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Abstract

Background: The DerSimonian and Laird approach (DL) is widely used for random effects meta-analysis, but this
often results in inappropriate type | error rates. The method described by Hartung, Knapp, Sidik and Jonkman (HKSJ)
is known to perform better when trials of similar size are combined. However evidence in realistic situations, where
one trial might be much larger than the other trials, is lacking. We aimed to evaluate the relative performance of
the DL and HKSJ methods when studies of different sizes are combined and to develop a simple method to
convert DL results to HKSJ results.

Methods: We evaluated the performance of the HKSJ versus DL approach in simulated meta-analyses of 2-20 trials
with varying sample sizes and between-study heterogeneity, and allowing trials to have various sizes, e.g. 25% of
the trials being 10-times larger than the smaller trials. We also compared the number of “positive” (statistically
significant at p < 0.05) findings using empirical data of recent meta-analyses with > = 3 studies of interventions
from the Cochrane Database of Systematic Reviews.

Results: The simulations showed that the HKSJ method consistently resulted in more adequate error rates than
the DL method. When the significance level was 5%, the HKSJ error rates at most doubled, whereas for DL they
could be over 30%. DL, and, far less so, HKSJ had more inflated error rates when the combined studies had
unequal sizes and between-study heterogeneity. The empirical data from 689 meta-analyses showed that 25.1%
of the significant findings for the DL method were non-significant with the HKSJ method. DL results can be easily
converted into HKSJ results.

Conclusions: Our simulations showed that the HKSJ method consistently results in more adequate error rates
than the DL method, especially when the number of studies is small, and can easily be applied routinely in
meta-analyses. Even with the HKSJ method, extra caution is needed when there are = <5 studies of very unequal sizes.
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Background

The commonly used method for a random effects meta-
analysis is the DerSimonian and Laird approach (DL
method) [1]. It is used by popular statistical programs for
meta-analysis, such as Review Manager (RevMan [2]) and
Comprehensive Meta-analysis [3]. However, it is well
known that the method is suboptimal and may lead to too
many statistically significant results when the number of
studies is small and there is moderate or substantial
heterogeneity [4-10]. If a treatment is inefficacious and
testing is done at a significance level of 0.05, the error rate
should be 5%, i.e. only one in 20 tests should result in a
statistically significant result. For the DL method, the error
rate can be substantially higher, unless the number of
studies is large (> 20) and there is no or only minimal
heterogeneity [4-10].

Given this deficiency, alternative methods for random
effects meta-analysis have been proposed. In particular,
the method described by Hartung and Knapp [4-6] and
by Sidik and Jonkman [11,12] (HKS] method) is claimed
to be simple and robust [13]. Simulations have shown
that the HKS] method performs better than DL, espe-
cially when there is heterogeneity and the number of
studies in the meta-analysis is small [4-14]. This means
that for most meta-analyses the HKS] method might be
more appropriate than the conventional DL method. In
a sample of 22453 meta-analyses, Davey et al. show that
the number of studies in a meta-analysis is often rela-
tively small, with a median of 3 studies (Q1-Q3: 2-6),
and only 1% of meta-analyses containing 28 studies or
more [15]. Some detectable heterogeneity is present in
about half of meta-analyses of clinical studies [15-18].

Based on earlier results that showed that the results of
a single large trial were unreliable [19], we hypothesized
that the meta-analyses methods, including HKS]J, would
perform less adequately when the meta-analysis is carried
out on a mixture of very unequal-sized studies, e.g. one
large and several small trials. Such a situation is not un-
common. In a random sample of 186 systematic reviews
of the Cochrane Database [18] the ratio between large and
small trial sizes ranged between 1 and 1650, with a median
of 5 and an interquartile range from 3 to 10. Sixty per cent
of the reviews contained no large trials, but 40% had one
trial that was at least twice as large as the median trial size,
25% had one trial that was at least five times larger, and
10% had one trial that was even 10 times larger.

Although several simulations have shown that the
HKSJ method performs better than the DL method, the
focus in these studies was not on a systematic evaluation
of the effects of specific trial size mixtures in combin-
ation with low trial numbers. They either only reported
the overall results of various mixtures combined or they
studied only a limited number of combinations. In order
to investigate the impact of unequal study sizes, we used
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simulations, mimicking such realistic conditions rather
than situations where trials have implausibly similar
sample sizes. We focused on meta-analyses with small
numbers of studies (up to 20) with a dichotomous out-
come (odds ratio, relative risk) or a continuous outcome.
To mimic the variation in trial sizes, we explicitly varied
the sample sizes of the trials within the simulated meta-
analyses, varying from scenarios where all trials in a
meta-analysis were of equal size, to scenarios with only
one large trial, 10 times as large as the other trials, or
one small trial, 10 times smaller than the other trials.

In order to complement the simulations, empirical
data, based on recent meta-analyses - added or updated
in 2012 - from the Cochrane Database of Systematic Re-
views (CDSR) of interventions were used to assess the
number of nominally statistically significant findings
(with p < 0.05) of both methods in practice. This allows
to examine whether inferences would be very different
based on these two models.

