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Abstract

Background: With the current focus on personalized medicine, patient/subject level inference is often of key
interest in translational research. As a result, random effects models (REM) are becoming popular for patient level
inference. However, for very large data sets that are characterized by large sample size, it can be difficult to fit REM
using commonly available statistical software such as SAS since they require inordinate amounts of computer time
and memory allocations beyond what are available preventing model convergence. For example, in a retrospective
cohort study of over 800,000 Veterans with type 2 diabetes with longitudinal data over 5 years, fitting REM via
generalized linear mixed modeling using currently available standard procedures in SAS (e.g. PROC GLIMMIX) was
very difficult and same problems exist in Stata’s gllamm or R’s lme packages. Thus, this study proposes and assesses
the performance of a meta regression approach and makes comparison with methods based on sampling of the
full data.

Data: We use both simulated and real data from a national cohort of Veterans with type 2 diabetes (n=890,394)
which was created by linking multiple patient and administrative files resulting in a cohort with longitudinal data
collected over 5 years.

Methods and results: The outcome of interest was mean annual HbA1c measured over a 5 years period. Using
this outcome, we compared parameter estimates from the proposed random effects meta regression (REMR) with
estimates based on simple random sampling and VISN (Veterans Integrated Service Networks) based stratified
sampling of the full data. Our results indicate that REMR provides parameter estimates that are less likely to be
biased with tighter confidence intervals when the VISN level estimates are homogenous.

Conclusion: When the interest is to fit REM in repeated measures data with very large sample size, REMR can be
used as a good alternative. It leads to reasonable inference for both Gaussian and non-Gaussian responses if
parameter estimates are homogeneous across VISNs.
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Background
Many translational research projects are generating very
large data sets (VLDS) which require fitting complex
models to answer questions of public health interest.
Datasets can be considered “very large” because of large
numbers of study subjects or units of analysis and/or
large numbers of variables, and both situations present
challenges during the analysis phase, especially when
observations are clustered at some level (eg. Longitu-
dinal data). An example of VLDS with large number of
observations is a two-year group randomized trial
designed to assess the impact of a quality improvement
intervention on colorectal cancer screening in primary
care practices. Electronic medical record data were
obtained from a sample of 68,150 patients from 32 pri-
mary care practices in 19 US states, followed monthly
over a 2-year time period [1]. Similarly, an example of
VLDS with large number of variables as well as units of
analysis is an functional magnetic resonance imaging
study of neural changes underlying speech-perception
training [2] in which whole brain images of 40 patients
were taken to make functional inference, resulting in
hundreds of time series data clustered within thousands
of voxels.
Fitting complex models for these types of data sets can

be difficult, requiring inordinate amounts of computer
time for parameter estimation, requiring memory alloca-
tions beyond what are available or containing data
structures that prevent model convergence, even within
state-of-the-art computational infrastructures of medium
size research facilities such as ours. For instance, fitting
complicated generalized linear mixed models (GLMMs)
for data from the examples above using software such as
SAS 9.2.2 (Cary, NC), Stata 11 (College Station, TX) or
R (R-2.11.1) may not be possible using desktop compu-
ters typically available to researchers within our institu-
tions (64 bit server with 12GB and 667MHz dual ranked
DIMMS and 48GB of RAM). Although a few methods
for modeling VLDSs exist, current practice mainly
involves data reduction processes, which usually result
in loss of information.
Recently, we have been working on a longitudinal

study of the trajectory of HbA1c control in patients with
type2 diabetes treated within the Veterans Administra-
tion (VA) healthcare setting, and we have been faced
with the problem of fitting GLMMs on over 890,000
patients, clustered in 23 Veterans Integrated Service
Networks (VISNs) and followed over 5 years. Fitting
mixed effects logistic regression model with over 30 co-
variates for making individual level inference resulted in
an out of memory error using a 64 bit server with 12GB
and 667MHz dual ranked DIMMS and 48GB of RAM.
In SAS procedures such as Proc GLIMMIX, fitting

mixed effect models with the recommended standard
syntax of including subject ID in a Class statement
was not possible. This procedure with the standard
syntax ran out of memory when we attempted to fit
a model with the simplest scenario of including a
random intercept. With ad-hoc modifications (see dis-
cussion section) to the standard syntax, however, we
were able to fit the model despite it took longer time.
Similar problems were observed in Stata’s gllamm, and
R’s lme4 packages.
With the current focus on personalized medicine, pa-

tient/subject level inference is often of key interest in
translational research. GLMMs are a very rich class of
models that are traditionally used to make such
individual-level inference by breaking down the total
variation in the observed response into within-subject
and between-subject variation. These models are also
used to incorporate natural heterogeneity in the esti-
mates due to unmeasured explanatory variables [3-5]. In
GLMMs, the joint distribution of the vector of responses
is fully specified and the within-subject association
among repeated or clustered measures is induced via in-
corporation of one or more random effects into the
model. As a result, interpretation of the regression coef-
ficients for GLMM relies on the induced model for the
covariance among the responses. When population level
inference is of interest, marginal models (e.g. general lin-
ear models) are often used, and within-subject associ-
ation among repeated responses is incorporated by
directly making assumptions about the covariance (e.g.
autoregressive, compound symmetry, etc). While such
models may not be as difficult to fit with VLDSs,
subject-level inference cannot be made using the marginal
model framework since the mean response and covariance
are modeled separately [3]. Currently, methodology
for fitting parametric mixed effect models for VLDSs
is underdeveloped.
There are some recent Bayesian methods proposed for

fitting parametric random effects models to VLDSs [6-8].
Owen [9] and Huang and Gelman [7] propose a computa-
tional strategy, akin to a Bayesian meta regression, based
on sampling the data, computing separate posterior distri-
butions based on each sample, and then combining these
to get a consensus posterior inference. Their approach
reduces the number of parameters as well as sample size
for each separate model fit and can lead to efficient
inference.
An alternative is a 2-stage “data squashing” method

