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Abstract
Background: All quantifications of mortality, morbidity, and other health measures involve
numerous sources of error. The routine quantification of random sampling error makes it easy to
forget that other sources of error can and should be quantified. When a quantification does not
involve sampling, error is almost never quantified and results are often reported in ways that
dramatically overstate their precision.

Discussion: We argue that the precision implicit in typical reporting is problematic and sketch
methods for quantifying the various sources of error, building up from simple examples that can be
solved analytically to more complex cases. There are straightforward ways to partially quantify the
uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting
reported significant figures. We present simple methods for doing such quantifications, and for
incorporating them into calculations. More complicated methods become necessary when multiple
sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using
available software, can estimate the uncertainty resulting from complicated calculations with many
sources of uncertainty. We apply the method to the current estimate of the annual incidence of
foodborne illness in the United States.

Summary: Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty
would more honestly represent study results, help show the probability that estimated values fall
within some critical range, and facilitate better targeting of further research.

Background
Most health statistics are reported with an explicit quanti-
fication of uncertainty because they are based on a sample
from a target population (possibly with random assign-
ment of treatments), and quantifying the resulting sto-
chastic error is done almost universally. Extrapolations
from samples are not, however, the only way to calculate
rates, totals, or other quantitative measures of health. The
availability of data may lead to an approach that does not
involve sampling or any other random process. For
example:

• Automobile fatality totals are typically computed with
an attempt to completely enumerate, counting every case.

• Two states might create a "natural experiment" by hav-
ing different traffic or safety regulations. Differences
between or ratios of frequencies of accidents or injuries
could then be computed by enumeration and arithmetic.

• Samples of convenience are extrapolated to the entire
population, such as trying to impute the U.S. incidence of
Escherichia coli O157:H7 infections based on data from
the few states that report good data. While this is a sample,
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the error comes not from random sampling error (which
would be quite small) but the other sources identified
below.

• To estimate the rate of a disease in a community, we fre-
quently reverse this process and interpolate from a
national average.

• Trends may be inferred from data that is believed to be
related to the measure of interest, but in unknown ways,
such as tracking the effect of economic changes on mental
health by tracking the number of calls to hotlines.

Observational studies and randomized trials almost
always quantify error due to random sampling and alloca-
tion. The realization, which was close to universal as long
as four decades ago, that health research results need to
include such quantification has helped reduce the fre-
quency of conclusions based on inadequate sample sizes.
However, the ease of quantifying that single source of
error has distracted researchers from the many other,
often larger, errors in any estimated quantity. Quantifica-
tion of the one source of error implies that this represents
all uncertainty. This implication grossly overstates preci-
sion by ignoring uncorrected confounding, selection
biases, measurement errors, and specification of func-
tional relationships.[1–4] This is especially clear when a
calculation does not involve sampling and, lacking the
one source of error that we commonly quantify, the num-
bers are reported as point estimates with no acknowledg-
ment of uncertainty at all. A complete lack of error
quantification implies the even more misleading claim
that the result is perfect. While some readers recognize the
inevitable uncertainty and guess at its magnitude, most do
not.

Two highly publicized recent examples illustrate this. The
death counts from the September 11 attacks on New York
were updated hourly, and reported to four significant fig-
ures (the exact count). But the reports from the first few
weeks turned out to be high by a factor of two, making it
quite clear that even the apparently precise counting of
fatalities from a single event can only be estimated within
a range of error. The vote count in Florida in the 2000 U.S.
presidential election involved complete enumeration.
People were shocked that there was so much uncertainty
– due to measurement and recording errors, among other
things – in what they imagined to be a flawless mechanis-
tic process. Few people understood that the results from
the various counts represented a statistical tie, and that
choosing which vote count was the "right" one was a mat-
ter of legalistic detail rather than scientific truth. (Note
that this considers only the votes as counted. The illegal
disenfranchisement of tens of thousands of eligible voters
– who would have almost certainly broken the tie –

reminds us that uncorrected systematic bias can have
much larger magnitude than the measured result.[5])

Analysis and discussion
Recently, methods have been developed to quantify the
combination of various random and systematic errors in
epidemiologic studies.[1–4,6–8] Simpler versions of
these methods can be used to quantify errors in estimates
that do not involve sampling. The following analysis dem-
onstrates how this can be done (and by implication, why
it should be done), for an increasingly complicated set of
examples.