Currently not all standard software packages like Review
Manager provide an option to perform an HKS]J analysis,
although the HKS]J method is computationally not compli-
cated and the importance of suitable methods for meta-
analyses with small numbers of trials is apparent. Version
3.0 of Comprehensive Meta-analysis [3] will contain the
HKS]J method (personal communication by Julio Sdnchez-
Meca, September 2013). Also the R package metafor [20]
and the metareg command in Stata [21] include the HKS]
method. However, not everybody will be acquainted with
the use of R or Stata. Moreover, use of these packages is
not straightforward when a post-hoc conversion is desired,
i.e. when the results of a DL random effects analysis must
be converted to the HKS]J approach. In order to fill this
gap, we show step by step how the HKSJ analysis can be
performed without the use of these packages, when the re-
sults of a common random effects (DL) meta-analysis are
available, e.g. from a systematic review. This conversion is
applicable for continuous outcomes and for outcomes
where metrics are log-transformed, like the risk ratio (RR),
odds ratio (OR), hazard ratio (HR) or Poisson rate. This
simple modification of the common random effects ana-
lysis will improve the summary results, and it can be done
through some basic calculations or a few statements in
Excel. An Excel file is available as Additional file 1 web
material. R code for the metafor package is provided in
Appendix 3.

The simulations, the selection of empirical data and
the statistical analysis are described in the Methods sec-
tion. In the Results section the error rates for the DL
and HKSJ methods for several realistic simulated scenar-
ios are provided. For the Cochrane meta-analyses, we
present the number of nominally statistically significant
findings with the DL and HKSJ methods. The conversion
of DL results into HKSJ results is illustrated, including
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examples from systematic reviews as presented in the
Cochrane Library.

Methods

We used simulated data as well as empirical data of the
Cochrane 2012 Issues to evaluate the DL and HKS]J
approaches. The pooled effect estimate is equal for both
approaches, but the methods differ with respect to the
calculation of the confidence interval and the statistical
test. For DL, these are based on the normal distribution,
whereas for the HKSJ] method, they are based on the
t-distribution with the degrees of freedom equal to the
number of trials minus one, and a weighted version of
the DL standard error. Detailed statistical methods are
presented in Appendix 1.

Methods - simulations
Our first aim was to investigate the error rates of the
HKS]J meta-analysis method in comparison to the com-
mon (DL) method for various realistic scenarios, i.e.
combinations of study sizes, study size mixtures and
heterogeneity in series of just a few trials. Therefore we
simulated series of trials with two up to 20 studies,
where each series provided the data for one meta-
analysis. First, we considered series that consisted of
equally sized trials, each with two groups of 25, 50, 100,
250, 500 or 1000 subjects. Second, we looked into series
of trials with different trial sizes, i.e. the percentage of
large trials was 25%, 50% or 75%, e.g. a series of one
large trial and three small trials. Average group sizes
were 100, 250, 500 or 1000 subjects, and the large trials
had 10 times more subjects than the small trials. For
example, a series of six small (normal) and two large
trials, with an average group size of 100, has group sizes
of 31 and 308 in the small and large trials, respectively.
Third, we simulated extreme scenarios, in which a series
had only small trials, except for one large one, or only
large trials, except for one small one. Both continuous
and dichotomous outcomes were evaluated. For con-
tinuous outcomes, a normally distributed overall mean
difference between the group means was simulated. In
the trials with a dichotomous outcome, the event rates
in the groups varied between scenarios and ranged from
0.1 to 0.9, in steps of 0.2. The heterogeneity was superim-
posed and set at I> =0, 0.25, 0.50, 0.75 and 0.9. I* repre-
sents the heterogeneity, i.e. the degree of inconsistency in
the studies’ results, in comparison to the total amount of
variation [16,22]. The levels correspond to no, low, mod-
erate, high and very high heterogeneity, respectively [16].
Our aim was to evaluate the error rate, i.e. the percen-
tage of statistically significant meta-analyses when the
overall mean treatment difference was zero. Hence we
simulated series with an overall treatment difference
equal to zero and performed on each series a DL [1] and
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an HKSJ [11] random effects meta-analysis. The two-
sided significance level was 0.05. For each scenario, we
simulated 10,000 series of trials. In the ideal situation,
5% of the 10,000 meta-analyses should have a statisti-
cally significant result when the significance level is 0.05.
For the scenarios with the dichotomous outcome we
determined the error rate when the OR was evaluated
(logistic model) and when the RR was estimated. In these
cases, meta-analysis was done on the logarithmic scale,
and the error rates were determined for OR =1 or RR = 1.
More details can be found in Appendices 1 and 2.

Methods - empirical data from the 2012 Cochrane
Database of Systematic Reviews

Cochrane Reviews are systematic reviews of primary
research in human health care and health policy, and are
internationally recognised as the highest standard in
evidence-based health care [23]. The aim of the Cochrane
collaboration is to provide accessible and credible evi-
dence to guide decision making in medicine and public
health. We were very fortunate that the UK Cochrane
Editorial Unit provided us with the statistical data added
to the CDSR in 2012, which allowed us to assess the num-
ber of statistically significant results in real data.

Many Cochrane reviews include multiple meta-analyses.
Many of those overlap or are based on correlated data.
Usually, the first analysis is the primary analysis. Hence,
we decided to use per review only the first meta-analysis
that was based on at least three studies. In order to
maximize the number of meta-analyses, we used both the
first continuous and the first binary outcome meta-
analysis, whenever possible. Thus some systematic reviews
provided none, and some provided one or two meta-
analyses for our research. We always performed a random
effects meta-analysis, even when the authors originally
performed a fixed-effects analysis. Details can be found in
Appendix 1.

It is impossible to determine which of the Cochrane
reviews compared treatments that truly had equal efficacy.
It is thus unknown which of the statistically significant
results were in fact false positive findings, so we could not
determine the false positive error rate. Hence we decided
to present the total number of significant findings of the
DL and HKSJ methods instead of the error rates. This
provides an indication of the impact a change from DL to
HKSJ would have in practice.