[10]. In this method, the complete data is partitioned
into compact sub-regions in the first stage. Then one
generates a set of “pseudo-data” and weights within each
sub-region so that the weighted moments on the
squashed data match the unweighted moments on the
original data. This method is less sensitive to outliers
than random sampling, but it has the potential to be
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computationally intensive. To date, its characteristics are
only known in simpler fixed effect and descriptive mod-
els. Madigan et al. [11,12] proposed a data squashing
method which first groups subjects based on their con-
tribution to the likelihood and then fits models to the
mean of each group. Although this approach may be
promising for some models, it is unwieldy under the
Dirichlet process prior (DPP) due the complicated struc-
ture of the likelihood [12]. In general, the Bayesian
approaches which use DPP to automatically cluster indi-
viduals into latent classes [13,14] may not be feasible in
very large data sets due to limitations in current Markov
chain Monte Carlo (MCMC) algorithms [12,15].
Motivated by the scarcity of work in this area and the

challenge we faced with the analysis of our VLDS, we
propose a random effects meta regression (REMR) ap-
proach in which VISN-specific estimates are combined
via meta regression. We make comparisons with two
other approaches, (1) average estimates from analysis of
1000 data sets obtained via simple random sampling
(SRS) of the original data with simulated 95% confidence
intervals (CIs), (2) weighted average estimates from ana-
lysis of 1000 data sets obtained via VISN-stratified ran-
dom sampling (StRS) with simulated 95% CIs. Using
simulated data, we also assess biases present within each
approach, noting whether they provide equivalent
inferences as would be obtained from analysis of the
full data. The paper is organized as follows: section 2
presents the motivating example; section 3 describes
the details of the statistical methods; section 4 pre-
sents the results of the analysis; and section 5 dis-
cusses the findings.

Motivating example
A national cohort of Veterans with type 2 diabetes was
created by linking patient and administrative files from
the Veterans Health Administration (VHA) National Pa-
tient Care and Pharmacy Benefits Management (PBM)
databases. Veterans were included in the cohort if they
had type 2 diabetes defined by two or more International
Classification of Diseases, Ninth Revision (ICD-9) codes
for diabetes (250, 357.2, 362.0, and 366.41) in the previ-
ous 24 months (2000 and 2001) and during 2002 from
inpatient stays and/or outpatient visits on separate days
(excluding codes from lab tests and other non-clinician
visits), and prescriptions for insulin or oral hypoglycemic
agents (VA classes HS501 or HS502, respectively) in
2002 [16]. Veterans identified as having type 2 diabetes
by ICD-9 codes were excluded from the cohort if they
did not have prescriptions for diabetic medications
(HS501 or HS502) in 2002. The datasets were linked
using patient scrambled Social Security Numbers and
resulted in 890, 394 Veterans, who were followed until
death, loss to follow-up, or through December 2006.
The study was approved by our Institutional Review
Board and local VA Research Development committee.

Outcome measure
The primary outcome was glycosylated hemoglobin
(HbA1c) level. In addition, a binary outcome defined as
HbA1c ≥ 8.0% was used.

Primary independent variable
For this project, the primary research question was
whether HbA1c differed significantly by race/ethnicity,
classified as non-Hispanic white (NHW), non-Hispanic
black (NHB), Hispanic, and other/unknown/missing.

Demographic variables
Age, gender, marital status (i.e., single or married) and
percentage service-connectedness (i.e., degree of disabi-
lity due to illness or injury that was aggravated by or in-
curred in military service) were available and treated as
covariates in the model. Location of residence was
defined as urban and rural/highly rural, [17] and hospital
region was defined by the five geographic regions of the
country based on VHA Veteran’s Integrated Service Net-
works (VISNs): Northeast (VISNs 1, 2, & 3), Mid-Atlantic
(VISNs 4, 5, 6, 9, & 10), South (VISNs 7, 8, 16, & 17),
Midwest (VISNs 11, 12, 15, 19, & 23), and West (VISNs
18, 20, 21, & 22) [18].

Comorbidity
Variables included substance abuse, anemia, cancer, cere-
brovascular disease, congestive heart failure, cardiovascu-
lar disease, depression, hypertension, hypothyroidism,
liver disease, lung disease, fluid and electrolyte disorders,
obesity, psychoses, peripheral vascular disease, and other
(AIDS, rheumatoid arthritis, renal failure, peptic ulcer dis-
ease and bleeding, weight loss) and were defined based on
ICD-9 codes at entry into the cohort. In our final models,
we included a categorical summary of count of comorbi-
dities defined as (0=none, 1=one, 2=two 3=three or more),
a process which has been shown to be as or more efficient
than more complicated algorithms [19].

Methods
Overview of the generalized linear mixed model (GLMM)
To model the relationship between HbA1c (Y) and covari-
ates (X), a GLMM approach was used. For the ith subject
(i=1,..,N) with ni (j=1,. . .,ni) repeated measurements, we
considered the model, E(Yi |Xi,Zi) =g

-1(Xiβ + Zibi), where
g is a monotone link function and Yi is Nx1 vector of
responses, Xi is nixp matrix of covariates, Zi is nixq matrix
of covariates (q≤p), β is a px1 vector of fixed effect para-
meters, bi is a qx1 vector of random effects. We assume
that bi~N(O,G), where G is a qxq covariance matrix for bi.
An identity link function results in a linear mixed model
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for the continuous HbA1c outcome, and a logit link
results in logistic mixed effects model for the dichotom-
ous HbA1c outcome. If bi is a vector of random intercept
and slope, it results in a 2x2 covariance matrix G which
indicate natural heterogeneity among individuals in both
their baseline level and changes in the expected outcomes
over time. In our models, a person-level random effect
was included in all models to account for within-
individual correlations. This approach accommodates a
wide range of distributional assumptions, multilevel data,
measurement of subjects at different time points, model-
ing individual level effects, missing data, and time varying
or invariant covariates [20].
A special case is the linear mixed model given by, Yi |Xi,

