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Abstract

Background: Cancer survival studies are commonly analyzed using survival-time prediction models for cancer
prognosis. A number of different performance metrics are used to ascertain the concordance between the
predicted risk score of each patient and the actual survival time, but these metrics can sometimes conflict.
Alternatively, patients are sometimes divided into two classes according to a survival-time threshold, and binary
classifiers are applied to predict each patient’s class. Although this approach has several drawbacks, it does provide
natural performance metrics such as positive and negative predictive values to enable unambiguous assessments.

Methods: We compare the survival-time prediction and survival-time threshold approaches to analyzing cancer
survival studies. We review and compare common performance metrics for the two approaches. We present new
randomization tests and cross-validation methods to enable unambiguous statistical inferences for several
performance metrics used with the survival-time prediction approach. We consider five survival prediction models
consisting of one clinical model, two gene expression models, and two models from combinations of clinical and
gene expression models.

Results: A public breast cancer dataset was used to compare several performance metrics using five prediction
models. 1) For some prediction models, the hazard ratio from fitting a Cox proportional hazards model was
significant, but the two-group comparison was insignificant, and vice versa. 2) The randomization test and cross-
validation were generally consistent with the p-values obtained from the standard performance metrics. 3) Binary
classifiers highly depended on how the risk groups were defined; a slight change of the survival threshold for
assignment of classes led to very different prediction results.

Conclusions: 1) Different performance metrics for evaluation of a survival prediction model may give different
conclusions in its discriminatory ability. 2) Evaluation using a high-risk versus low-risk group comparison depends
on the selected risk-score threshold; a plot of p-values from all possible thresholds can show the sensitivity of the
threshold selection. 3) A randomization test of the significance of Somers’ rank correlation can be used for further
evaluation of performance of a prediction model. 4) The cross-validated power of survival prediction models
decreases as the training and test sets become less balanced.

Background

The Cox proportional hazards model [1] is the most
common survival prediction model for cancer prognosis.
Often, demographic and clinical covariates are combined
in a Cox model with staging information from the
American Joint Committee on Cancer (AJCC) staging
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system to predict a patient’s survival to improve treat-
ment recommendations [2-7]. Because microarray stud-
ies have shown an association between patient survival
and gene expression profiles [8-10], some recent papers
have investigated the use of microarray gene expression
data alone or in combination with clinical covariates
[11-14] as an improvement to estimate patient survival
risk. Dimensionality reduction techniques are often per-
formed prior to applying the Cox model to improve pre-
diction performance. A practical approach is to apply a
selection technique to select a smaller set of relevant genes
from the entire gene set as initial step; a dimensionality
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reduction technique is then applied to the selected gene
set [15].

Evaluation of the ability of a survival model to predict
future data is the most important consideration in the
development of prediction model. Common metrics to
assess the performance of survival prediction models in-
clude hazard ratios between high- and low-risk groups
defined by dichotomized risk scores, and tests for signifi-
cant differences in the two groups’ Kaplan-Meier sur-
vival curves. Metrics that measure the strength of the
relationship between risk scores and survival, including
the simple hazard ratio, the coefficient of determination
R? [16], the concordance index and Somers’ rank correl-
ation Dy, [17,18], are also used. Additional metrics in-
clude receiver operating characteristic (ROC) curves
[19] and area under the ROC curve (AUC) [20-22]
defined over a range of risk-score cutoffs given a fixed
survival threshold. Hielscher et al. [23] recently com-
pared several common R>-type measures for evaluation
of survival models. In addition, the Brier scores and
Schemper/Henderson measure which were also devel-
oped to assess the survival prediction models were
investigated by Schumacher et al. [24] and Dunkler et al.
[25], respectively. To our knowledge no comprehensive
evaluation and comparison among different performance
metrics for different survival modeling approaches has
been reported.