Results

Error rates for continuous outcomes

The left side of Figure 1 shows the error rates for the
DL method for the simulated mixtures of trial sizes. In
general with unequal-sized trials, the type I error of DL
was substantially inflated even with minimal hetero-
geneity, while with equal-sized trials minimal or modest
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Figure 1 DerSimonian-Laird and Hartung-Knapp-Sidik-Jonkman error rates for continuous outcomes, for various 1> and mixtures of
trial sizes. Legend: A: Equally sized trials; B: One small trial, 1/10th of other trials; C: 50-50 small and large trials (ratio 1:10); D: one large trial

(10 times larger than other trials). Vertical bars refer to the minimum and maximum error rates over the group sizes. The lines connect the means
of these error rates. DL: DerSimonian-Laird meta-analysis method. HKSJ: Hartung-Knapp-Sidik-Jonkman meta-analysis method.
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heterogeneity did not inflate the type I error substan-
tially. Figure 1A shows the error rates for a setting with
studies of equal size, Figure 1B for one small trial, Figure 1C
for equal numbers of large and small trials, and Figure 1D
for a setting with one large trial, 10 times as large as the
other trials. The heterogeneity levels are I* =0, 0.25, 0.5,
0.75 and 0.9, and the average study group sizes range be-
tween 25 and 1000. Vertical bars refer to the minimum and
maximum error rates over the group sizes. The lines con-
nect the means of these error rates. The error rates should
all have been 5% (0.05), but for I>>0.25, DL error rates
were too large, even for series of 20 trials. For example, DL
error rates for meta-analyses of five studies ranged between
5.7% for equally sized trials and 14.7% for mixtures of trial
sizes (Table 1). In contrast, the error rates were too low
(about 3-4%) when the I*> was 0. DL results for other, less
extreme, mixtures of trial sizes were in between the results
shown.

In Figure 1 on the right side results for the HKS]
approach are presented. For equal trial sizes, the error
rates of the HKSJ method were very appropriate. When
the series contained only one small trial, the HKS]J error
rates were approximately correct if the series consisted
of more than five studies (Figure 1B). For series contain-
ing fewer trials, the error rates were higher, but not as
high as the respective DL values. They were also too
high when the percentage of small trials increased
(Figure 1C). When there was only one large trial, the
HKSJ error rates sometimes almost doubled (Figure 1D).
When there was no heterogeneity, HKS]J error rates were
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roughly 5%. As expected, the group sizes had no impact
on the error rates.

Figure 1 shows that the HKS] method always outper-
formed the common random effects DL method. The
HKS]J error rate was usually roughly 5%. However, some
mixtures of sizes, especially when there is only one large
trial, lead to a doubling of the error rate to 10%. This oc-
curred especially when heterogeneity was only moderate.

Error rates for risk ratio outcomes

The results of the simulations for studies with a risk
ratio outcome were quite similar to the error rates for
the continuous outcomes, but there was more variation
in the error rates: they depended on the group sizes and
the risks (from 0.1 to 0.9). For low heterogeneity (I* =
0.25), the DL error rates ranged from 2.2% to 15.5%,
whereas the HKS]J rates were slightly better: 2.8—10.6%.
However for I = 0.9 the DL rates ranged from 6.4% to
33.7%, compared to HKS]J rates of 2.7% to 10.2%. When
there was no heterogeneity (1= 0), the DL error rates
ranged between 0.9% and 4.3%, and the HKS]J rates be-
tween 2.1% and 6.9%. For odds ratios, the results were
again quite similar. See Table 1 for a selection of results,
and the Additional file 2: Figure S1 and Additional file 3:
Figure S2.

Empirical results for CDSR 2012

Selection of the first meta-analyses in the systematic re-
views added in 2012 to the CDSR and based on at least
three studies resulted in 689 meta-analyses (255 meta-

Table 1 Minimum and maximum error rates of DerSimonian-Laird and Hartung-Knapp-Sidik-Jonkman methods for

mixtures of trial sizes

Outcome No of Equally sized One small trial 50-50 One large trial
1? trials DL HKSJ DL HKSJ DL HKSJ DL HKSJ
Continuous 0 2-20 34-46 45-6 34-45 47-54 3.3-4.1 46-54 3.2-44 45-5.7
0.25-0.9 2 6-25 4.7-54 13.8-309 6.5-9.2 13.8-309 6.5-9.2 13.8-309 6.5-9.2
3 59-175 47-56 10.8-21.7 6-8 10.2-20.8 59-77 13.7-22.1 7.1-10.7
4 56-14.2 45-55 9-16.8 56-7 11.9-184 6.6-9.6 126-17.3 59-105
5 57-12.7 4.7-55 82-136 55-6.7 9.9-14.7 56-79 11.6-145 53-99
10 56-88 48-56 64-88 5-56 9-10.3 54-72 85-10 53-88
20 56-6.6 46-53 5.8-7.1 48-55 71-78 5-64 69-7.8 49-7.2
Risk ratio 0 2-20 09-4.2 2.1-69 2.8-4.1 27-65 3.0-4.1 27-638 2.7-43 27-55
0.25-0.9 2 25-263 28-6.7 14.3-33.7 6-10.2 14.3-33.7 6-10.2 14.3-33.7 6-10.2
5 25-129 39-5.7 79-15 55-72 9.8-157 52-79 114-142 52-106
10 26-89 27-54 6-9.7 38-5.7 86-11 4.8-9.1 73-10.1 36-8.7
Odds ratio 0 2-20 1.3-43 2.7-6.1 3-4 3-6.7 3-4 3-6.7 29-4.1 3-54
0.25-09 2 29-253 32-59 13.7-335 6.1-9.6 13.7-335 6.1-9.6 13.7-335 6.1-9.6
5 3-12.7 39-53 79-144 54-69 99-15.8 53-8.1 11.6-14.2 5.2-105
10 29-88 32-53 57-96 3.9-57 84-11.7 48-93 74-10.1 3.8-88