Zi =Xiβ + Zibi + ei, where ei~N(0,Ri) and independent of
bi. Assuming, Ri=σ

2Ini, the conditional distribution of Yi|bi
is given by the multivariate Gaussian distribution with
mean Zibi +Xiβ and variance σ2Ini. In this model, the re-
sponse for the ith subject is assumed to differ from the
population mean, E(Yi)=Xiβ, by a subject specific effect,
Zibi, and a within-subject measurement error ei. The esti-
mates of the parameters in a mixed model are determined
as the values that optimize an objective function which is
either the likelihood of the parameters given the observed
data (ML) or a related objective function called the
restricted ML (REML). In practice REML is often pre-
ferred. The log-likelihood based on the observed data as-
suming that the vector of all variance components in G
and Ri can be denoted by α can be written as,

l β; αð Þ ¼
XN

i¼1

� ni
2
log 2πð Þ � 1

2

XN

i¼1

log Σi αð Þj j

� 1
2

XN

i¼1

yi � Xiβð Þ0Σi αð Þ�1 yi � Xiβð Þ ð1Þ

where Σi(α) = ZiG(α)Zi
0 + Ri(α) and parameter estimates

are obtained via Newton-Raphson.

Weighted Generalized Linear Mixed Effects Model
(WGLMM)
The WGLMM is a model well-suited for analysis of sur-
vey sampled data. We use it to analyze our type-2 dia-
betes cohort data in the context of finitely sampled data
(e.g. VISN-stratified randomly sampled data).
In sample surveys, units are sometimes drawn with

unequal selection probabilities, and if the design prob-
abilities are informative (i.e. they are related to the re-
sponse) [21,22] the model holding for the sample will be
different from the model holding for the finite popula-
tion. Consequently, the usual estimators will be biased
for the finite population quantity [23,24]. A common de-
sign based solution is to use weighted estimators where
the contribution of unit i is weighted by the inverse
probability of selection into the sample [25,26]. An alter-
native is a model based approach where the sampling
units enter into the model as random effect terms. In
the former, a pseudolikelihood approach for accommo-
dating inverse probability weights is implemented by
using adaptive quadrature, and a sandwich estimator is
used to obtain standard errors that account for complex
sampling, since model-based standard error estimates
may not be valid. These types of models can be fitted
using SAS procedures such as Proc GLIMMIX by in-
cluding weights via the WEIGHT statement. Similarly,
xtmixed and gllamm can be used in Stata and the lme4
package in R. In the Stata program gllamm, a full
pseudo-maximum-likelihood estimation which allows
for specification of probability weights, is implemented
via adaptive quadrature [27]. The weights enter the log-
pseudolikelihood as if they were frequency weights,
representing the number of times that each unit should
be replicated. Adaptive quadrature [27,28] provides good
approximations to the integrals in the pseudolikelihood.
However, these are not easy to implement in practice
since the log-pseudolikelihood cannot simply use one set
of weights based on the overall inclusion probabilities
but must use separate weights at for the fixed and ran-
dom effects.
The generalizations of Equation (1) above to the spe-

cial case of weighted linear mixed model (WLMM) can
be described by the change in the conditional distribu-
tion (Yi|bi)~N( Zibi +Xiβ ;Ri(α)Wi

-1) and Σi(α) = Zi
0Wi

− 1G
(α)Zi + Ri(α)Wi

− 1 where the weights matrix, W, is con-
stant. In our implementation of WLMM, we used a re-
sidual subject specific pseudolikelihood (RSPL) to
estimate parameters and simulated 95% CIs which are
calculated based on 1000 simulations.

Meta regression approach
Another approach to deal with fitting parametric ran-
dom effects models to VLDS is to do aggregated analysis
after estimating the parameters at some level of adminis-
trative or sampling based subsets of the data. This can
lead to substantial gain in the time required to fit these
models and can be adapted to parallel processing, lead-
ing to further computational time savings. In the case of
likelihood inference, this idea leads to a pseudolikelihood
[29-31], where weights are incorporated as if they were
frequency weights. The resulting estimator is design
consistent and hence model consistent under suitable re-
gularity conditions such as those discussed by Isaki and
Fuller [32]. However, this consistency typically comes at
a price of reduced efficiency [33].
Since VHA research data are provided at VISN level,

models for each VISN can be fitted, and a mechanism to
combine these parameter estimates is suggested. After
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models relating HbA1c and covariates are fitted for each
VISN, the next step is to use pooling methods to obtain
national estimates. This can be done using fixed effects
[34,35] and random effects meta regression [36-38]. The
fixed effects approach [39] is based on weighted regres-
sion with the weight being the number of patients in
each VISN as fraction of the total population. Covariates
can either be VISN level factors or aggregates of individ-
ual level covariates. The second approach is random
effects meta-regression [35]. Generally the regression
coefficients are regressed on an intercept and VISN-level
covariates. A random intercept is included in the regres-
sion to take into account the between-VISN variation.
This leads to the usual DerSimonian and Laird [40] ran-
dom effects estimate of the pooled regression coefficient.

