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Abstract

Background: Measures of attributable risk are an integral part of epidemiological analyses, particularly when aimed
at the planning and evaluation of public health interventions. However, the current definition of such measures does
not consider any temporal relationships between exposure and risk. In this contribution, we propose extended
definitions of attributable risk within the framework of distributed lag non-linear models, an approach recently
proposed for modelling delayed associations in either linear or non-linear exposure-response associations.

Methods: We classify versions of attributable number and fraction expressed using either a forward or backward
perspective. The former specifies the future burden due to a given exposure event, while the latter summarizes the
current burden due to the set of exposure events experienced in the past. In addition, we illustrate how the
components related to sub-ranges of the exposure can be separated.

Results: We apply these methods for estimating the mortality risk attributable to outdoor temperature in two cities,
London and Rome, using time series data for the periods 1993–2006 and 1992–2010, respectively. The analysis
provides estimates of the overall mortality burden attributable to temperature, and then computes the components
attributable to cold and heat and then mild and extreme temperatures.

Conclusions: These extended definitions of attributable risk account for the additional temporal dimension which
characterizes exposure-response associations, providing more appropriate attributable measures in the presence of
dependencies characterized by potentially complex temporal patterns.
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Background
Epidemiological studies usually rely on effect summaries
based on ratio measures, such as relative risk, odds ratio
or rate ratio, with the choice depending on the specific
study design [1]. Although these measures are ideal for
summarizing the association of interest, they offer limited
information on the actual impact of the exposure. This
information is critical for the planning and evaluation of
public health interventions, and it is better provided by
relative excess measures such as the attributable fraction
(AF), or absolute excess measures such as the attributable
number (AN). Steenland and Armstrong offer a thorough
overview on the topic [2]. Here we generally refer to these
summaries as attributable risk measures.
Problems in the definition of these measures may arise

in the presence of delayed associations, occurring when
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an exposure generates a risk lasting well beyond the expo-
sure period. Researchers in different fields, during the last
thirty years, have proposed approaches for modelling this
type of association [3-6]. In time series analysis, a popu-
lar approach is based on distributed lag models (DLMs)
[7,8], generalized to distributed lag non-linear models
(DLNMs) when including non-linear exposure-response
associations [9,10]. Recently, the DLNM framework has
been extended beyond time series data for modelling such
dependencies, defined exposure-lag-response associations,
in different study designs [11]. However, attributable risk
measures have not been developed for the DLM and
DLNM class, with the result that their current definitions
do not take into account the additional temporal struc-
ture in the exposure-response association. Previous work
investigated the issue in time series analysis, although
without producing a general approach [12,13].
In this contribution, we extend this research and

attempt to formalize the definition of attributable risk
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measures within the DLNM modelling framework. In
particular, we illustrate how complex non-linear and
temporal patterns can be accounted for in the com-
putation of the attributable risk. Also, we show how
attributable components related to different exposure
ranges can be separated. We propose an example on
the estimation of the health burden attributable to tem-
perature with time series data, a problem which has
received quite a lot of interest recently due to climate
change predictions. However, the approach can be easily
applied to other exposure-lag-response associations. The
method is implemented in simple functions developed
within the R software package and provided as additional
files.

Methods
Attributable risk measures
A general definition of the attributable fraction AFx and
number ANx for a given exposure x can be provided by:

AFx = 1 − exp (−βx) , (1a)

ANx = n · AFx , (1b)

with n as the total number of cases. The parameter βx
used in Eq. (1a) represents the risk associated with the
exposure, and it usually corresponds to the logarithm
of a ratio measure such as relative risk, relative rate or
odds ratio. It is generally obtained from regression mod-
els while adjusting for potential confounders. The general
definition of βx used here refers to the association with
a specific exposure intensity x compared to a reference
value x0. For linear exposure-response relationships, the
association can also be reported as β · x, where in this
case β refer to a unit increase in x. For binary variables
reporting presence/absence of the exposure, Eq. (1a) sim-
plifies to AF = (RR − 1) /RR, with RR as relative risk, as
reported by Steenland and Armstrong [2]. We keep the
more general definition of βx, which is easily applicable to
non-linear exposure-response relationships, throughout
the manuscript.
The theoretical nature of these effect measures is based

on a counterfactual, where the observed condition is com-
pared with a reference state which never occurred. This
state postulates that the same population is followed in an
identical situation where only the exposure level changes
to the reference value x0. Typically, such a reference is rep-
resented by the absence of association, meaning x0 = 0
and βx0 = 0. However, different counterfactual conditions
can be used, for example a lower exposure which can be
determined by an intervention. In this case the quantity
βx can be simply re-parameterized as β∗

x = βx − βx0 , and
Eq. (1) still applies.