Error rates for the following scenarios: equally sized trials; one small trial, 1/10th of other trials; 50-50% small and large trials (ratio 1:10); one large trial (10 times
larger than other trials). No of trials: number of trials. DL: DerSimonian & Laird meta-analysis method. HKSJ: Hartung-Knapp-Sidik-Jonkman meta-analysis method.
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analyses with a continuous outcome and 434 meta-
analyses with a dichotomous outcome).

The continuous outcome meta-analyses were based on
a median of five trials (Q1-Q3: 3—-9) with a median ratio
between the largest and the smallest trial of 5 (Q1-Q3:
3-10). Using the DL method, 130 (51.0%) of the 255
meta-analyses were nominally statistically significant
compared to 102 (40.0%) when the HKS] method was
used (Table 2). Of the 130 meta-analyses that were
significant with the DL method, 31 (23.8%) were not
significant with the HKS] method, while three meta-
analyses were significant with the HKS] method but
not with the DL method. In the selection of meta-
analyses based on at most five studies and with large
ratios between the study sizes (ratio >5) 13 (59.1%) of
the 22 meta-analyses significant with the DL method
were not significant with the HKSJ method and none of
the meta-analyses was only significant with the HKS]
method.

The 434 dichotomous meta-analyses were based on a
median of six trials (Q1-Q3: 4-10) with a median ratio
between the largest and the smallest trial of 6 (Q1-Q3:
3-16). Of the 434 meta-analyses, 185 (42.6%) were nom-
inally statistically significant with DL and 147 (33.9%)
with HKSJ (Table 2). Of the 185 meta-analyses that were
significant with the DL method, 48 (25.9%) were not
significant with the HKS] method, while the opposite
scenario was seen in 10 cases. In the selection of small
meta-analyses with large ratios between the study sizes
14 (50.0%) of the 28 meta-analyses significant with the
DL method were not significant with the HKS] method,
while the opposite scenario occurred once.

Summarizing, the DL method resulted in statistically
significant results in 315/689 (45.7%) of the meta-analyses;
79 of these 315 “positive” DL results (25.1%) were not
significant with the HKSJ method, while the opposite
scenario (significant only by HKS]J) was rarely seen (14
meta-analyses). In the selection of small meta-analyses
(< = 5 studies) with large ratios between the study sizes
(ratio > 5), the difference between the DL and HKS]J re-
sults was even larger.
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Easy method for the conversion of DL into HKSJ results
We present two examples to illustrate how DL results
can be used to carry out an HKSJ analysis, resulting in
HKS]J-confidence intervals and p-values. An Excel file is
available as Additional file 1 (web material). The results
can also be created with R, Appendix 3.

Example 1: conversion to HKSJ for a continuous outcome
The first three columns of Table 3 show the results of a
meta-analysis on the effect of zinc for the treatment of a
common cold, published in a Cochrane review [24]. The
outcome was severity of cold symptoms scoring, and
was based on a total of 513 participants. The first col-
umn shows the identifiers of the studies, the second col-
umn the results y; of the individual studies and the third
column contains the weights w; from the DL analysis,
copied from the review. Only these three columns are
needed for the post-hoc calculations.
The following steps carry out an HKSJ analysis:

1. Determination of the standard error:

a. Based on the overall summary difference
y =-0.39, calculate the HKS] factors
Wi><(yi~y)2 for each of the studies
(see the fifth column for the results).

b. Add the HKS]J factors and divide them
by the sum of the weights. This results
in 20.31/100 = 0.2031.

c. Divide by k-1, whereby £ is the number
of studies. In this situation k=5 and
0.2031/4 = 0.0508. This is the weighted
variance of the pooled treatment effect
according to the HKSJ approach.

d. Taking the square root leads to the standard
error: SE = V0.0508 = 0.225.

2. Determination of the 95% confidence interval (CI):
a. To determine the half-width of the 95% CI,
the SE must be multiplied with the
97.5%-quantile of the t-distribution with
k - 1 degrees of freedom. Its value can be
obtained through Excel: TINV(0.05, k-1),

Table 2 Number (%) of statistically significant Cochrane meta-analyses according to the DerSimonian-Laird and

Hartung-Knapp-Sidik-Jonkman methods

Outcome Selected meta-analyses N DL test significant ~ HKSJ test significant ~ HKSJ test not significant, positive DL test
Continuous All 255 130 (51.0) 102 (40.0) 31/130 (23.8)

Ratio > 5, < = 5 studies 46 22 (47.8) 13 (28.3) 13/22 (59.1)
Dichotomous Al 434 185 (42.6) 147 (33.9) 48/185 (25.9)

Ratio > 5, < = 5 studies 76 28 (36.8) 15 (19.7) 14/28 (50.0)