In contrast to the commonly used survival-time pre-
diction model approach, much research in gene expres-
sion profiling of cancer data has focused on binary class
prediction, where patients’ survival times have been
dichotomized to form two classes [11,23,26-37]. With
this approach, a prediction model is built and used to
distinguish between the “low-risk” and ‘high-risk” classes.
The performance of a binary classifier is generally evalu-
ated in terms of the overall predictive accuracy, along
with positive and negative predictive values, etc. [28].
Dupuy and Simon [27] discussed several drawbacks of
using this approach with survival data. Mainly, it does
not take the information on survival and censored times
into consideration. Furthermore, binary classification
highly depends on the survival threshold used to define
the two classes. A slight change of the threshold can
lead to very different prediction accuracy and interpret-
ation. Binder et al. [30] applied three different survival
thresholds to evaluate a binary classifier based on gene
expression, and showed how the choice of threshold
affected the predictions. They concluded that using the
binary modeling approach can result in loss of efficiency
and potential bias in high dimensional settings.

In this study, we evaluate and compare commonly
used metrics to assess performance of five prediction
models. These five models are based on established
approaches to modeling clinical variables and microarray
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gene expression data. We propose using randomization
tests to compute the p-values of certain performance
metrics, including Dy, R? and AUC, and cross-
validation to evaluate the power of the prediction mod-
els. We also present an analysis to illustrate differences
between the survival-time threshold (binary classifica-
tion) and survival-time prediction (survival risk score)
models in the analysis of survival data.

Methods

Models for survival outcomes developed from training
dataset

Five survival prediction models to estimate patient’s sur-
vival risks were considered. These five models included
one clinical model, two gene expression models, and
two models based on the combinations of the clinical
and two gene expression models.

The clinical model (Model A) was the Cox propor-
tional hazards model, derived by fitting the Cox model
to all clinical variables, TNM stage, gender, age, and
others, and selecting the clinical variables most relevant
to the training dataset. The gene expression data were
first analyzed using the univariate Cox model to select a
set of “significant” genes, based on a pre-determined
statistical criterion which is p <0.001 in this paper. For
the set of selected genes, two gene expression models
were developed using the Cox model: Model B used the
first five principal components of the set of significant
genes as signature variables, and Model C used the top
10 ranked genes as signature predictors. Each of the
gene expression models was combined with the clinical
model (Model A) additively to develop two clinical and
gene expression models (D=A+C and E=A+D). A
summary of the five models is given in Additional file 1:
Table S1.

Assessment of predicted risk scores for the patients in
test dataset

The regression coefficients of the fitted Cox models (A-E)
developed from the training data were used to compute
the predictive risk scores for each patient in the test data-
set. The predictive risk scores were then used to com-
pute performance metrics to evaluate the performance
of the prediction models built from the training data.
We considered the following commonly used perform-
ance metrics. A more detailed description of these
metrics is given in the Additional file 1.

Simple hazard ratio and R? (Cox Model I)

A Cox model was fit using the predictive risk scores as
an independent variable with survival time as the out-
come variable. The exponent of the regression coeffi-
cient was the simple hazard ratio. The performance
metrics included: estimated hazard ratio, 95% confidence
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limits on hazard ratio, p-value for significance of hazard
ratio, and R* [23,38].

Two-group hazard ratio and brier score (Cox Model I1)
The test data were first segregated into high-risk and
low-risk groups by the median of training risk scores. A
Cox model was fit using the risk group as an independ-
ent variable with survival time as the outcome variable.
The exponent of the regression coefficient was the two-
group hazard ratio. The performance metrics included
the estimated hazard ratio, 95% confidence limits on the
hazard ratio, and p-value for significance of hazard ratio.
The Brier score [31], which measures average discrep-
ancies between true disease status and estimated predict-
ive values, was also calculated to assess the predictive
risk scores in risk group stratification. The Brier score
can be calculated for a specific time point or for an over-
all error measure across all time points. A larger Brier
score means a higher inaccuracy of a prognostic classifi-
cation scheme. However, baseline estimation is required
for computing predicted risk-free probability to estimate
Brier score, and different methods used could result in
different Brier scores. Therefore we applied the method
developed by Graf et al. [31] to compute integrated Brier
score (IBS) in the two-group stratification without base-
line estimation, where the test data are stratified into
two groups according to the training model and the
risk-free probability for each sample is estimated from
the Kaplan-Meier estimate for the corresponding group.