Eq. (1a) can be extended to define the risk attributable
to multiple exposures x1, . . . , xp:

AFx1,...,xp = 1−exp

(
−

p∑
i=1

βxi

)
= 1−

p∏
i=1

(
1 − AFxi

)
,

(2)

with ANx1,...,xp obtained by substituting Eq. (2) in Eq. (1b)
[2]. For the specific form of Eq. (2), it should be noted
that AFx1,...,xp ≤ AFx1 + . . . + AFxp, i.e. the sum of
the attributable risk measured for individual exposures is
usually higher than their concurrent attributable risk.

A review of the DLNMmodelling framework
The basic idea underpinning the development of DLNMs
is that the risk at time t can be described as the
weighted sum of effects cumulated from a series of expo-
sures xt−�0 , . . . , xt−L experienced in the past over the
lag period � = �0, . . . , L, with �0 and L corresponding
to minimum and maximum lags, respectively. The risk
can be described by the function f (x), determining the
exposure-response, and the function w(�), specifying the
lag-response, related to the weights given to exposures
at different lags �. These functions are combined in a
bi-dimensional exposure-lag-response function f ·w(x, �).
Algebraically, the risk is defined by a function s(x, t; η),
written in terms of parameters η as:

s(x, t; η) =
∫ L

�0
f ·w(xt−�, �) d�

≈
L∑

�=�0

f ·w(xt−�, �) = wT
x,tη . (3)

The function s(x, t) is computed as the approximate
integral of the exposure-lag-response function over the lag
dimension, representing the cumulated risk over the lag
period. The parameterization in the final step of Eq. (3)
is obtained through a cross-basis, involving a tensor prod-
uct between the basis chosen for f (x) and w(�), generating
the transformed variables wx,t linearly combined with the
parameters η. Simpler DLMs are defined by Eq. (3) by
assuming f (x) as linear. Algebraic details and additional
information are provided elsewhere [11]. The cross-basis
is specified with a reference value x0 used later as a cen-
tering point for the function f (x), which is used to define
the counterfactual condition.
The complex parameterization of exposure-lag-response

associations provided by Eq. (3) can be more easily inter-
preted by computing effect summaries from the original
parameters η. Specifically, the bi-dimensional exposure-
lag-response risk surface modelled through f ·w(x, �) can
be expressed by a grid of effect summaries βx,�, each inter-
preted as the association with an exposure x at lag � versus
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the reference value x0. For a given time t, the cross-basis
parameterization in (3) can be re-expressed as:

wT
x,tη =

L∑
�=�0

βxt−�,� . (4)

This overall cumulative association is composed of the
sum of contributions βx,� from exposures xt−�0 , . . . , xt−L
experienced within the lag period. Algebraic definitions
have been previously provided [11].

Forward and backward perspectives
The term βx,� for each intensity x can be interpreted using
two complementary perspectives, illustrated graphically
in Figure 1. From a forward standpoint, looking from
current exposure to future risks, the terms βx,� are the
contributions from the exposure xt occurring at time t to
the risk at times t+�0, . . . , t+L, identified by green circles.
From a backward standpoint, looking from current risk to
past exposures, the terms βx,� are the contributions to the
risk at time t from exposures xt−�0 , . . . , xt−L experienced
at t−�0, . . . , t−L, identified by yellow squares. The under-
lying curve in Figure 1 depicting such associations is called
the lag-response curve related to a given exposure inten-
sity x. The sum of these contributions over the whole lag
period can be interpreted as the overall cumulative risk.