All: all meta-analyses with a continuous or dichotomous outcome that fulfilled the following criteria: the first meta-analysis in a review in the Cochrane Database
for Systematic Reviews Issues of 2012, based on at least three studies. Ratio >5, < = 5 studies: a selection of these meta-analyses based on at most five studies,
where the ratio of the largest vs. the smallest trial size was > 5. DL: DerSimonian & Laird meta-analysis method. HKSJ: Hartung-Knapp-Sidik-Jonkman meta-analysis
method. DL test significant: DL p-value <0.05; HKSJ test significant: HKSJ p-value < 0.05. Note that in a few cases the HKSJ test was significant when the DL test

was not.
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Table 3 Conversion of DerSimonian-Laird results into Hartung-Knapp-Sidik-Jonkman results for a continuous outcome:

severity of cold symptoms

DerSimonian and Laird results

Calculations for Hartung-Knapp- Sidik-Jonkman

Study Study results SMD y; Weights w; vi-yf w; X (yryF
Kurugol 2006a -0.04 240 0.1225 2.94
Kurugol 2007 -0.07 222 0.1024 227
Petrus 1998 -0.31 21.3 0.0064 0.14
Prasad 2000 -1.36 15.5 0.9409 14.58
Prasad 2008 -0.54 17.0 0.0225 0.38
y=-039 Sum: 100.0 Sum: 20.31

5 studies, I° = 75.0%, 7° =0.13

DL pooled result [95% ClJ: SMD = —0.39 [-0.77, -0.02]; z = 2.05; P-value = 0.04
HKSJ pooled result [95% Cl]: SMD = —0.39 [-1.02, 0.24]; t = 1.73; P-value = 0.16 (df = 4)

SMD: Standardized mean difference. DL: DerSimonian & Laird meta-analysis method. HKSJ: Hartung-Knapp-Sidik-Jonkman meta-analysis method. CI: Confidence
Interval, df: degrees of freedom, x: multiplication sign. The pooled effect y and the weights w; originate from the DL random-effects analysis.

where k is the number of studies. This results
in 2.78, so the half-width of the 95% CI is
2.78%0.225 = 0.63. The t-value can also be
found on the internet, for example at http://www.
danielsoper.com/statcalc3/calc.aspx?id=10.
The quantiles of the t-distribution can be found
through statistical packages as well. In SPSS:
select ‘compute variable, function group
‘Inverse DF, function IDF.T(.975,k-1),
or in SAS: tinv(.975,k-1).

b. The HKS] 95% CI then is y + half-width of the CI,
i.e. -0.39 + 0.63 or [-1.02; 0.24].

3. Determination of the p-value:

a. Calculate the t-statistic: t = y/SE = -0.39/
0.225 = -1.73. If the result is negative, as in this
situation, simply change the sign, so t = 1.73.

b. Determine the corresponding two-sided
p-value with Excel: TDIST(1.73,4,2), or
with the internet site http://www.danielsoper.
com/statcalc3/calc.aspx?id=8. The two-sided
P-value according to the HKS] method
then is 0.16.
This p-value can also be obtained through
SPSS: ‘compute variable, function group
‘CDF & noncentral CDF, function ‘CDE.T".
This yields CDF.T(1.73, 4), similar to SAS,
cdf(‘T; 1.73, 4) = 0.92066. The two-sided HKS]
p-value then is 2x(1-0.92066) ~0.16.

In this example on the efficacy of zinc, based on only
five trials and high heterogeneity (I*=75%), the results
of the DL and HKSJ analyses differ substantially.

Example 2: conversion to HKSJ for outcomes that require a
log transformation

When the outcome of the meta-analysis is a risk ratio
(RR), odds ratio (OR), hazard ratio (HR) or Poisson rate,

the analysis has to be conducted on the natural loga-
rithm (In) of the treatment effect. In all other aspects
the procedure is exactly the same as for a continuous
outcome. As an example we show the overall survival
for post-remission therapy for adult acute lymphoblastic
leukemia, comparing patients with and without a donor,
as presented in a Cochrane Review [25]. The first three
columns of Table 4 show the results of a meta-analysis
with the HR as outcome.

1. Determination of the standard error:

a. Calculate the natural logarithm of the
pooled estimate: In(y) = In(0.86) = -0.15.
Calculate the natural logarithms of the
study outcomes (column 4) and use
these to calculate the HKSJ factors
wix(In(y)-In(y))? for each of the studies
(column 6).

b. Add the HKS]J factors and divide them
by the sum of the weights. This leads to
1.99/100 = 0.0199.

c. As there are 10 studies, divide by k-1 =9:
0.0199/9 = 0.0022.

d. Taking the square root leads to the standard
error: SE = v0.0022 = 0.047.

2. Determination of the 95% CI:

a. On the In scale, the half-width of the
95% CI is TINV(0.05, 9) x 0.047 = 2.26 x 0.047 =
0.106 (Excel).

b. The 95% CI for the In HR is —-0.15 + 0.106, i.e.
[-0.26; -0.04].

c¢. The HKSJ 95% CI for the HR is [e %% ¢*04],
ie. [0.77; 0.96].