Fixed effects meta regression (FEMR)
Let ψi be an effect of interest to estimate for VISN i. In
our study these are the regression coefficients associated
with covariates such as race/ethnicity in the GLMM
model. Let φi be the corresponding sample estimate. The
fixed effects meta regression can be given by φi =τ +εi,
where τ is the pooled mean or FEMR estimate and
εi~N (0, σi

2) is the random error. This can be adjusted
for covariates via weighted regression as:

φi ¼ τ þ γ1zi þ γ2xi þ εi;where εi∼N 0; σ i
2

� � ð2Þ

Random effects meta regression (REMR)
In REMR, a standard one-step DerSimonian and Laird
[40] random effects pooled estimate of the regression co-
efficient is obtained via, φi =τ +νi +εi , where εi~N (0, σi

2)
and νi~N (0, σv

2) with vi (VISN level random effect) and
εi (random error) are uncorrelated. In the covariate
adjusted version, the model is fitted by regressing the ef-
fect estimate on an intercept and VISN-level covariates:

φi ¼ τ þ γ1zi þ γ2xi þ νi þ εi;

where εi∼N 0; σ i
2

� �
and νi∼N 0; σv

2
� � ð3Þ

where τ is the pooled mean or REMR estimate. The ad-
justment covariates can be VISN level covariates (z) or
aggregates of individual level covariates (x) to account for
additional causes of heterogeneity [41]. For both fixed
effects [34] and random effects meta regression [37,38], we
used restricted maximum likelihood via Proc GLIMMIX
and Proc PLM (SAS 9.2.2) to obtain pooled estimates.

Summary of modelling strategies used
In this paper, we study two broad strategies for longitu-
dinal analyses of VLDS: random effects meta regression
(REMR) and estimation based on sampling of the full
data (SRS and StRS). Within each strategy we model the
continuous outcome of HbA1c using a linear mixed
model and the binary outcome of HbA1c (<8% vs. ≥ 8%)
using mixed effects logistic regression. The primary in-
dependent variable is race/ethnicity, and a number of
subject-level covariates are included.
Test of homogeneity
The main goal of REMR and FEMR is to obtain a single
global or pooled effect summarized across VISNs. But,
obtaining pooled estimates assumes homogeneity of
VISN level effects. According to [42], the main sources
of heterogeneity are clinical incomparability or design
incomparability. Clinical incomparability can be caused
by differences in the VISN level populations, and design
incomparability can be caused due to differences, for ex-
ample, in missing data and measurement error. These
are issues, however, that mainly arise in pooling of
effects from different studies. In our data, these issues
may not arise at all or will have very limited impact on
generalizability of results. If heterogeneity is found or
suspected to exist, the common approaches used in
meta-analysis are (1) to stratify the studies into homoge-
neous subgroups and then fit a separate fixed effects es-
timate [43], (2) construct a random effects estimate [40]
across all VISNs (a random effects approach incorpo-
rates both within-study and between-study variability: if
heterogeneity exists among VISNs, a summary measure
across those VISNs may not be provided), or (3) fit a
meta-regression model that explains the heterogeneity in
terms of VISN-level covariates. We implemented an ap-
proach of removing outliers, as suggested by Draper and
Smith [44] in conjunction with approach 2 above.
Model selection
Although the purpose of this project was not to “select”
an optimal model, model fit assessment was facilitated
using maximum likelihood (or pseudo-likelihood) infor-
mation criteria, factors typically used in model selection.
Two common approaches in the literature include
Akaike information criterion (AIC) [45] and Bayesian in-
formation criterion (BIC) [46]. Across competing models
the lowest value on each criterion indicates the best fit-
ting model. These statistics account for both model fit
(deviance) and model complexity by penalizing models
with a larger number of parameters. For GLMM,
pseudo-AIC and pseudo-BIC, which are adjusted for
fixed effects and covariance parameters, are used. How-
ever these pseudo information criteria are not useful for
comparing models that differ in their pseudo data [3].
Thus in our example, they are used to compare AIC/BIC
values of models estimated using the sampled data and
to the full data models. AIC/BIC values from REMR are
not comparable with those from the full data.
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Bootstrap simulation study design
Simulation studies based on 1000 repeated re-samplings
of (sample size: 1%, 5%, 10% and 25%) the full data are
used to asses and compare the methods discussed above.
This is implemented via a non-parametric bootstrapping
approach [47] with a repeated sample of the observed
data with replacement with the study subject as the sam-
pling unit to form 1000 simulated datasets of each sam-
ple size. Traditionally, Monte-Carlo simulation studies
based on data generated from statistical models have
been used for this kind of comparative study. Resam-
pling has the advantage that the data in resampled data-
sets are based on observations from real datasets and
thus reflect the appropriate level of diversity and vari-
ability found in realistic populations [47,48]. Our data-
sets are large enough to permit numerous samples of
reasonable size to arrive at stable conclusions within the
resampled data [47]. Performance of methods in terms
of bias and efficiency will be benchmarked against
results from the original full data. The full data estimates
are used as true values to judge bias in estimates from
the sampling and meta regression approaches.

Hardware
All analyses for this investigation were run on a Dell
PowerEdge 2900 III server with two dual core Intel Xeon
Table 1 Characteristics of study population for the full (n=89

Analysis variable Full cohort
(n=890,394)

25%
(n=225,000)

Non-Hispanic White: % (n) 62 (547,645) 61 (138,470) 6

Non-Hispanic Black: % (n) 12 (107,935) 12 (27,317) 1

Hispanic: % (n) 14 (123,558) 14 (31,062) 1

Other: % (n) 12 (111,256) 13 (28,151) 1

Male: % (n) 98 (869,508) 98 (219,708) 9

Married: % (n) 65 (574,307) 64 (145,060) 6

Disability (mean % & sd) 12 (0.03) 12 (0.06) 1

Northeast 12 (103,056) 12 (25,994) 1

Mid-Atlantic 23 (201,058) 22 (50,579) 2

Midwest 21 (184,348) 21 (46,940) 2

South 30 (265,450) 30 (66,988) 3

West 15 (136,482) 15 (34,499) 1

Urban Residence 62 (548,786) 61 (138,339) 6

Rural Residence 38 (341,608) 39 (85,612) 3

Mean HbA1c (mean % & sd) 7.4 (0.002) 7.4 (0.003) 7.