Log-rank test

The log-rank test was used to compare the survival
curves between the patients in the high risk and low risk
groups defined by the predicted risk scores. The per-
formance metric was the p-value of the test.

Somers’ rank correlation D,,

The concordance index between predicted risk score
and observed survival time in the test dataset was com-
puted by a rank correlation adjusted for censored time
[17,18]. This index was re-expressed equivalently as a
correlation measure, known as the Somers’ Dy, rank cor-
relation. The performance metrics included the calcu-
lated D,y and the p-value of a randomization test of its
significance.

Time dependent Receiver Operating Characteristic (ROC)
Curve and the Area under the ROC Curve (AUC)

For a given survival threshold, t, ROC(t) was plotted as
sensitivity(t) versus 1-specificity(t) for all values of the risk
score cutoff used to define binary classes [19]. Perform-
ance metrics included the plotted ROC(t), the associated
AUC(t) [20-22], and the p-value of a randomization test
of its significance.
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Randomization test

The randomization test is a non-parametric test by per-
muting the survival times of the training data to gener-
ate the null dataset that patients’ survival times are not
associated with the clinical and gene expression vari-
ables. The prediction model was fit to the null dataset,
and performance metrics were computed on the test
dataset and compared to the corresponding metrics cal-
culated from the observed data. The procedure was
repeated 10,000 times. The proportion of the estimated
metrics calculated from the null dataset that exceeded
the metric calculated from the observed dataset was the
p-value of the randomization test. The metrics obtained
by the randomization test were D,,, p-value of Cox
model, R? and AUC(t).

xy?

Power validation

Cross-validation and bootstrapping are two methods
commonly used to assess performance of a prediction
model. Both methods are based on resampling techni-
ques Cross validation involves repeatedly splitting the
data into a training set and test set, where the train-
ing set is used for model development and the test
set is for model validation and performance assess-
ment. The predictive performance is the average of
the numerous training-test partitions. In particular, a
split sample validation refers to splitting the entire
data into a training set and a test set, and only the
test set is used to evaluate once without "crossing".
Bootstrapping analyzes subsamples repeatedly, where
each subsample is a random sample with replacement
from the entire data. Various bootstrap methods such
as the ordinary bootstrap, the leave-one-out bootstrap
and the .632+ bootstrap are proposed and compared
by Efron [39] and Efron and Tibshirani [40,41]. The
power of the prediction models were evaluated by 2-
fold cross wvalidation [42], and the procedure was
repeated 5,000 times. The proportion of p-values less
than or equal to 0.05 were calculated as an estimate
of the power.

Assessment of binary classification of patients in test
dataset

Binary classifiers for the five models with the same sig-
natures selected from the risk prediction models were
developed using the support vector machine (SVM), ran-
dom forest classification (RF) algorithms, and logistic re-
gression. These three algorithms are the most frequently
used algorithms and have been shown to perform well in
the analysis of microarray data. Performance metrics
were the numbers of misclassified samples for each
metastasis-free survival threshold.
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Results

The dataset of van 't Veer et al. [26] contained 78 pri-
mary breast cancers (34 from patients who developed
distant metastases within 5 years (poor prognosis) and
44 from patients who continue to be disease-free (good
prognosis) after a period of at least 5 years). The avail-
able clinical variables included age, diameter, tumor
grade, angioinvasion, oestrogen and progesterone recep-
tor status, and lymphocytic infiltration. The 78 patients
were used as training data to develop prediction models;
an additional 19 patients including 7 with good progno-
ses and 12 with poor prognoses were used as test data.
Although this dataset is small, its size represents many
existing datasets that have a cancer-related endpoint as
the outcome variable with many genes as predictor
variables.

Results of survival prediction

Table 1 shows the estimates of performance metrics for
the five models from two fittings of the Cox model.
Model I used the risk scores as an independent variable
(Columns 3-7). Model II used the risk groups (high ver-
sus low risk group) as an independent variable (Columns
8-12), based on the median of the training scores.
Table 1 also shows the calculated values of Somers’ rank
correlation coefficient, D,,. The predicted risk scores and
risk rankings are shown in Additional file 1: Table S2.