3. Determination of the p-value:

a. Calculate the t-statistic: t = In(y)/SE = -0.15/
0.047 = -3.19. Neglecting the negative sign,
we obtain t = 3.19.


http://www.danielsoper.com/statcalc3/calc.aspx?id=10
http://www.danielsoper.com/statcalc3/calc.aspx?id=10
http://www.danielsoper.com/statcalc3/calc.aspx?id=8
http://www.danielsoper.com/statcalc3/calc.aspx?id=8
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Table 4 Conversion of DerSimonian-Laird results into Hartung-Knapp-Sidik-Jonkman results for a logarithm based

outcome: hazard ratios

DerSimonian and Laird results

Calculations for Hartung-Knapp-Sidik Jonkman

Study Study results HR y; Weights w; In(y;) (In(y;)-In(y))? w;x(In(y;)-In(y))?
Cornelissen 2009 0.81 5.0 -0.21 0.00 0.02
De Witte 1994 0.67 2.1 -0.40 0.06 0.13
Fielding 2009 0.80 115 -022 0.01 0.06
Goldstone 2008 091 46.7 -0.09 0.00 0.15
Hunault 2004 056 29 —0.58 0.18 0.53
Labar 2004 0.98 9.3 -0.02 0.02 0.16
Ribera 2005 124 39 022 0.13 0.52
Sebban 1994 0.75 12.7 -0.29 0.02 024
Takeuchi 2002 0.95 39 -0.05 0.01 0.04
Ueda 1998 0.66 20 -042 0.07 0.14
y=0.86 Sum: 100.0 Sum: 1.99

10 studies, 1> = 0.0, T = 00.

DL pooled result [95% Cl]: HR = 0.86 [0.77, 0.97]; z = —2.48; P-value = 0.013.

HKSJ pooled result [95% ClJ: HR = 0.86 [0.77, 0.96]; t = —3.19; P-value = 0.011 (df = 9).

HR: Hazard Ratio for donor versus no-donor; In: natural logarithm; DL: DerSimonian & Laird meta-analysis method. HKSJ: Hartung-Knapp-Sidik-Jonkman meta-analysis
method. Cl: Confidence Interval, df: degrees of freedom, x: multiplication sign. The pooled effect y and the weights w; originate from the DL random-effects analysis on

log scale.

b. Use Excel, Internet or a statistical package to
calculate the two-sided p-value according
to the HKS] method, see Example 1.
Excel: p-value = TDIST(3.19,9,2) = 0.011;
SPSS: CDE.T(3.19, 9) = 0.995, so that the
p-value is 2x(1-0.995) = 0.011.

In this example, results of the DL and HKSJ analyses
hardly differ.

Discussion

The DL approach to random effects meta-analysis is still
the standard method, almost to the exclusion of all other
methods. This might be considered remarkable, bearing
in mind the high false positive rates of the DL method
which have been shown repeatedly with simulations
[4-14] and also an empirical study suggesting that results
are sensitive to the choice of random effects analysis
method [26]. Thorlund et al. did an empirical assessment
in 920 Cochrane primary outcome meta-analyses of > = 3
studies of method-related discrepancies [26]. In total, 326
(35.4%) meta-analyses were statistically significant when
the analysis was based on a t-distribution — as in the HKS]
method — and 414 (45%) when it was based on the normal
distribution as in the DL method. Our evaluation of
Cochrane meta-analyses of interventions resulted in a
similar result: a substantially larger amount of significant
findings with the DL method than with the HKS] method.
Our simulations suggest that among the DL significant

findings in the Cochrane reviews there may be a consider-
able number of false positives.

DL results can easily be converted into HKSJ results,
which have a much better performance. We confirmed
this with simulations, for mixtures of trial size distribu-
tions in settings with up to 20 trials per meta-analysis.
When there was heterogeneity, the mean error rates of
the DL approach were consistently higher than those of
the HKS]J approach, although also the latter doubled to
10% in scenarios with only one large trial. When there
was no heterogeneity, the DL error rates were lower
than 5%, and the HKSJ rates were approximately 5%.

However, there are some limitations with respect to the
HKS] analysis method. Although the error rates of the
HKSJ method were closer to the 5% level than those of
the DL method, our simulations showed that in some
scenarios the HKS]J error rates more or less doubled,
although the DL error rates could be more than four times
too high in these same settings. Hence, the results of the
HKS]J analysis are also not perfect. Like we hypothesized,
the error rates were maximal if one of the trials in the
meta-analysis was substantially larger than the other ones.

Further, when study numbers are small, the distribu-
tion of the treatment effects is unknown and does not
necessarily follow the normal or t-distribution. Konto-
pantelis and Reeves [27] showed that with slight hetero-
geneity the coverage of the HKS] method was
consistently 94% when the true effects were not distrib-
uted according to the normal or t-distribution, but with
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larger heterogeneity the non-parametric permutation
(PE) method of Follmann and Proschan [7] performed
better than the HKSJ] method. However, the PE method
can only be performed when the number of studies is
larger than five, whereas many meta-analyses are
smaller [15]. Several other methods have been devel-
oped, like the Quantile Approximation (QA) method
[28], the Profile Likelihood approach [29], natural
weighting instead of empirically based weighting of
studies [30], use of fixed effects estimates with a ran-
dom effects approach to heterogeneity [31] and more
recently, higher-order likelihood inference methods
[32]. However, most of these methods are based on
asymptotic statistics and they may therefore be less ro-
bust in case of a limited number of trials, or they re-
main difficult to use in practice, because no statistical
packages are available to perform them and it is very
difficult to carry out the calculations with standard
software. Regarding the non-asymptotic, computation-
ally straightforward QA method, Sanchez-Meca and
Marin-Martinez [13] have already shown that it was
outperformed by the HKSJ method. It would require a
very extensive evaluation to investigate the perform-
ance of all of these methods. We restricted ourselves to
the HKSJ method, because of its computational simpli-
city and we show that HKSJ results can easily be de-
rived from DL results.