Mean HbA1c<8%: % (n) 73 (703,596) 73 (177,751) 7

No Comorbidities 57 (507,320) 57 (128,326) 5

1 Comorbidity 28 (248,898) 28 (62,961) 2

2 Comorbidities 11 (95,542) 11 (23,998) 1

3+ Comorbidities 4 (38,634) 4 (9,715) 4

Not applicable due to sampling by VISN or aggregation by VISN.
X5260 processors with 6 megabyte cache, with a clock
speed of 3.33 gigahertz, and a front-side bus of 1333
megahertz. The server has been configured with 12 four
gigabyte (GB), 667MHz dual ranked dual in-line mem-
ory modules for a total of 48GB of RAM. Data are
stored on six one terabyte (TB) 7200 revolution per mi-
nute near-line serial attached small computer system
interface, 3GB per second 3 ½ inch HotPlug hard drives
forming a 3TB redundant array of independent disk level
5 storage system. This server runs a 64-bit version of
Windows 2003 R2 Enterprise X64 Edition Service Pack
2 operating system.

Software
Datasets were organized for this study using SAS version
9.2.2 (Cary, NC) and SAS transport data sets created.
Data were read into a 64-bit version of R for Windows
2.11.1 (R Development Core Team 2010) using the
“Hmisc” [49] and “foreign” [50] packages. Plots were
done using R, and regression analysis was accomplished
using the lme4 package [51].

Results
The full cohort consisted of 890,394 Veterans with dia-
betes followed from 2002 through 2006. The cohort is
characterized based on demographics, HbA1c and
0,394) and sampled cohorts

10%
(n=90,000)

5%
(n=45,000)

1%
(n=9,000)

REMR
(n=890,394)

2 (55,489) 62 (27,853) 62 (5,529) 62 (547,645)

2 (10,941) 12 (5,406) 12 (1,097) 12 (107,935)

4 (12,481) 14 (6,148) 14 (1,285) 13 (123,558)

2 (11,089) 12 (5,593) 12 (1,089) 13 (111,256)

8 (87,921) 98 (43,947) 98 (8,794) 98 (869,508)

5 (58,222) 64 (29,002) 65 (5,853) 64 (574,307)

2 (0.09) 12 (0.13) 13 (0.30) 12 (0.63)

1 (10,274) 12 (5,272) 12 (1,074) - (103,056)

3 (20,328) 23 (10,230) 23 (2,000) - (201,058)

1 (18,658) 21 (9,368) 20 (1,827) - (184,348)

0 (26,759) 29 (13,189) 30 (2,707) - (265,450)

6 (13,981) 15 (6,941) 16 (1,392) - (136,482)

1 (55,324) 62 (27,701) 61 (5,513) 61 (548,786)

9 (34,676) 38 (17,299) 39 (3,487) 39 (341,608)

4 (0.005) 7.4 (0.007) 7.4 (0.016) 7.5 (0.030)

3 (71,195) 73 (34,498) 71 (7,112) 70 (703,596)

7 (51,178) 57 (25,506) 57 (5,143) 57 (507,320)

8 (25,309) 28 (12,655) 27 (2,456) 28 (248,898)

1 (9,706) 11 (4,898) 11 (1,022) 11 (95,542)

(3,807) 4 (1,941) 4 (379) 4 (38,634)
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comorbidities in Table 1. The full cohort is 62% NHW,
12% NHB, 14% Hispanic, and 12% other race/ethnicity.
Characteristics of the 1%, 5%, 10% and 25% random
samples estimates as well as REMR reflect that of the
full cohort, with prevalence estimates across the four
sampling scenarios (1%, 5%, 10% and 25%) and the full
cohort differing by no more than 1%. The mean age in
the full cohort is 66.2 years and ranges from 66.2 years
in the 10% and 25% SRS to 66.5 years in the 1% SRS.
Linear mixed models were used to model continuous

HbA1c levels in both the full cohort and each of the SRS
and StRSs (using the weighted approach described in sec-
tion 3.2). Parameter estimates associated with betas repre-
senting the different race/ethnic and comorbidity groupings,
standard errors of the betas, and 95% confidence intervals
are reported in Tables 2. For all variables examined with the
exception of comorbidity, the direction of the association
between each independent variable and HbA1c was consist-
ent in both SRS and StRS with the full cohort. In fact, the
beta estimates for all the 1% to 5% SRSs or StRS scenarios
were within the 95% confidence limits of the full cohort esti-
mates (1% estimates are removed from Tables to save
space). For example, the beta estimate for NHB indicated
that HbA1c levels were 0.46 units higher in NHB than
NHW in the full cohort, while estimates in the SRSs ranged
from 0.39 in the 1% SRS to 0.46 in the 25% SRS. The esti-
mates for NHB in the StRS also ranged from 0.44 in the
1% sample to 0.47 in the 25% sample. However, for the
number of comorbidities variable, while the direction of
the beta estimate remained similar between the full co-
hort and the SRS or StRS, the magnitude and 95% CI
for the 1% sample was higher, and the association was
not statistically significant (Table 2). For example, the β es-
timate (95% confidence intervals) for three or more comor-
bidities was 0.11 (0.11, 0.13) for the full cohort and it
ranged between 0.04 (-0.05, 0.16) in the 1% SRS to 0.10
(0.08, 0.13) in the 25% SRS and 0.18 (0.08, 0.30) in the 1%
StRS to 0.11 (0.1, 0.15) in the 25% StRS. The smaller stand-
ard errors and tighter confidence intervals observed in the
full cohort are a direct result of the larger sample size.
The REMR estimates on the other hand are very close