Attributable risk from DLNMs
The effect summaries provided above can be used for
defining attributable risk measures within the DLNM
framework. The idea is to treat the associations with expo-
sures at different lags as independent contributions to the
risk. A neat definition can be developed using a backward
perspective, assuming the risk at time t as attributable
to a series of exposure events in the past. The backward

attributable fraction b-AFx,t and number b-ANx,t at time
t are obtained by substituting Eq. (4) in Eq. (2):

b-AFx,t = 1 − exp

⎛
⎝−

L∑
�=�0

βxt−�,�

⎞
⎠ , (5a)

b-ANx,t = b-AFx,t · nt , (5b)

with nt as the number of cases at time t. This structure is
consistent with the configuration of the regression model
usually applied to fit the data, where the risk at time t is
associated with lagged exposures at times t − �. The def-
inition of backward attributable risk requires an extended
version of the counterfactual condition accounting for the
additional lag dimension: b-ANx,t and b-AFx,t are inter-
preted as the number of cases and the related fraction at
time t attributable to past exposures to x in the period
t − �0, . . . , t − L, compared to a constant exposure x0
throughout the same period.
An alternative version can be obtained using a forward

perspective. Among other possible definitions, forward
attributable number f-ANx,t and fraction f-AFx,t can be
defined as:

f-AFx,t = 1 − exp

⎛
⎝−

L∑
�=�0

βxt ,�

⎞
⎠ , (6a)

f-ANx,t = f-AFx,t ·
L∑

�=�0

nt+�

L − �0 + 1
. (6b)

This alternative version has some advantages if com-
pared to the backward definition. First, the counterfactual
condition is simpler: f-AFx,t and f-ANx,t are interpreted as
the fraction and number of future cases in the period t +
�0, . . . , t+L attributable to the single exposure x occurring

Figure 1 Conceptual model for the interpretation of exposure-lag-response associations: forward (left panel) and backward (right panel)
perspectives.
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at time t, compared to x0. Moreover, the overall cumula-
tive risk

∑
βxt ,� for a given exposure xt in (6a) is available

also when the bi-dimensional exposure-lag-response is
reduced to uni-dimensional exposure-response relation-
ship, a step often needed in multi-site studies [14]. In
contrast, all the lag-specific contributions are needed to
compute

∑
βxt−�,� in (5a) for the backward counterpart.

However, the forward version also has an important
limitation, related to the fact that the contributions are
associated to risks measured at different times. The
attributable number f-ANx,t in (6b) is computed by aver-
aging the total counts experienced in the next �0, . . . , L
times, thus only approximating the lag structure of risks.
This approximation is likely to produce some bias, which
is expected as an underestimation of the attributable num-
ber if compared to the backward version.

Separating attributable components
The definitions provided in Eq. (5)–(6) can be extended
to separate the attributable components related to spe-
cific exposures or exposure ranges. This will be used later
in the example to single out the contributions from cold
and heat in temperature-health associations. Let’s define a
range r =[ l, h] between low and high exposure limits l and
h. The definition of forward attributable number f-ANr

x,t
and fraction f-AFrx,t limited to exposures within the range
r is clear-cut, as they are either equal to the quantities
reported in Eq. (6) if x ∈ r or zero otherwise. Adopting a
backward perspective, a similar definition of b-AFrx,t can
be obtained by modifying Eq. (5a) as:

b-AFrx,t = 1 − exp

⎛
⎝−

L∑
�=�0

I (xt−� ∈ r) βxt−�,�

⎞
⎠ , (7)

simply selecting the risk contributions from past expo-
sures included in the range r. The related attributable
number b-ANr

x,t is computed by substituting Eq. (7) into
Eq. (5b). Attributable components referring to different
ranges can be summed up, as all are defined using the
same counterfactual condition of a constant exposure
x� = x0 for the whole lag period � = �0, . . . , L.
The forward version has the additional advantage that

for two non-overlapping ranges r1 and r2 the sum of
the components is equal to the overall attributable risk,
namely f-AFr1+r2

x,t = f-AFr1x,t+f-AFr2x,t . In contrast, adopting
a backward perspective b-AFr1+r2

x,t ≤ b-AFr1x,t + b-AFr2x,t , as
the risks are simultaneously computed for the same time t
in the like of Eq. (2).

Total attributable risk
The attributable risk measures provided above can be
computed for each of the i = 1, . . . ,m observations in

a data set. An estimate of the total attributable number
ANtot and fraction AFtot is provided by:

ANtot =
m∑
i=1

ANx,ti , (8a)

AFtot = ANtot/
m∑
i=1

nti . (8b)

The equations above can be applied either to forward or
backward attributable risk and to separate components,
simply substituting the related attributable numbers in
Eq. (8a).