Additional file 1: Figure S1 shows the Kaplan—Meier
survival curves with the p-values from the log-rank test,
and the Brier scores of the five models for each follow-
up time points are also shown in Additional file 1: Figure
S2. As expected, the p-values from the log-rank test and
Model II analysis are very close. ROC and AUC analyses
at the 4, 5, 6 metastasis-free times for the five models
show similar results to one another (Figure 1).

The performance estimates obtained from Models I
and II appear to be inconsistent for Models C and D
(Table 1). Model C shows a small HR estimate and small
absolute value of D,y from the Model I analysis, but a
significant HR estimate from the Model II analysis, while
Model D shows the opposite. In all analyses, Model A

has the smallest p-values and the largest absolute Dy,
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R?% and AUC for all three time points. The estimates
for Dy, R,2 and AUC are useful for comparison
between two prediction models, but the actual
values, such as Dy, of -0.333, R? of 0.311, and AUC
of 0.84, are uninformative to infer the significance of
the prediction.

The randomization (permutation) test was used to as-
sess statistical significance of the observed performance
measures shown in Table 1 and Figure 1, including the
significance of the p-value of the hazard ratio itself. The
randomization test generated the null distribution of no
association (no predictability) between the 78 training
patients and 19 test patients to assess the significance of
the risk scores predicted by a prediction model. We illu-
strated an analysis for Dy, P-value, R* and AUC metrics
for Model I. In the permutation test, the survival times
of the 78 patients were randomly permutated to gener-
ate a null dataset. Five prediction models, A-E, were
developed from the null dataset. In each of the five mod-
els, two predictive models were developed. M1 was
developed using the same signature predictors developed
from the original 78 patient training dataset. M2 was
developed by generating new predictors based on the
null dataset. In M1 the null distributions were generated
conditionally on the same signature, while in M2 the
null distributions were generated unconditionally. The
null hypothesis under both models was that the signature
developed does not associate with the test data. Each
prediction model was applied to the 19 test patients; the
performance metrics Dy, P-value, R? and AUC evaluated
at 4, 5, and 6 year metastasis-free times were estimated.
The procedure was repeated 10,000 times to generate
the null distributions of the metrics. The proportion
of the estimated metrics calculated from the null dataset
that exceeded the metric calculated from the observed
dataset was the p-value of the randomization test shown
in Tables 2 and 3. In Model A, the p-values from M1
and M2 are identical in Table 2 since both models used
all clinical variables.

In Table 2, the p-values estimated from the rando-
mization test for the metrics P-value and R* are very
similar since both metrics measure the association under

Table 1 Performance metrics of the five prediction models for the breast cancer data: Somers’ correlation (D,y);
estimates of the hazard ratio (HR) with 95% confidence limits (Cl), and p-value for Cox Models I and II; and R? for Cox

Model | and Brier score (IBS) for Cox Model Il

Model D,y Cox Model | Cox Model Il

R? HR 95% C.I. P HR 95% C.I. P IBS
A -0.333 0311 2.37 1.21 4.62 0.012 4.85 1.38 17.04 0.014 0.124
B -0310 0.114 1.71 0.87 339 0.123 1.99 0.75 527 0.167 0.148
C -0.099 0.009 1.08 0.75 1.56 0.669 2.83 1.01 7.94 0.048 0.136
D -0310 0.248 2.50 112 557 0.026 2.36 0.82 6.76 011 0.144
E -0.111 0.058 124 0.84 1.83 0.280 283 1.01 794 0.048 0.136
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Figure 1 ROC curves for patients’ survival with AUC measures evaluated at 4, 5, and 6 years metastasis-free times for the five models.
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the Cox model. For Model B, the randomization test p-
values for D, and R? appear to be different. The results
from the left panel (original predictors) and right panels
(re-selected predictors) are similar. In general, the p-
values from the randomization test generally agree with
the results based on asymptotic parametric tests from
Model I of Table 1. The p-values for the AUC metrics in
Table 3 are generally higher than the p-values for the
metrics in Table 2. The AUC test was significance only
at the 5-year metastasis-free time (for Model A). In both
M1 and M2, Model A has the smallest p-values for D
P, R? and AUC at all three time points.