to the full sample estimates. For example, the beta esti-
mate for NHB indicated that HbA1c levels were 0.45
(0.41, 0.49) higher in NHB than NHW in REMR which
is comparable to 0.46 (0.45, 0.46) in the full cohort.
Similarly, for three comorbidities the full cohort results
were 0.11 (0.11, 0.13) while REMR resulted in 0.09 (0.05,
0.13). In all these models, the intercept was very well
approximated even in the 1% sampled data. It should be
noted that, REMR can be highly affected by outliers in
the estimates that are aggregated to get the final esti-
mates. In our case, VISN 13 and 14 exhibited extreme
values and hence were removed to maintain the homo-
geneity assumption required by REMR in order to get
unbiased estimates. In Table 2, the REMR estimates as
well as their 95% CI are very similar to the full sample
estimates reported in the first row of the table except
that the full data 95% CI estimates are much tighter as
expected. REMR models that included VISN 13 and 14
are summarized in Additional file 1: Appendix Tables 1
and 2. These appendix tables show that REMR can lead
to biased estimates when the assumption of homogen-
eity of VISN level estimates is violated.
Table 3 compares results from GLMM for binary

HbA1c for the three different approaches considered.
While it was not possible using standard GLMMIX syn-
tax to obtain estimates for the full sample or for samples
of size 10% or more (due to well known computational
convergence and memory limitation errors), we were
able to obtain estimates for the full sample using tricks
such as sorting by ID and time and removing them from
the class statement. However, it was not possible to ob-
tain estimates using R’s lme4 package. Compared to
NHW, the REMR estimate (and 95% CIs) for the log
odds of HbA1c>8% was 0.58(0.52, 0.64) for NHB, 0.11
(0.05,0.17) for Hispanic and 0.32(0.26,0.38) for Other
race/ethnic groups. These mimic the full sample esti-
mates reported in the first row of Table 3 showing that
REMR estimates (when homogeneity assumption is met)
lead to unbiased estimates. On the other hand, the esti-
mates from both SRS and StRS were very biased with
bias increasing inversely with sample size. The corre-
sponding estimates (and 95% CIs) of the log-odds ratio
in the 5% SRS were 1.69(1.40,1.99), 1.10(0.70,1.50) and
1.05(0.75,1.35) for NHB, Hispanic, and Other respect-
ively. The results from StRS were similar to SRS. On the
other hand, while the REMR log-odds ratio estimate for
having three or more comorbidities was 0.25(0.19,0.31),
the corresponding estimates from 5% SRS and StRS were
0.33(-0.24,0.90) and 0.80(0.22,1.39) respectively. The
estimates with VISNs 13 and 14 included are in
Additional file 1: Appendix Tables 1 and 2, indicating
even worse performance by these sampling approaches.
Figure 1 depicts the beta estimates for race by VISN

and the aggregated REMR estimate and their corre-
sponding 95% CI in the association study of HbA1c and
race after adjusting for covariates. Figure 2 shows corre-
sponding estimates for binary HbA1c>8% using GLMM.
Both figures indicate homogeneity in the estimates
across VISNs except in VISNs 13 and 14 (which were
removed to meet the homogeneity assumption required
by REMR since both VISNs exhibited extreme estimated
values). The outlier estimates from VISNs 13 and 14 are
clearly depicted in Additional file 1: Appendix Figures
S1 and S2. Figure 3 shows the goodness of fit statistics
for making comparison among the different models. As
expected the AIC and BIC values decreased as sample
size increases. Also, AIC/BIC estimates for comparable



Table 2 Parameter estimates, 95% confidence intervals, standard errors for intercept, race and comorbidity in linear mixed model (LMM*) of HbA1c using
sampling and random effects Meta-regression, in for Veterans with Type 2 Diabetes (2002-2006)

Simple random sample (SRS)

Parameter Sample (%) Intercept Non-hispanic black Hispanic Other 1 Comorbidity 2 Comorbidities 3+ Comorbidities

β (95% CI) 100 7.54 (7.52, 7.55) 0.46 (0.45, 0.46) 0.29 (0.28, 0.30) 0.25 (0.23, 0.25) 0.01 (0.01, 0.02) 0.04 (0.04, 0.05) 0.11 (0.11, 0.13)

25 7.59 (7.55, 7.61) 0.46 (0.44, 0.47) 0.31 (0.28, 0.32) 0.24 (0.22, 0.25) 0.01 (0.00, 0.02) 0.02 (0.01, 0.04) 0.10 (0.08, 0.13)

10 7.54 (7.48, 7.58) 0.47 (0.44, 0.48) 0.30 (0.26, 0.32) 0.26 (0.23, 0.27) 0.03 (0.02, 0.05) 0.08 (0.07, 0.12) 0.08 (0.05, 0.13)

5 7.54 (7.48, 7.62) 0.44 (0.41, 0.47) 0.28 (0.23, 0.32) 0.27 (0.24, 0.30) 0.03 (0.01, 0.06) 0.05 (0.02, 0.09) 0.13 (0.08, 0.18)

SE 100 0.0115 0.005 0.007 0.005 0.0037 0.0054 0.0079

25 0.0115 0.005 0.007 0.005 0.0037 0.0054 0.0080

10 0.0115 0.005 0.007 0.005 0.0037 0.0054 0.0080

5 0.0116 0.005 0.0069 0.005 0.0037 0.0053 0.0079

Stratified random sampling (StRS)

Parameter Sample (%) Intercept Non-Hispanic Black Hispanic Other 1 Comorbidity 2 Comorbidities 3+ Comorbidities

β (95% CI) 25 7.61 (7.57, 7.63) 0.47 (0.45, 0.48) 0.28 (0.26, 0.29) 0.26 (0.24, 0.27) 0.01 (0, 0.02) 0.03 (0.02, 0.05) 0.11 (0.11, 0.15)

10 7.58 (7.53, 7.63) 0.46 (0.43, 0.48) 0.28 (0.25, 0.30) 0.26 (0.23, 0.28) 0.0 (-0.01, 0.02) 0.05 (0.03, 0.08) 0.16 (0.13, 0.2)