A simple method for quantifying errors in simple statistics
A quick and easy way to avoid overstating precision is
appropriate rounding, as taught to high school science
students (and largely ignored in health science reports,
though a brief exposition of the point can be found in a
recent epidemiology textbook [[9], p.51]). This method is
rough (and thus not perfectly well-defined), but it is a
fairly effective shorthand: do not report significant digits
(i.e., digits other than place-holder zeros) beyond the
level of precision of your estimate. If your point estimate
for some value is 2.3456, but you think it is fairly likely
that the true value is lower or higher by as much as 5%,
only report 2.3. This can be interpreted as roughly, "we are
pretty sure the result is between 2.25 and 2.35, but cannot
be much more precise." Similarly, if your estimate is
87,654 but you know the measurement is only precise to
plus-or-minus five thousand, report 90,000.

The limits of this method are clear when you consider
what to report in the first example if you want to reflect
confidence of plus-or-minus 15%. Reporting 2.3 implies
a bit too much precision, but reporting 2 implies too little.
It usually makes sense to imply a bit too much precision
rather than too little (thus providing more information
about the point estimate), but we should stop at the min-
imum level of over-precision possible (2.3 in this case)
and not imply more precision still (e.g., by reporting
2.35).

Annual U.S. automobile accident fatalities are reported to
five figures (e.g., 41,611 for 1999 [10]), but when present-
ing this result for most purposes, it is better to report
42,000, roughly estimating the limitations of measure-
ment (e.g., some deaths should be counted as suicides or
were fatal cardiovascular events before the crash) and
record keeping (e.g., cases inadvertently recorded and
reported by two different jurisdictions).

Notwithstanding the lack of a perfect rule, it should be
clear when a result is presented with far too much preci-
sion, as is often the case. One of the most influential epi-
demiologic publications of recent years, Kernan et al.'s
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[11] study of phenylpropanolamine and stroke (that
resulted in that popular decongestant and diet aid being
removed from the U.S. market) reported one odds ratio of
15.92, even though one of the cell counts generating that
ratio (exposed noncases) was exactly 1, and thus it could
only be precise to about 1 part in 2, not 1 in 1000. (Con-
sider that if the cell count differed by the minimum possi-
ble, 1, the odds ratio would either be cut in half or
increased to infinity.) It is difficult to assess exactly what
impact this misleading claim of precision had on policy
makers and other readers, but we might suspect that it
contributed to the unwarranted confidence in the study's
findings.

If a more formal quantification of uncertainty is reported
– such as reporting "2.35 plus-or-minus 0.12" for the
above example – then the significant digits are no longer
the only reporting of uncertainty, and are not so impor-
tant. Nevertheless, if 2.3456 appears in a paper, there is a
risk that it will be repeated out of context in all its implicit
precision, without the +/-.12 clarification.

It should be noted that rounding to an appropriate
number of significant digits (or any other method in this
paper) does not create any imprecision; the imprecision
exists even if we do not accurately report it.

Improved quantification of errors in simple statistics
Eliminating implicit over-precision is an important step,
but ultimately our goal should be to report our estimates
as realistic ranges of true values by quantifying the sources
of error. The simplest case is when all but one of the
sources of uncertainty are inconsequential. (A source of
uncertainty is considered inconsequential when it is
enough smaller than other sources of uncertainty that it
can be ignored. The implications of this should become
clear as the concept is employed.) In such cases, a proba-
bility distribution for the one consequential uncertainty
can be reported and used in any calculation in place of the
point estimate.

The probability distribution for values of a quantitative
measure can be estimated from validation studies, ranges
of values observed across studies, or the best expert judg-
ment of the researchers. Any of these are likely to be better
than failing to quantify uncertainty, in effect saying "we
are not really sure whether the uncertainty is small or
large, so let's just call it zero." If we cannot even roughly
estimate how big the errors might be, then we are report-
ing a result that may not even remotely reflect the true
value. If we believe we are more certain than that, we
should be able to at least roughly quantify how certain we
are.[1,3] We may not be able to estimate the distribution
precisely, but even by estimating it roughly we can avoid

unwarranted claims about the precision of the point
estimate.

We propose that when statistics are reported, researchers
should estimate uncertainties in the inputs used to gener-
ate the statistics, calculate the combined results of those
uncertainties to arrive at the uncertainty of the final result,
and determine how to accurately and parsimoniously
report that uncertainty. The present discussion sketches a
method for the second of these steps and touches on the
third. The details of the methods for the first step, such as
validation studies, are beyond the present scope.

Example
A report presented to the public and policy makers states
that 2.76 percent of the people in a community have been
diagnosed with a certain disease during a one-year period,
based on active monitoring that identified 8650 people
diagnosed out of a community of 312,962. Because the
study method was a complete enumeration, there is no
random process, and thus no frequentist error statistics.
The resulting lack of a confidence interval means that no
statement of error accompanied the result. It is certain,
however, that there is still error. In particular, the research-
ers believe that 8650 is an undercount of as much as 20%,
due to the likely inability of the monitoring system to
detect all cases.