A two-fold cross validation was used to estimate the
power to detect an association between a prediction
model and survival time. First the 78 and 19 patients
were pooled. The 97 total patients were randomly split
into a training set of 49 patients and a test set of 48
patients. Five prediction models were developed from
the training set and then applied to the test set. (Since
the original signature of each model was developed
based on the 78 test samples, the original signature was
no longer applicable in this analysis.) In cross-validation,
the p-values were computed using the Cox models I and
II, and the log-rank test. The procedure was repeated
5,000 times. The proportion of p-values less than or
equal to 0.05 were calculated as an estimate of the power.
The results are shown in Table 4. The results agree quali-
tatively with the results from the randomization test.
Again, Model A appears to perform the best. Box plots of
the empirical distributions of the p-values are given in
Additional file 1: Figure S3.

We further investigated the effect of the training and
test set sizes on the power estimation. The numbers of
patients for the training set investigated were 78, 65, 32,
25, and 19. Only the results from Model A are shown
(Table 5). The results from other models are given in
Additional file 1: Table S3-S7. Table 5 shows that (78:19)
and (19:78) are among the poorest performance. It
appears that a small test sample size (78:19) will reduce
the power. Steyerberg [43] also discusses this issue. On
the other hand, a small training size (19:78) may affect
the fitting of the model. The 2-fold or 3-fold cross valid-
ation can be used for power performance evaluation.

xy?

Binary classification and survival-time prediction

Binary classification

The breast cancer dataset was first presented to develop
a binary classifier of 70 signature genes based on 5-year
distant metastases [26]. The classifier misclassified 2 of
the 19 test patients using both optimal accuracy and
sensitivity threshold strategies. For the 19 patients in the
test dataset, there were four patients (11, 12, 13, and 14)
who had metastasis-free times between 4.77 and 5.23,
around 5 years. We illustrate the analysis using 4-year,
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5-year, and 6-year metastasis-free times to define high
and low risk groups.

Table 6 shows the numbers of misclassifications using
the thresholds of 4-year, 5-year, and 6-year metastasis-
free times. The classification errors can be very different
if different thresholds are used. Among the five models,
Model B, as binary classifier, appears to have the best
overall performance. The logistic regression performs
better than the SVM and RF in model A. For the SVM
algorithm, the numbers of misclassification errors based
on the 4-year, 5-year, and 6-year survival thresholds are
8, 3, and 3, respectively; the numbers are 7, 3, and 2 for
the RF algorithm; the numbers are 7, 7, and 4 for logistic
regression. The misclassified patients by the three algo-
rithms are given in Additional file 1: Table S8. The mis-
classification errors between 4-year and 5-year differ
substantially in SVM and random forest.

Survival-time prediction

Although a survival prediction model is developed to
predict survival risks of patients based on their predictor
profiles, it can also be used as a binary prediction model.
Figure 2 shows the plot of patients’ survival times and
their ranked predicted risks for the five survival predic-
tion models, where patients are ranked according to
their survival times (Additional file 1: Table S2). Thus,
Patient #1 (at the top) had the shortest survival time and
Patient #19 (at the bottom) had the longest survival
time. The horizontal axis represents the patient’s rank
according to the estimated risk score from a prediction
model, where a rank of 1 corresponds to the highest
estimated risk score, etc. The patients on the left have
high risk scores and on the right have low risk scores.
For example, in Model A, Patient #6 (ranked 1st) has
the highest estimated risk score and Patient #19 (ranked
19th) has the lowest estimated risk score. The vertical
line is the median of the training scores that separate
the patients into the high and low risk groups for a two-
group comparison. This separation into two groups im-
plies a binary classification. In fact, the ROC approach
relies on an induced binary classification at each risk-
score cutoff. With a ROC approach at the 5-year
metastasis-free time (Figure 2, horizontal line), the
patients on the upper left region have longer survival
times but are categorized in the high risk group; the
patients on the lower right region have shorter survival
times but are categorized in the low risk group. Thus,
Patients #1, #3, #7, and #11 are misclassified in Model
A. Different horizontal lines can be plotted to evaluate
predictive performance for different time points. The
ROC curves constructed by enumerating all 19 vertical
cutoffs with the AUC measure are shown in Figure 1.
The ROC is a line connecting all the points without
smoothing, and there are fewer jumps than 19 because
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Table 2 P-values of randomization test based on 10,000
permutations for the three measures: Somers’ correlation
(Dyy), p-value of the hazard ratio, and R? from fitting the
Cox proportional hazards model using the risk scores as
independent variable