Computing uncertainty intervals
Analytical formulae for confidence intervals of attri-
butable risk measures are not easily produced [15], and
this also applies to the extended versions developed here.
Although approximated estimators have been proposed
[15,16], in this context the most straightforward approach
is to rely on interval estimation obtained empirically
through Monte Carlo simulations [17,18]. Basically, we
take random samples η(j) of the original parameters η

of the cross-basis in Eq. (3) from the assumed multi-
variate normal distribution with point estimate η̂ and
(co)variance matrix V (η̂) derived from the regression
model. These samples η(j) are used to compute β

(j)
x,� for � =

�0, . . . , L and each intensity x, empirically reconstructing
the distributions of the attributable measures defined in
Eq. (5)–(8). The related 2.5th and 97.5th percentiles of such
distributions are interpreted as 95% empirical confidence
intervals (eCI).

Results
The methods illustrated in the previous section are
applied to estimate the all-cause mortality risk attributable
to temperature, using daily time series from two cities,
London and Rome, in the periods 1993-2006 and 1992-
2010 respectively. R scripts and data implementing the
method and partly replicating the results are provided as
Additional files 1, 2, 3, 4, 5 and 6.

Modelling strategy
We fitted a standard time series Poisson model allowing
for overdispersion, controlling for seasonal and long term
trends and day of the week, using a 10 df/year spline and
indicator variables, respectively. Model selection is still an
issue of current research within the DLNM framework,
although simulation studies indicate a good performance
of methods based on the Akaike Information criterion
(AIC) [11]. Considering the illustrative purpose of the
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example, we selected a-priori the cross-basis function in
Eq. (3) for representing the association between mean
daily temperature andmortality, basing our choice on pre-
vious analyses. Specifically, the cross-basis is composed
of a quadratic B-spline with two equally-spaced knots as
the exposure-response function f (x), and a natural cubic
B-spline with three equally-spaced knots in the log-scale
as the lag-response function w(�) over lags 0–25.
In the specific case of temperature where a null expo-

sure condition cannot be defined, a reasonable choice is
to center the cross-basis in Eq. (3) to the temperature of
minimum risk, as suggested in previous publications [13].
This optimal temperature corresponds to 20°C and 21°C
for London and Rome respectively, and it represents the
reference point x0 for the computation of the attributable
risk measures. These are obtained for the whole temper-
ature range, and then for cold and heat contributions by
separating the associations with temperatures lower or
higher than x0. In addition, the attributable components
are separated further in mild and extreme cold and heat
by selecting as cut-off values the 1st and 99th percentiles
of city-specific distributions, corresponding to 0.4°C and
23.7°C in London and 2.6°C and 28.6°C in Rome.
We derived empirical confidence intervals for backward

total attributable numbers and fractions, computed over-
all and for separated components, by simulating 5,000
samples from the assumed distribution of η̂.

Risk attributable to temperature
The estimated associations between temperature and all-
cause mortality in the two cities are illustrated in Figure 2.
The left panels show the bi-dimensional exposure-lag-
response surfaces, while the right panels display the over-
all cumulative exposure-response curves, interpreted as
the risk cumulated over the entire lag period of 0–25 days.
The associations are represented in the RR scale, with the
centering point and the cut-off values for defining extreme
cold and heat displayed as dotted and dashed vertical lines
respectively.
Table 1 reports the estimates of the total backward

and forward attributable fraction b-AFtot and f-AFtot ,
with 95%eCI. The backward version indicates that overall
13.59% and 12.58% deaths are attributable to temper-
ature in London and Rome within the study periods,
respectively. As expected, the corresponding estimates
computed forward are affected by a certain degree of neg-
ative bias associated to the averaging of future mortality
within the lag period, as described above. Nonetheless, the
difference is not substantial in this case.