The total population of the community is also uncertain,
but this is inconsequential (by the above definition). If
reporting the figure in a final report, it would probably be
appropriate to report 313,000 rather than the six figures,
but this uncertainty is dwarfed by that of the numerator
(on the order of 1 part in 100 or even 1 in 1000, compared
to 1 in 10 for the numerator), and so can be ignored in the
calculation. Even setting aside the downward bias, the
precision implied by 2.76 percent – that we are fairly con-
fident that we know the true value to about 1 part in 100
– is unwarranted.

After further contemplation and examination of valida-
tion data, the researchers decide that their best estimate is
that the raw estimate is low by between 0 and 20 percent
of the estimated value, uniformly distributed. The process
by which they came to this conclusion – possibly involv-
ing a series of calculations based on the quality of moni-
toring, test sensitivity, etc. – is beyond the present scope.
One might dispute the implicit claim that there is no
chance of false positives, but it should be remembered
that uncertainty distributions are never going to be perfect
or beyond criticism. The researchers are simply of the
opinion that the number of false positives will, with
extremely high probability, be exceeded by the
undercount.
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(Rather than bundling these two sources of error into a
single distribution, using intuition that may or may not be
right, the researchers might have been better off reading
ahead and using one of the methods for combining mul-
tiple sources of uncertainty. Had they done so, they might
well have concluded that the misclassification error was
indeed dwarfed by the under-reporting, and returned to a
single quantification.)

The result of the researchers' uncertainty distribution is a
uniform distribution for the annual disease incidence
over the range [2.76%,3.32%]. How should this be
reported? One option is to report 3%, which, conven-
iently, is the rounded result for the entire range. It accu-
rately implies that our precision (with a known error of up
to 10% on either side of the mean) warrants only about
one significant figure. To provide more precision, the cer-
tainty interval containing 50% or 90% of the probability
mass could be reported. (Again, without implying too
much precision for the boundaries. An uncertainty distri-
bution should itself not be stated in an overly-precise
manner.) It is usually not a good idea to report the
extremes and imply that the corrected value certainly falls
between them. Extreme values can be misleading to the
reader. They are also very sensitive to the exact input dis-
tributions used, such as in the current example, where the
input distributions with zero probability beyond some
range are good estimates for most of the probability mass,
but they exclude extreme values that the researchers do
not actually believe have zero probability.

The choice and nature of subjective uncertainty 
distributions
A detailed assessment of what needs to be considered in
developing uncertainty distributions for inputs in this
kind of analysis is beyond the present scope, but it is
worth making a few comments to provide perspective and
help researchers get started. The uniform distribution in
the preceding example provides the easiest teaching exam-
ple, but is probably not realistic. Even interpreting it as an
approximation, it is unlikely that someone believes some
range of values are approximately equally likely, but a
value slightly outside that range is (approximately)
impossible.

Typically, we have a point estimate and think the true
value of the parameter is likely near it and the probability
drops off as we deviate in either direction. This describes
various distributions, including the normal, logistic, trian-
gular (where the probability density is unimodal, drop-
ping off linearly to zero in each direction, forming a
triangular density function), and others. The choice
among distribution shapes can be made largely based on
whether the researcher wants to allow values to trail off to
infinity or not and whether the distribution is symmetri-

cal. A triangular distribution, while seldom appearing in
nature, might effectively approximate someone's beliefs,
and has the advantage for pedagogic purposes of allowing
calculations using polynomial algebra. Normal and logis-
tic distributions are easy to work with using numerical
methods.

It turns out that the choice of the exact shape of the distri-
bution, after the rough magnitude of uncertainty has been
determined, is relatively unimportant. Estimates like
those presented here are fairly stable across unimodal dis-
tribution shapes, as long as the probability mass is sub-
stantially overlapping. (I.e., if two distributions have a
very similar range for the middle 50% of their probability
mass and also for the middle 90%, they will have very
similar implications in these uncertainty calculations.) It
should be remembered that the purpose of these methods
is to better represent uncertainty, and that goal is not well
served by claiming too much precision about the details
of the inputs and calculations.

The question of whether an input distribution corre-
sponds to something found in nature brings up a compli-
cated philosophy-of-statistics question: What exactly are
these probabilities? To give an abbreviated answer, they
are subjective probabilities that take into consideration all
of the researcher's knowledge, except the point estimate
for the parameter of interest they have calculated (in the
above example that would be the annual disease inci-
dence) and any prior beliefs about what the true value of
that parameter is. The subjectivity of this probability
should not be seen as surprising or regarded as a limita-
tion. All of scientific inquiry, from hypothesis generation
to study design to drawing conclusions, is a highly subjec-
tive and sociologic process. Furthermore, the alternative
to specifying such a distribution is to produce calculations
based on the assumption that there is zero uncertainty,
which is either a subjective belief itself or (more likely) is
strongly believed to be wrong.