As far as we know, we are the first to present sys-
tematically the error rates in relation to explicit trial
size mixtures when the numbers of trials range from
2 to 20. Follmann and Proschan [7] show that for
certain trial size mixtures and low numbers of trials
the DL error rates can be highly increased, however,
they did not evaluate the HKSJ method. The results
reported by Hartung, Knapp and Makambi [4-6,8,9]
imply that for meta-analyses of three, six or twelve
studies the DL error rates for studies with similar
sizes were closer to 5% than for studies of different
sizes, and that the HKSJ] method performed much
better than DL in the latter situation. However they
did not report the explicit relationship between the
trial size mixtures and error rates as we do (Table 1).
Sdnchez-Meca and Marin-Martinez [13] also varied
the sample size ratios in their simulations. They con-
cluded that the average sample size scarcely affected
the performance of the different methods, but this
was based on the combined results of 5-100 studies
and they presented no results of particular trial size
mixtures.

As all studies show that in settings with few studies
the HKS] method always resulted in error rates closer
to 5% than the DL method, the latter method should
not be used and the HKSJ] method should be the stand-
ard approach. To facilitate its more widespread
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application, the conversion of DL results into HKS]J re-
sults is presented step by step. At the same time, we
urge caution when any random effects model, includ-
ing HKS]J, is applied to situations where there are very
few studies, and even more so when the sample sizes of
the combined studies are very different. Even the HKS]
confidence intervals may be conservatively narrow in
these situations and inferences may be spurious, if the
confidence intervals are taken at face value.

Conclusions

Our simulations showed that the HKS] method for
random effects meta-analysis consistently results in more
adequate error rates than the common DL method,
especially when the number of studies is small. The HKS]
method can easily be applied routinely in meta-
analyses. However, even with the HKS] method, extra
caution is needed when there are = < 5 studies of
very unequal sizes.

Appendix 1: Statistical details

Random effects meta-analysis model

For k studies, let the random variable y; be the effect size
estimate from the i™ study. The random effect model
can be defined as follows:

y,»=6l-+ei

for i =1, ..., k where §;=9 +d; e; and d; independent,
e;~N(0, €) and d;,~N(0,7°).€? is the within-study
variance, describing the extent of estimation error of J;
and the parameter 7° represents the heterogeneity of the
effect size between the studies.

For studies with dichotomous outcomes where no
events were observed in one or both arms, the computa-
tion of the random effects model yields a computational
error. In these cases, before performing any meta-

analysis, we added 0.5 to all cells of such a study.

Random effects analysis
Let w; be the fixed effects weights, i.e. the inverse of the
within-study variance €?, and let j, be the fixed effects
estimate of 0.

Let Q be the heterogeneity statistic Q = Zwi (y~5)%.
Then

72 = max <O Q_(k-1) )
Zwi—Zwl.z/Zwi

. . . 2
is an estimate of the variance 1°.
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The random effects estimate for the average effect size

dis
G, = Zwiryi
DY
w;
where
1
T __
w] = r e

The DerSimonian and Laird method estimates the
variance of j, by

1
P
and uses the normal distribution to derive P-values and
confidence intervals.

In contrast, the Hartung, Knapp, Sidik and Jonkman
method estimates the variance of y, by

ZWtT (yi_jlr)z
(k-1)S_w!

and uses the t-distribution with k-1 degrees of freedom
to derive P-values and confidence intervals, with k the
number of studies in the meta-analysis.

varpy =

Varggsy =

Heterogeneity estimates
Although 72 or Q can be used as measures of the
heterogeneity, Higgins and Thompson [16] propose

Q-(k-1)
Q

I? is a relative measure. It compares the variation due
to heterogeneity (°) to the total amount of variation in
a ‘typical’ study (z° +€°), where € is the standard error of
a typical study of the review [33]:

I’ =

2
2 T

r= —— 1
-[2 + 82 ( )

Appendix 2: The simulations

The parameters in the scenarios for the simulations

— The number of trials per series k = 2 — 20;

— The average group size in a series of trials: 25, 50,
100, 250, 500 or 1000 subjects per group per trial;

— The trial size mixtures: we simulated series with 25,
50 or 75% large trials, series with exactly one large
or one small trial, and series where all trials were of
equal size;

— The ratio of the study sizes: for the series with
small and large studies, the large study was 10
times the size of a small study.
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The simulations were programmed in SAS, version
9.2. The scenarios were evaluated 10,000 times, for het-
erogeneity levels I> = 0, 0.25, 0.5, 0.75, and 0.9, and at a
nominal significance level a = 0.05 (two-sided).

A. The simulation for normally distributed outcomes

1. For each scenario, and each value of P, we used eq.
(1) to calculate the variance 12 So

12
2 2
T =& —FF
1-?

(2)

where & =1 Zzn—”z, with 7; the groupsize of
trial i (i = 1...k) and o the standard deviation of the
outcome variable of the trials. As ¢ is only a scaling
factor and the results only depend on the ratio 7/,
we have set o = 1 in the simulations.

2. For each trial i:

a. We determined the ‘true’ trial effect size J;,
where §; was a random draw from
the normal distribution with mean
0 and variance 7°.

b. We generated the trial outcome based on a
normal distribution with mean §; and
variance 26%/n; = 2/n;.

c. We generated the variance of the trial outcome
based on a y* distribution with 2n;-2 degrees
of freedom, divided by n;-1.

3. For each series:

A DerSimonian and Laird analysis and an HKS]J analysis

were carried out.

4. For each scenario, I° and each meta-analysis
method, we calculated the error rate, i.e. the
percentage of series that had a statistically
significant (p<0.05) outcome.