Model M1 (Original predictors) M2 (Re-select predictors)
D,y P R? Dyy P R?

A 0.0369 0.0225 0.0261 0.0369 0.0225 0.0261

B 0.0707 0.3622 0.3802 0.0499 0.1747 0.1788

C 0.2684 0.6027 0.6084 0.3146 06761 0.6838

D 0.0487 0.0718 0.0661 0.0387 0.0445 0.0383

E 0.2534 03170 0.3255 0.2588 0.3078 03166

some of the 19 points have same true positive rate or
false positive rate. Figure 3 shows plots of p-values of
the log-rank test using all possible cutoffs for Models A-
E. The minimum p-values occur generally in the range
when the numbers of patients in the low-risk group are
between 8 and 11. It also indicates that the dichotomiza-
tion of the survival risk scores into two groups to evalu-
ate predictability could lead to different conclusions if
different thresholds are applied.

In summary, a binary classifier is developed from a
training dataset where each patient is pre-assigned into ei-
ther a low-risk or high-risk group, while a survival risk
prediction model is developed, based on the patients’ sur-
vival times without pre-assigning the patients into two
groups. A binary classifier predicts a new patient as either
high or low risk. A risk prediction model provides an esti-
mate of risk score of a new patient; the estimated risk
score can be compared with the median of the training
scores to determine the patient’s risk group (high or low).
The main deficiency in the use of a binary classifier to
analyze survival time is the presence of censored observa-
tions. However, if there is no censoring, and the purpose
is to classify patients’ survival risks at a specific time point
of interest, then a binary classifier should be more power-
ful than a survival prediction model.

Discussion and Conclusions
The development of prediction models using the cancer
TNM staging system combined with the basic clinical

Table 3 P-values of randomization test based on 10,000
permutations for the AUC measures evaluated at 4, 5,
and 6 years metastasis-free times

Model M1 (Original predictors) M2 (Re-select predictors)
4-year  5-year 6-year  4-year 5-year 6-year
A 01134 00206 00508  0.1123 0.0195 0.0508
B 02692 02762 01293  0.2369 0.1898 0.0785
C 0.3786 02523 0.1920 04024 0.3083 0.2680
D 0.2243 0.2109 0.1020 0.1687 0.1503 0.0635
E 0.3686 0.3443 0.2991 0.3470 0.3007 03227
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covariates and microarray gene expression variables for
identifying high-risk and low-risk patients for treatment
recommendations has been an important goal in clinical
oncology research. Several recent publications have
investigated the use of microarray gene expression data
to improve accuracy in estimating patient risk. However,
the use of prediction models for clinical decision making
still has many challenges to be overcome. A recent crit-
ical evaluation of published studies on lung cancer found
little evidence that any of the reported gene expression
signatures are ready for clinical application [21].

A prediction model is developed to predict survival
risk of new patients which may come from different
medical centers or different times. The ability to predict
patients from different centers involves many factors,
such as study protocols, microarray platforms, sample
processing, and data pre-processing, etc. This study con-
siders prediction of new patients assuming they are from
the same study protocol. We focus on the assessment of
performance of survival prediction models using five
established prediction models.

Performance of a prediction model depends on the set
of predictive signatures used in the model. Since the
number of clinical variables is typically small, all clinical
variables can be considered to develop a prediction
model. On the other hand, since gene expression levels
are often correlated, the set of predictors selected may
vary substantially among different training samples, al-
though the models predict about equally well [28]. It
may not be feasible to come up with a general procedure
to determine an optimal set of predictors (genes and
clinical variables) for a “best” performance under the
Cox model.