Cold, heat and extreme components
The total backward attributable risk is then separated into
components due to cold and hot temperatures, defined as
those below and above the optimal temperature, respec-
tively. The estimates, computed using Eq. (7), are reported

Figure 2 Association between temperature and all-cause mortality. Left panels: 3-D graphs of the exposure-lag-response risk surface. Right
panels: overall cumulative exposure-response associations with temperature distributions. London 1993–2006 and Rome 1992–2010.
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Table 1 Total mortality fraction (%) attributable to temperature, computed backward (b-AFtot) and forward (f-AFtot),
reported as overall, hot and cold components with 95% empirical confidence intervals (eCI)

Deaths Overall Cold Hot

London 845,215
b-AFtot 13.59 (10.04–17.09) 12.95 (9.32–16.38) 0.66 (0.52–0.80)

f-AFtot 13.41 (9.72–16.87) 12.84 (9.38–16.33) 0.57 (0.45–0.68)

Rome 395,691
b-AFtot 12.58 (9.30–15.64) 10.84 (7.37–14.23) 1.74 (1.12–2.37)

f-AFtot 12.27 (8.94–15.41) 10.72 (7.19–14.00) 1.55 (0.95–2.13)

London 1993–2006 and Rome 1992–2010.

in Table 1. The comparison of the two contributions
clearly indicates that cold is responsible for most of the
mortality attributable to temperature, with b-AFtot equal
to 12.95% and 10.84%, compared to 0.66% and 1.74% for
heat, in the two cities. Estimates of forward attributable
risk are very similar, and as expected their sum is equal
to the overall burden, differently than for the backward
version.
The analysis is extended by further separating the

attributable components into contributions from mild
and extreme temperatures, with results summarized in
Table 2. For cold temperatures, the contribution from
extreme days accounts only for a minimal part of the
mortality burden, while still 12.38%–12.48% and 10.27%–
10.37% of deaths in London and Rome, respectively, are
attributable to mild cold days. This result is expected
when inspecting the right panels of Figure 2, with the def-
inition of mild cold including the majority of days in the
series for both cities.
In contrast, the comparison between the two cities is

rather different for the components attributable to mild
and extreme hot temperatures. In spite of the stronger risk
in London, the attributable fraction is similar for extreme
heat and even higher in Rome for mild heat (1.32%–
1.45% versus 0.25%–0.33%). This apparent contradiction
is explained by the different temperature distribution, and
in particular the percentile corresponding to the opti-
mal temperature, corresponding to 93.6th and 72.5th in
London and Rome. This result suggests the hypothesis
that the population in Rome is more adapted to the range
of temperatures corresponding to extreme hot if com-
pared to London, where the population experienced only
a few days of unusually high temperatures.

The harvesting paradox
Accounting for the additional lag dimension in exposure-
lag-response associations involves further complexities in
the interpretation of attributable risk measures. We now
focus our attention to the association with hot temper-
ature in Rome. The left panel of Figure 3 shows the
estimated lag-response curves at various temperatures,
computed versus the reference optimal temperatures of
21°C. The graph indicates a strong risk in the first lags,
then followed by a protective association at longer lags.
This pattern is consistent with the harvesting hypothesis,
which assumes that the initial risk is partly discounted by
the depletion of the pool of susceptible after an extreme
heat event [19]. Also, the extent of harvesting seems more
pronounced for extreme temperatures.
This phenomenon has interesting implications. An

example is offered by the right panel of Figure 3, illus-
trating the estimated daily deaths b-ANx,t and f-ANx,t
attributable to heat, computed backward and forward for
the first summer in the time series for Rome, with related
temperature trend. As expected, a substantial number of
deaths are attributable to temperatures above the opti-
mal value, represented by the horizontal dotted line, in
the period mid-July to mid-August. The trend of for-
ward attributable deaths f-ANx,t closely follows the daily
temperatures, consistently with the definition of num-
ber of deaths attributable to the temperature in day t
cumulated in the next L days. In contrast, the back-
ward attributable number b-ANx,t decreases to zero and
even becomes negative in late summer days, although
the overall cumulative exposure-response in Figure 2
(bottom-right panel) does not show a RR below 1 for any
temperature.

Table 2 Total mortality fraction (%) attributable to temperature, computed backward (b-AFtot) and forward (f-AFtot),
reported as components frommild and extreme hot and cold contributions with 95% empirical confidence intervals (eCI)

Extreme cold Mild cold Mild hot Extreme hot

London
b-AFtot 0.55 (0.45–0.64) 12.48 (8.86–15.88) 0.31 (0.23–0.38) 0.36 (0.29–0.43)

f-AFtot 0.47 (0.40–0.53) 12.38 (8.98–15.78) 0.29 (0.22–0.35) 0.28 (0.23–0.33)

Rome
b-AFtot 0.59 (0.47–0.70) 10.37 (6.88–13.63) 1.45 (0.89–2.01) 0.33 (0.25–0.40)

f-AFtot 0.47 (0.39–0.54) 10.27 (6.69–13.50) 1.32 (0.75–1.85) 0.25 (0.19–0.30)

London 1993–2006 and Rome 1992–2010.
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Figure 3 Lag structure and harvesting paradox. Left panel: lag-response associations between various temperatures and all-cause mortality.
Rome 1992–2010. Right panel: daily number of deaths attributable to heat, computed forward (green circles) and backward (yellow squares), and
temperature trend. Rome July-Sept 1992.

