20 (1) T om0 +haoa()
. Bui(t) )
Using oi(t) = we finally
Zaf2

obtaind({) = Zaf2 A181p1(8) + Aadapua (1)
B A (t) + Aapa (1)
general still not independent of the time .

In order to further analyze the dependence of the
“composed Cohen’s d“ on the involved parameters we
rewrite its formula. Under the assumption on standard
deviations and correlation made above we obtain for the
effect size:

, which is in

Theorem 2
Zof2 1
d(t) = d(t, A1, 22,81,82) = |81+ (82 —61) .
B 1+ (Mlﬂ(t)/lz#z(t))
Proof 2
We calculate
(o) = Zafz Mt (0) + 2adapia(8) _ Zap aBup (1) + Aadipa(t) = haduma(t) + Aadapua(t)
B hu(t) +hapa(t) B A (t) + hapa(1)
_Zapp 81 (i (6) + Aapea(0)) + (B2 = 1) Aapa(t)
S B Japa () + Rapa (1)
_ &2 _ Aapa(t) _Ff2 _ 1
SR CRCRY mumzmu)) 5 <‘3‘ ML (Mm(t)/h/iz(t]))
=d(t, 11, 22,81, 82).
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From a theoretical point of view we can now observe
the following:

1) If 6; = 05, then Cohen’s d of the composed measure
is independent of the time and in particular equals the
weighted sum of the effect sizes d; and d,, i.e,,

Zy Zy
/25, = el

B B

2) If ; = 0, i € {1, 2}, then Cohen’s d of the com-
posed measure is independent of the time, to be more
%
B
choice of parameter implies that the function of interest
is no longer a composed one.)

The second observation straightforward leads to the
question whether the choices of 1; = 0, i € {1, 2} are the
extreme ones concerning d(f) over the domain D: = {A:
= A, )AL, A 2041 + Ay = 1)7

Za,
d(t) = $81 (A +Ag) = ff (181 +2282) .

z
precise d(t) = ? - 38i. (Actually this reflects that the

le1eorem .

3% . min{6,,6,} < mind(t, 1) < maxd(t,2) < “* - max {6, 8,}.
reD reD B

Proof 3

Without loss of generality assume that J; < J,. Then it
follows on the one side

N F :
=" (51 (02 ‘31)1+(x1m(t)/kzm(t)))

Zaf2 Zaf2 Zaf2
< <61+ (82 —01) = <8y = -max {81, 82}
B B B
and on the other side
_ R . _ 1 - Zaf2 _ Zaf2 - min
a(r) = % (51 (82— 81) . (Mm(r)/xzm(t))) z 51 ;4 (81,82} .

Note that we have always equality if 6; = J, which
reflects the first observation made above, hence scaling
cannot change the effect size. However, if, say, d; <d,,
then Cohen’s d can be changed by a factor of up to d,/
01 by choosing different scales.

Next let us consider the situation that either 6, = 0 or
0y = 0.

Corollary 1 Under the assumption made above on stan-

dard deviations and correlation we obtain for the effect

dy d

sized(t) = 1. ()»zuz(t)/)um(r)) if81 #0=26,and d(r) = 1. (Mm(t)/)»zuz(r)) if8 =068
Proof
. Z, 28' . . di(t Za /2
First note thatd;(t) = ag " is equivalent to ' 6( ) = (Z .
i

Hence, using Theorem 2 we obtain

_ R _ 1 :d‘. _ 1
A=y (5‘*("1 ‘“‘)u(wl(u/xzuz(u)) 5 (5‘*(52 ‘5‘)1+(wlu)/mzm))

forie {1, 2}.
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If 6, = 0 # J, we conclude

_ R G 1 _dy Mo+ — 1
a0 = B (51 2 =80 1+ (Mlil(t]/)\zﬂz(f))) ) (O ®-0 1+ ()»1111('3)/)»2#2([)))

- d
T+ (Rapa (0) /2aa(1))

If 6, # 0 = 0, we conclude

~ dy ) _ 1 _ _ 1
=5, (8‘ L (ml(z)/xm(z))> & <1 1 +(A1m(z)/xzuz(z))>
_d T+ (A (8) /rapa(t)) — 1 _ d,
"\ () /hana () (rapma(t) /rapa () + 17

Finally let us compare in the situations J; = 0 or d, =
0 the composed Cohen’s d with the intuitive choice d(f)
= A«l‘d,‘.

Corollary 2 Under the assumption made above on stan-
dard deviations and correlation and assuming u;(2) <p»
(2) fur £ € {Emin, tmax} We obtain for the effect size

d(t) < }\.1d1 lf81 7!0 = 52 and d(t) > )\.zdz 1f51 =0 7!(32
Proof
Using Corollary 1 for the case d; # 0 = J, we obtain

dy A (1) A (1) A

A= ) o ©) ™ )+ 220 () #2207 4y w2, T
And in the case d; = 0 # J, we obtain
_ dy _ Japa(t) Japa(t) _ R _
A= a0 /rama(0) )+ 220 mapa(®) + 0agia ()™ T g w2, T
Discussion

Rather than drawing conclusions from clinical trials via
the differences in the cumulative scores of clinical scales
it has become a custom to calculate effect sizes. The
intention being to allow comparison of the effect of
treatments in the same indication but whilst using dif-
ferent instruments. Using meta-analytic procedures a
pooled effect size then is calculated. Meta-analyses are
assumed to be the tools to achieve an unbiased analysis
of disease severity and the efficacy of treatments [1-4].
Meta-analyses thus are used to summarize results across
studies and even across different indications. Consider-
ing the multitude of clinical trials and the multitude of
treatments such methods are urgently needed and with
certain study designs and endpoints this may be an
appropriate procedure. It is one limitation of the present
study that modulation of effect size calculation by
instruments applied and disease stages analyzed applies
only to additive scales. These, however, are used fre-
quently in neurodegenerative disease and it is therefore
necessary to be aware of the methodological boundary
conditions for calculation of effect sizes for additive
scales.