A common practice to assess performance of a sur-
vival risk prediction model is to evaluate its ability to
separate the predicted risk scores of patients into low
and high risk groups based on a particular cutoff thresh-
old. However, the threshold has been defined differently;
some researchers used the median or other percentiles

Table 4 The 97 total patients were randomly split into a
training set and a test set

Model Single Group Analysis High- versus Low-Risk

Group Analysis
Cox Model | Cox Model II Log-rank test

A 0.7630 0.5032 05164

B 0.5408 04628 04778

@ 0.2876 0.2844 0.2964

D 05810 04286 04382

E 0.3302 0.2600 02702

The numbers of patients for the training and test sets were 49 and 48,
respectively. The values are the proportion that the estimated p-values were
less than or equal to 0.05 from a total of 10,000 computations, based on 5,000
randomly splits.



Chen et al. BVIC Medical Research Methodology 2012, 12:102
http://www.biomedcentral.com/1471-2288/12/102

Table 5 Effect of training and test set sizes on the power
for Model A

Training: Single High- versus Low-Risk Group
Test g:\c:lj)lrosis Analysis
Cox Model | Cox Model Il Log-rank test
7819 03945 0.2623 02819
65:32 0.6000 04164 04312
49:48* 0.7630 05032 05164
32:65 0.7746 0.5226 05294
2572 0.7042 05166 05232
19:78 0.563 0.4058 0412

* From Table 4.

The 97 total patients were randomly split into a training set and a test set. The
numbers of patients for the training set investigated were 78, 65, 32, 25, and
19. The values are the proportion that the estimated p-values were less than
or equal to 0.05 from a total of 10,000 computations, based on 10,000
randomly splits.

of training scores as the cutoff [21,32-34] and others
used the median or other percentiles of the test scores
[35-37,44]. Different cutoffs to segregate the testing data
could lead to different conclusions, and it also occurred
in the binary classifiers such as SVM and random forest
algorithm. A more fundamental issue is that a prediction

Table 6 The numbers of misclassifications for five binary
classifiers using the support vector machine (SVM),
random forest (RF) and logistic regression (LR)
classification algorithms

Survival Risk Number Number Number of Misclassification
Threshold pf. of Test A B C D E
Training samples
Year Group samples
SVM 4 high 28 10 10 6 7 7 7
low 50 9 1 2 3 2 3
5 high 34 12 9 1 3 2 5
low 44 7 1 2 2 2 2
6 high 43 14 5 2 3 2 2
low 35 5 1 1 2 1 1
RF 4 high 28 10 10 6 5 5 7
low 50 9 2 1 3 1 3
5 high 34 12 10 1 5 5 6
low 44 7 1 2 2 0 2
6 high 43 14 6 1 5 3 6
low 35 5 2 1 2 1 2
LR 4 high 28 10 7 5 6 6 6
low 50 9 1 2 3 4 4
5 high 34 12 8 3 6 7 8
low 44 7 0 4 2 3 1
6 high 43 14 6 1 3 3 7
low 35 5 0 3 2 2 1

The binary classifiers are developed based on the 4-year, 5-year, and 6-year
metastasis-free times to define the high and low risk classes.
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model is developed, based on training of the available
dataset, to predict new sample(s), classifying new
patients as high or low risk based on the available data.
Therefore, the median or other percentiles of the train-
ing scores should be used as a cutoff. In multiple center
studies where a prediction model is developed from one
center to predict patients of another center, comparing
the medians of training and test scores will be useful to
understand the underlying survival distributions of the
two centers.

The survival time endpoint for risk prediction has
been analyzed as a class prediction problem by dividing
patients into two classes according to a survival-time
threshold such as the breast cancer data [26]. The binary
response approach provides natural performance metrics
such as positive and negative predictive values to enable
unambiguous assessments. The binary response ap-
proach addresses the question of whether the patient
will survive up to a specific time, say, t*, while the
survival-time risk prediction approach estimates the
patient’s risk score. These two approaches address two
different questions. The survival-time prediction ap-
proach is generally more appropriate and natural for
modeling survival data in the presence of censored
observations. This paper illustrates that binary classifiers
highly depended on how the risk groups were defined.
Binder et al. [30] investigated the effects of the choice of
threshold on the predictions and showed that there is lit-
tle overlap of selected genes between an early and me-
dian threshold cutoffs, which might be due to short-term
and long-term effects of genes or the censoring pattern.