5 7.61 (7.54, 7.68) 0.38 (0.35, 0.41) 0.30 (0.26, 0.35) 0.25 (0.21, 0.28) 0.02 (0.0, 0.05) 0.05 (0.02, 0.09) 0.09 (0.05, 0.15)

SE 25 0.0111 0.0049 0.0068 0.005 0.0037 0.0054 0.0079

10 0.0111 0.0049 0.0068 0.0049 0.0037 0.0054 0.0078

5 0.0111 0.0050 0.0069 0.005 0.0037 0.0053 0.0079

Random effects meta-regression without VISN 13 & 14 (REMR)

Parameter** Sample (%) Intercept Non-Hispanic Black Hispanic Other 1 Comorbidity 2 Comorbidities 3+ Comorbidities

β(95% CI) 100 7.58 (7.54, 7.62) 0.45 (0.41, 0.49) 0.08, (0.04, 0.12) 0.23 (0.19, 0.27) 0.01 (-0.04, 0.05) 0.03 (-0.01, 0.07) 0.09 (0.05, 0.13)

*-Independent variables used in fitting the linear mixed model were: linear time; race (non-Hispanic white reference, indicator variables); sex (female reference); marital status (single reference), service disability
percentage, residence status (urban/rural, rural reference), VISN region (Northeast, Mid-Atlantic, South, Midwest, and West), and number of comorbidities (1, 2, or 3+; none reference).
** Veteran Integrated Service Networks (VISNs) 13 and 14 are excluded in all these models.
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Table 3 Parameter estimates (95% CI), standard errors for intercept, race and comorbidity in general linear mixed model (GLMM†) for binary HbA1c using
sampling and random effects meta-regression, in for veterans with type 2 diabetes (2002-2006)

Simple random sample (SRS)

Parameter Sample (%) Intercept Non-hispanic black Hispanic Other 1 Comorbidity 2 Comorbidities 3+ Comorbidities

β (95% CI) 100 -0.94 (-0.98, -0.91) 0.62 (-0.02, -0.01) 0.45 (0.43, 0.48) 0.36 (0.35, 0.38) 0.07 (0.06, 0.08) 0.15 (0.13, 0.17) 0.27 (0.24, 0.29)

25 -1.93 (-2.17, -1.69) 1.27 (1.17, 1.37) 1.07 (0.93, 1.20) 0.87 (0.77, 0.97) 0.12 (0.05, 0.21) 0.19 (0.06, 0.31) 0.39 (0.19, 0.58)

10 -2.48 (-2.93, -2.04) 1.39 (1.20, 1.58) 1.27 (1.01, 1.53) 0.97 (0.78, 1.15) 0.16 (0.01, 0.31) 0.36 (0.14, 0.59) 0.44 (0.07, 0.80)

5 -2.16 (-2.87, -1.45) 1.69 (1.40, 1.99) 1.10 (0.70, 1.50) 1.05 (0.75, 1.35) 0.39 (0.16, 0.62) 0.34 (0.09, 0.80) 0.33 (-0.24, 0.90)

SE 100 0.0182 0.0076 0.0105 0.0078 0.0053 0.0085 0.0125

25 0.1221 0.0514 0.0691 0.0512 0.0402 0.0621 0.3896

10 0.2269 0.0965 0.1308 0.0959 0.0748 0.1163 0.1858

5 0.3608 0.1505 0.2038 0.1520 0.1175 0.1821 0.2905

Stratified random sampling (StRS)

Parameter Sample (%) Intercept Non-Hispanic Black Hispanic Other 1 Comorbidity 2 Comorbidities 3+ Comorbidities

β (95% CI) 25 -1.83 (-2.07, -1.59) 1.25 (-0.01, 0.01) 0.90 (0.76, 1.03) 0.88 (0.78, 0.98) 0.10 (0.02, 0.18) 0.30 (0.17, 0.42) 0.75 (0.56, 0.94)

10 -2.34 (-2.78, -1.89) 1.47 (1.29, 1.66) 1.03 (0.78, 1.29) 1.00 (0.81, 1.19) 0.07 (-0.08, 0.21) 0.24 (0.02, 0.47) 0.69 (0.34, 1.05)

5 -2.65 (-3.35, -1.95) 1.44 (1.14, 1.74) 1.74 (1.34, 2.15) 1.10 (0.81, 1.40) 0.20 (-0.03, 0.43) 0.16 (-0.19, 0.52) 0.80 (0.22, 1.39)

SE 25 0.1209 0.0514 0.0690 0.0512 0.0401 0.0620 0.0984

10 0.2272 0.0955 0.1282 0.0949 0.0745 0.1154 0.1813

5 0.3561 0.1531 0.2060 0.1505 0.1175 0.1817 0.2984

Random effects meta-regression without VISN 13 & 14 (REMR)

Parameter** Sample (%) Intercept Non-Hispanic Black Hispanic Other 1 Comorbidity 2 Comorbidities 3+ Comorbidities

β (95% CI) 100 -0.93 (-0.99, -0.87) 0.58 (0.52, 0.64) 0.11 (0.05, 0.17) 0.32 (0.26, 0.38) 0.07 (0.01, 0.13) 0.14 (0.08, 0.20) 0.25 (0.19, 0.31)