Simulation of decline of function in neurodegenerative
disease with a non-linear representation of function
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demonstrates that calculation of effect sizes for early
and late patients is subject to distortion by differences
in the vulnerability of brain tissue or task difficulty and
scale construction, respectively. Effect sizes are not inert
to disease progression and the instruments used to
detect it and therefore do not replace experienced clini-
cal assessment of disease impact and treatment effect.
Meta-analyses must not pool effect sizes from clinical
trials in patients with different severity of disease.
Clearly the use of the same scales across the whole dis-
ease process is not possible for reasons of differences in
task difficulty creating floor and ceiling effects.

It has already been reported that the ADAS-cog and
its subscales provide maximum information at moderate
levels of cognitive dysfunction [25,26]. Raw score differ-
ences toward the lower and higher ends of the scale cor-
responded to large differences in cognitive dysfunction,
whereas raw score differences toward the middle of the
scale corresponded to smaller differences [25]. In more
severe stages of dementia the ADAScog loses its sensi-
tivity of change so much that the SIB was developed to
assess patients who are unable to complete tests such as
the ADAS-cog [18]. However, use of different composite
scales is not possible since the subscales are not scaled
according to task difficulty, are not balanced across dif-
ferent neuropsychological functions, and are weighted
differently in different composite scales. A recent post-
hoc analysis of published data is in good harmony with
the conclusions from the simulation provided here and
the mathematical analysis [27]. In that study [27] it was
shown that effect size calculation is subject to an inter-
action of cognitive domain, disease severity, and instru-
ments used for assessment.

In principle, these distortions by disease stage and
treatments affecting different functions within a given
scale could be measured and mathematical analysis
(above and appendix) shows a way to estimate a scaling
factor that needed to be introduced. Analysis of current
shortcomings then needs to be extended. In the present
model we only assume two functions representing two
activities, which yields a scaling factor of up to d,/0; (cf.
above). Clinical scales such as the MMSE or the ADAS-
cog are composed of a multitude of functions. When
analyzing the ADAScog, for instance, at least four func-
tions need to be considered: memory, orientation, lan-
guage, and praxis. Therefore, in order to be able to
estimate the relative scaling factors would require a very
large population.

It has been suggested to call effect sizes of below 0.2
as ‘small and above 0.5 as ‘medium’ [28]. The above
analysis demonstrates that the naive analysis of compo-
site measures may bring about a false categorization of
effect size. Effect size calculation of composite endpoints
therefore cannot be used as a guideline for the judgment
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on therapeutic efficacy for neurobiological and statistical
reasons. The numerical value of the analysis depends on
the choice of the instrument and is subject to distortion
by disease progression. Calculation of effect sizes, there-
fore, can not substitute for clinical assessment. Clinical
expertise determines the choice of the instrument - the
results therefore need to be interpreted with clinical
expertise. Overall, statistical measures and meta-analyses
of additive scales obfuscate, rather than clarify, the evi-
dence on therapeutic efficacy in neurodegenerative
disease.

In the past, clinical global assessments were the gold
standard by which assessment scales were validated. In
other words, scales were devised to act as a good proxy for
clinical judgment which could be administered by less
experienced clinicians. However, these scales clearly have
great difficulties when extended over the range and time
course of a degenerative disease. What may be a more
satisfactory method of measuring change than combining
many less than satisfactory study results would be to design
a more sensitive way of capturing the clinical assessment.
Clinical assessment uses parallel processing and multiple
inputs which can account for variations in severity or even
input of carepersons. Perhaps devising a more detailed glo-
bal assessment with maybe 10 - 15 anchor points on a
Likert scale that allows clinicians to provide a far more
nuanced assessment than the present 7 (often then con-
densed to 5) point scale. For example it requires much
greater evidence and confidence to move from minimal to
major improvement than from no change to minimal
improvement in most clinicians view and yet they repre-
sent similar degrees of improvement on the typical current
global assessment scales. This tendency to conservative no
change assessments caused by the lack of sensitivity of the
scale may be why in the past the clinicians global assess-
ment, whilst being the standard by which all patients in the
real world and all other scales are assessed has not been
regarded as a useful tool in clinical trials.

Conclusions

In the face of the clear lack of credibility in pooling
effect size calculations on grouped and yet disparate stu-
dies for meta-analysis it may be time to put the clinical
appraisal that has served for generations back where it
belongs as cornerstone of our efficacy assessments and
decision making about the utility of treatments in neu-
rodegenerative diseases.
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