Performance of a risk prediction model is assessed by
analyzing the relationship between survival times and
risk scores. Many ROC studies mainly address a specific
time point of interest [11,45,46]. Sun et al. [36] and van
Belle et al. [47] showed time varying AUC measures for
two different models to show an improvement of using
gene expression data for predicting lung cancer survival,
but the AUC measure from one model may not be con-
sistently higher than the AUC measure from the other
model across all time points. The assessment of the
ROC curves for all time points might be needed. How-
ever, this can be impractical. Although accuracy com-
parison method developed by Moskowitz and Pepe [46]
could be useful to assess performance among different
models, this measure itself is inapplicable to assess the
performance of a single model.

The Somers' index D,y is a correlation measure for an
overall concordance between predicted risk scores and
observed survival times for the test data [11,44,48-52]. A
high correlation implies that the predicted patients’ risk
scores are in good concordance with the patients’ sur-
vival times. In most studies that presented D, values
[11,44,48-50], they were used to show improvement of a
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Figure 2 Plot of metastasis-free survival time (vertical axis) of the 19 test patients versus the rank of the estimated risk score
(horizontal axis) from the five risk prediction models. The patients were numbered according to the ranks of their survival times. The patients
on the left have high estimated risk scores (low ranks) and on the right have low estimated risk scores. Performance of a risk prediction model
can be assessed by analyzing the relationship between survival times and risk scores (see text). For example, the horizontal line represents a
cutoff at the 5 year metastasis-free time and the vertical line is the median of the training scores. A ROC curve can be constructed by
enumerating all 19 vertical cutoffs and AUC can be computed (Figure 1).

new model [52] or to compare different models [34,53],
without making inference to statistical significance. A
few studies did report confidence limits [47,53]. Unlike
R?, D,y does not depend on the fitting of the Cox model.

Hielscher et al. [23] compared seven existing R*-type
measures and showed their behavior in simulation
examples and a gene expression microarray dataset. This
paper evaluated several measures that have commonly
been used for the evaluation in clinical oncology, includ-
ing p-values of hazard ratios and logrank test, AUC, and
three R*-type measures. A main conclusion in our ana-
lysis is that these existing metrics for evaluating the dis-
criminatory ability of survival prediction models may
lead to discordant results. In the lymphoma application,
the seven R>-type measures reported in Table two of
Hielscher et al. [23] were in agreement. They provided a
summary of references of seven R>-type measures and
available R software in Table three.

Cross validation of binary classifiers in gene expression
data has been investigated extensively [54]. Cross validation

of survival prediction models has not commonly been
conducted. Recently, Subramanian and Simon [46] com-
pared several re-sampling techniques for assessment of
accuracy of risk prediction models, and their investiga-
tion covers various settings, including sample sizes, null
model, number of k-fold partitions, etc. Although they
only evaluated the AUC(t) at t=180 months, they
recommended 5- or 10-fold cross-validation which has
good balance between bias and variability in the differ-
ent settings. Simon et al. [14] also showed how to
utilize cross-validation for the evaluation of prediction
models using time dependent ROC curves. The cross
validation to estimate power illustrated in this paper is
similar to the approach used by Subramanian and
Simon [46].

The p-values of the hazard ratios or log-rank test are
commonly used to evaluate performance of risk predic-
tion models. These p-values provide direct assessment of
significance of the measures of predictability; however,

some models can give inconsistent conclusions. D,
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Figure 3 Loge-rank p-values of the five models for all possible sizes of low-risk group.

measures an overall concordance between the patients’
survival times and predicted risk scores. AUC provides a
probability measure of predictive ability at a given time
point. The p-values of these two measures can be com-
puted using the proposed randomization test, which
cannot be derived theoretically. Both measures are very
useful to assess performance of a single model or to
compare different models.
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