B. The simulations for the odds ratio

1. When the outcome was dichotomous, we had to
choose an additional parameter: the overall event
rate py. We varied the p, between 0.1 and 0.9 and
for each value we used (2) to calculate 72, with

1 1 2 2
2—_ —_— R
‘ k Z”i <F0+1—P0)

2. For each trial i:

a. We determined the ‘true’ trial effect size
In(odds ratio;) = §;, where §; was a random
draw from the normal distribution with
mean 0 and variance 1.

b. We calculated the event rates p, and p,, in
the two groups, such that: In(p, /(1-p,)) =
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Table 5 R output for first example (Hartung-Knapp-Sidik-
Jonkman method)

Estimate SE t-value p-value CILLB CLUB

Routput -03938 02254 -17473 01555 -1.0195 02319

Relevant part from output from R package metafor. SE: standard error; CL.LB: lower
bound of 95% confidence interval; CL.UB: upper bound of 95% confidence interval.

In(po /(1-po)) - 8i/2, and In(py, /(1-pp)) =
In(po /(1-po)) + 8i/2.

c. We generated the observed event rates P, and P,
in each group based on Bernouilli distributions
with event rates p, and p,, respectively.

d. Based on P, and P, we calculated the natural
log of the odds ratio and its variance
(1/P, +1/(1- P,) +1/P, +1/(1- P)/n,.

Steps 3 and 4 were the same as for a continuous
outcome.

C. The simulations for the risk ratio
The risk ratio simulation was similar to the odds ratio
simulation, but the variance was different:

211 (20
eszni ) 2.

Furthermore, for each trial:

a. We determined the ‘true’ trial risk ratio
In(risk ratio;) = §; , where §; was a random
draw from the normal distribution with
mean 0 and variance 1.

b. We calculated the event rates p, and p,, in
the two groups, such that:

In(p,) = In(py) - 6;/2 and In(py) = In(pg) + 6i/2. Event
rates below 0.01 or above 0.99 were replaced by 0.01 or
0.99, respectively.

c. We generated the observed event rates P, and P, in
each group based on Bernouilli distributions with
event rates p, and p,, respectively.

d. This led to the natural log of the risk ratio and its
variance (1/P, +1/P;, - 2)/n;.
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Appendix 3: R code for the conversion of DL to
HKSJ results

The R package metafor [20] can also be used to per-
form an HKSJ analysis. The implementation is based on
the meta-regression paper by Knapp and Hartung [34]:
when no covariates or moderator variables are used,
the meta-regression reduces to a random effects meta-
analysis as proposed by Hartung/Knapp and Sidik/
Jonkman.

The usual approach to perform an HKS] analysis
with metafor is based on study effects combined with
fixed effects weights or standard errors. In our exam-
ples the HKSJ] method must be applied on random ef-
fects weights instead of fixed effects weights. This can
be done by choosing a fixed effects analysis (meth-
0d=“FE”) in combination with the HKSJ] method. This
will result in warnings, because in general the HKS]
adjustment is not meant to be used in combination
with a fixed effects analysis. In this case, the warnings
can be neglected. The code is kindly provided by G
Knapp.

Code for HKSJ conversion in R
library(metafor)

First example

y <- ¢(-0.04, -0.07, -0.31, -1.36, -0.54)

w <— c( 24.0, 22.2, 21.3, 15.5, 17.0)

rma.uni(y, vi = 1/w, method="FE", knha=TRUE)
Output is presented in Table 5.

Second example (In HR)

y <- ¢(0.81, 0.67, 0.80, 0.91, 0.56, 0.98, 1.24, 0.75, 0.95,
0.66)

w <-¢(5.0, 2.1, 11.5, 46.7, 2.9, 9.3, 3.9, 12.7, 3.9, 2.0)

# meta-analysis on log scale (In HR). Note the brackets
around the following syntax!

(hr <= rma.uni(log(y), vi=1/w, method="FE", knha=TRUE))
# backtransformation:

exp(hr$b)

exp(c(hr$cilb, hr$ci.ub)) (Table 6).

Table 6 R output for second example (Hartung-Knapp-Sidik-Jonkman method)

Estimate (HR) SE t-value p-value Cl.LB Cl.UB
R output —0.1458 0.0470 —3.1031 00127 —0.2521 —0.0395
After back-transformation 0.8643 0.7772 0.9613

Relevant part from output from R package metafor. HR: hazard ratio; SE: standard error; CL.LB: lower bound of 95% confidence interval; CL.UB: upper bound of 95%

confidence interval.
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Additional files

Additional file 1: Excel template for the conversion of DL to HKSJ
results (Web material).

Additional file 2: Figure S1. DerSimonian-Laird and Hartung-Knapp-
Sidik-Jonkman error rates for Risk Ratios, for various I and mixtures of trial
sizes. A: Equally sized trials; B: One small trial, 1/10™ of other trials; C:
50-50 small and large trials (ratio 1:10); D: one large trial (10 times larger
than other trials). Vertical bars refer to the minimum and maximum error
rates over the group sizes. The lines connect the means of these error rates.
DL: DerSimonian & Laird meta-analysis method. SJ: Hartung-Knapp-Sidik-
Jonkman meta-analysis method.

Additional file 3: Figure S2. DerSimonian-Laird and Hartung-Knapp-
Sidik-Jonkman error rates for Odds Ratios, for various I* and mixtures of
trial sizes. A: Equally sized trials; B: One small trial, 1/10™ of other trials;

C: 50-50 small and large trials (ratio 1:10); D: one large trial (10 times larger
than other trials). Vertical bars refer to the minimum and maximum error
rates over the group sizes. The lines connect the means of these error rates.
DL: DerSimonian & Laird meta-analysis method. HKSJ: Hartung-Knapp-Sidik-
Jonkman meta-analysis method.
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