†-Independent variables used in fitting the general linear mixed model using a binomial distribution with a logit link function were: linear time; race (non-Hispanic white reference, indicator variables); sex (female
reference); marital status (single reference), service disability percentage, residence status (urban/rural, rural reference), and number of comorbidities (1, 2, or 3+; none reference).
** Veteran Integrated Service Networks (VISNs) 13 and 14 are excluded in all these models.
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Figure 1 LMM parameter estimates and pooled 95% confidence bounds for random effects meta-regression (intercept, race) without
veteran integrated service networks (VISNs) 13 and 14. *- Independent variables used in fitting model were: linear time; race (non-Hispanic
white reference, indicator variables); sex (female reference); service disability percentage, marital status (single reference), residence status
(urban/rural, rural reference), VISN region (Northeast, Mid-Atlantic, South, Midwest, and West, South reference); and number of comorbidities
(1, 2, or 3+; none reference).
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models in StRS were smaller than those from SRS indi-
cating better fit. While not comparable with the others,
the weighted AIC/BIC values for REMR were the smal-
lest indicating better fit.
Additional results corresponding to the analysis of the

original full data such as the distribution of subjects in
each VISN (Additional file 1: Appendix Table S3), good-
ness of fit statistics (Additional file 1: Appendix Table
S4), how long each model took to fit (Additional file 1:
Appendix Table S5) and full covariate models
(Additional file 1: Appendix Tables S6 and S7) are in the
appendix. Additional file 1: Appendix Table S5 shows
that fitting LMM in R’s lme4 package required about 4
times longer time than SAS’s Proc MIXED. Also, while it
was not possible to fit GLMM in R, fitting GLMM in
Proc GLIMMIX took longer time than obtaining pooled
estimates of parameters via REMR.

Discussion and conclusion
Models with random effects are useful for patient level
inference just as marginal models are useful for popula-
tion level inference. However, for very large data sets, it



Figure 2 GLMM parameter estimates and pooled 95% confidence bounds for random effects meta-regression (intercept, race) without
veteran integrated service networks (VISNs) 13 and 14. *- Independent variables used in fitting model were: linear time; race (non-Hispanic
white reference, indicator variables); sex (female reference); service disability percentage, marital status (single reference), residence status
(urban/rural, rural reference), VISN region (Northeast, Mid-Atlantic, South, Midwest, and West, South reference); and number of comorbidities
(1, 2, or 3+; none reference).
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can be difficult to fit models with random effects using
commonly available statistical software such as SAS.
There are very few papers on this topic and the most re-
cent work involves a 2-stage Bayesian algorithm [12].
While their method has advantages, there are problems
when one needs to adjust for multiple covariates, and it
is not clear whether their approach will work in VLDS
settings as large as ours.
This study assesses and compares REMR to two sam-

pling based approaches using bootstrap simulation stud-
ies. Our results indicate that REMR provides parameter
estimates that are less likely to be biased with smaller
standard errors when the VISN level estimates are
homogenous. The sampling approaches also provide par-
ameter estimates that were equivalent to the full data
estimates except when the outcome variable was binary.
Thus, when the interest is to fit random effect models in
repeated measures data with very large sample size,
REMR may be used as a good alternative.
Some ad-hoc approaches can also be considered to

ameliorate the challenges with the double optimization
required when fitting GLMM to VLDS. For example,
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Figure 3 Akaike’s information criterion (AIC) and Bayesian Information Criterion (BIC) for LMM (top two) and GLMM (bottom two).
*- Independent variables used in fitting the model were: linear time; race (non-Hispanic white reference, indicator variables); sex (female
reference); service disability percentage, marital status (single reference), residence status (urban/rural, rural reference), VISN region (Northeast,
Mid-Atlantic, South, Midwest, and West, South reference); and number of comorbidities (1, 2, or 3+; none reference).

Gebregziabher et al. BMC Medical Research Methodology 2012, 12:163 Page 12 of 14
http://www.biomedcentral.com/1471-2288/12/163



Gebregziabher et al. BMC Medical Research Methodology 2012, 12:163 Page 13 of 14
http://www.biomedcentral.com/1471-2288/12/163
SAS Proc HPMIXED is developed to fit LMM to VLDS
and provides computational advantages over Proc Mixed
in certain situations. Also, sorting the data by variables
that need to be in the CLASS statement of Proc MIXED
or GLIMMIX, sorting by random effect subject identi-
fiers, may also alleviate the computational burden. How-
ever, all of these methods can often not overcome the
computational challenges with very large data sets, like
those mentioned in the introduction, which makes
REMR attractive.
One of the key problems with REMR is handling situa-

tions involving heterogeneous parameter estimates. For
example, Additional file 1: Appendix Figures S4 and S5
show the estimates for VISNs 13 and 14 which are
clearly outliers in the opposite direction. One approach
is to remove these outliers, as we did, and obtain un-
biased and efficient estimates. The estimates after re-
moving the VISNs with outliers are in Figures 1 and 2.
Another approach, illustrated in an extensive simulation
study by Morton et al. [41,41] is to incorporate import-
ant covariates at either the study or person level. How-
ever, despite the importance of including covariates, a
model that includes a covariate that is an aggregate of a
person-level characteristic rather than a study character-
istic may also produce biased results. The trade-off be-
tween the biases of incorporating an aggregated
covariate versus excluding it requires further explor-
ation. While Bayesian random effects meta regression
[10,50,51] may be is an alternative, it is not clear how
these methods will work for VLDSs and is a topic of fu-
ture work.
Our work demonstrates a variety of approaches that

may be used in analyses of VLDSs, especially when
observations are clustered such as in a longitudinal set-
ting. Our simulation results show that SRS and StRS
approaches appear to lead to reasonable parameter esti-
mates with Gaussian responses but may be biased when
responses are non-Gaussian (eg. Binary). REMR may be
an optimal strategy for both Gaussian and non-Gaussian
responses, especially when parameter estimates are
homogeneous across clusters.

Additional file

Additional file 1: Additional tables and figures that show results for
the full model that includes all the covariates under several
scenarios are in the appendix. Another set of tables that include the
1% scenario and REMR results that include VISNs 13 and 14 are in the
Appendix. SAS Macro for the procedures we implemented to analyze
SRS, StRS and REMR are also available in our website.
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