This paradox is explained by the counterfactual con-
dition associated with the backward perspective. Specif-
ically, each b-ANx,t compares the association with the
observed temperatures in the past L days to a constant
exposure x0. In the presence of harvesting, the observed
population becomes ‘healthier’ than the counterfactual
population after a series of heat days, due to the deple-
tion of the susceptible pool. This explains the negative
attributable numbers for specific combinations of lagged
exposures. This fact emphasises that harvesting should
not be interpreted as a true protective association at
longer lags, but rather as an artefact due to a change in
the underlying population following a stress, which affects
the counterfactual condition. This issue is relevant when
using backward attributable risk measures b-ANx,t and
b-AFx,t to assess the contribution of specific days. How-
ever, similarly to the net overall cumulative risk, the total
attributable number b-ANtot and fraction b-ANtot , pro-
duced by Eq. (8) and reported in Tables 1 and 2, account
for the discount by summing the contributions over the
whole series.

Discussion and conclusions
In this contribution we illustrate an extended definition
of attributable risk measures based on the DLNM frame-
work. Consistently with this class of models, such a def-
inition accounts for the complex pattern of potentially
non-linear and delayed associations described through
exposure-lag-response associations.
Two alternative definitions of attributable risk are pro-

posed, assuming backward or forward perspectives. The
former provides more consistent estimators which nat-
urally arise from the structure of the regression model,

where distributed lag terms at times t − � contributes to
the risk at time t. The forward attributable measures, in
contrast, are affected from a negative bias related to the
averaging of future counts, which nonetheless is likely to
be relatively low. On the other hand, the forward ver-
sion is well suited for separating the risk in components
attributable to different ranges, as their sum matches the
overall risk. Furthermore the forward perspective, looking
from current exposure to future risk, seems more appro-
priate for quantifying the health burden due to specific
exposure occurrences, as it is based on a more coher-
ent counterfactual condition. Corrections have been pro-
posed in previous works on risk attributable to multiple
exposures [20-22], and can be applied to the backward
version.
Strictly speaking, the definition given in Eq. 1a is

interpreted as the attributable fraction among the sub-
population of exposed subjects. In the setting of time
series analysis for environmental stressors, the whole pop-
ulation is usually considered as exposed, and this defini-
tion can be more generally interpreted as the population
attributable fraction. If only a subset is instead exposed,
Eq. (5)–(8) can be easily extended using the equations
proposed by Steenland and Armstrong [2] for population
attributable risk.
Previous papers suggested approaches for producing

attributable risk from distributed lag models when applied
to heat-mortality associations. Baccini and colleagues
applied DLMs and computed attributable risk measures,
specifically addressing the issue of harvesting [12]. Honda
and colleagues illustrated an analysis on the mortality
burden due to heat using DLNMs [13]. However both
approaches are limited, as the former assumes a linear
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threshold form of the exposure-response, while the latter
averages the non-linear risk across the whole temperature
range. In this paper we offer a formal and more consistent
definition of such attributable risk measures.
An advantage of the proposed method is the provision

of estimates for separate components of the attributable
risk, associated with different exposure ranges. In the spe-
cific case of temperature-health associations, this allows
the separation of attributable risks from cold and heat, and
further from mild and extreme temperatures. The esti-
mates reported in the example highlights how the simple
analysis of exposure-response curves can be misleading in
the attribution of risk, and thatmost of themortality in the
two cities is in fact attributable to mild cold temperatures,
in spite of the relatively low RR.
The availability of attributable risk measures, comple-

mentary to estimates of exposure-response associations,
is essential for the identification and planning of public
health interventions. Their extension to exposure-lag-
response associations allows the computation of such
measures from dependencies showing potentially com-
plex non-linear and temporal patterns.
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attributable risk measures.
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Additional file 3: R script for fitting the regression models in the
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