The restriction that prior beliefs about the true value
should be excluded from the researchers' generation of the
input probabilities is a subtlety that relates to how we can
interpret the results and how the resulting uncertainty
would relate to random error if it were included in the cal-
culations. While it is not necessary to delve deeply into
Bayesian analysis to do the simple calculations proposed
in this paper (or to generally revise our thinking about
how certain most results are), a formal interpretation of
the quantified uncertainty of a result is that it is a Bayesian
posterior distribution based on a prior distribution (i.e.,
belief about the distribution before the research in
question) that assigns equal likelihood to all values in the
relevant range. To understand the importance of the prior
distribution, consider the possibility that one of the
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researchers in the previous example was very confident
that the actual incidence of the disease was above 3%. In
that case, upon seeing the results of the study, she would
not believe that the whole range was equally likely, but
instead would think the upper end of it was more likely
because her new beliefs would be based on a combination
of the study result and what she knew before.

The implicit assumption that all possible values were
equally likely (called a "flat prior") is problematic,
because a flat distribution across all possible values is
never realistic. The next step in improving these calcula-
tions should be to relax that assumption. However, the
problems inherent in the implicit assumption of a flat
prior (which makes the calculations much easier to per-
form and to understand) are reduced by a few factors.
First, the "relevant range" condition says that the prior
only needs to be flat across the range that contains most
of the probability mass resulting from the calculation
(e.g., in the above example, it would only have to be flat
across [2.76%,3.32%]). This means that the worst prob-
lem of a totally flat prior, that unrealistically extreme val-
ues have to be considered to be as likely as realistic values,
is absent. Furthermore, the intuition we as readers have
learned from years of interpreting point estimates and fre-
quentist confidence intervals is to, roughly, treat them as
calculations based on flat priors and then roughly incor-
porate them into whatever actual prior belief we have.
That is, if a study reports an estimate of 3 or some interval
around it, and we were previously quite sure that the true
value was 5 or more, the new evidence might push our
beliefs downward, but it is not going to replace them. This
is just as true if the interval is a standard confidence inter-
val (based only on random sampling error) or an uncer-
tainty quantification, and our practiced intuition will be
useful until these methods are advanced.

Increasing complexity
As the calculation of the point estimate becomes more
complicated, so does the uncertainty calculation. Multiple
sources of uncertainty need to be combined in the same
way as their underlying point estimates – additively, mul-
tiplicatively, or otherwise – as demonstrated in a further
example.

Example, continued
The researchers wish to extrapolate the frequency of dis-
ease from the study community to estimate the total cases
for the entire state, with a population of 10,456,000. A
naive way to introduce quantified uncertainty into the cal-
culation would be to treat the original study of 312,962
people as a random sample from a population of
10,456,000. The result could be quantified using the usual
frequentist statistical methods, with the result mislead-
ingly suggesting high precision (a 95% confidence inter-

val of (2.71,2.82)). But greater uncertainty is introduced
by the extrapolation of the results, which introduces
unknown levels of non-stochastic error. Perhaps the sam-
ple community was studied because it was particularly
convenient, because it was more urban or had a better
local health department, and so is different from the state
average.

The researchers do not know the specific amount of bias
for their estimate, but they recognize that there is likely
some bias. Their best estimate is that the actual rate for the
state is most likely within +/-10% of the sample commu-
nity, but it is plausible that the extrapolation is off by as
much as 25%. To fit these probabilities, the researchers
use a symmetrical triangular distribution from .75 to 1.25
of the point estimate (i.e., zero probability density at .75,
linearly increasing to the midpoint, 1.0, and linearly
decreasing to zero at 1.25). They could have chosen a nor-
mal distribution or various other similarly-shaped distri-
butions to represent these beliefs with similar outcomes.

This new source of error now combines with the original
underestimate to produce a probability density for the
total number of cases in the state. The additional uncer-
tainty from random sampling error is small and can be
ignored as inconsequential. Alternatively, the random
sampling error could be incorporated into the researchers'
subjective probability. (Objectively determinable stochas-
tic processes can be brought into the uncertainty calcula-
tion differently from subjective uncertainty, but this
introduces complexity that is left for future analyses. The
purpose of the present analysis is to consider cases where
sampling error is absent or is insignificant compared to
other sources of error.)

The density for a given final value, x, which results from a
calculation involving two uncertain values is the integral
across values of the two functions that produce x. In the
present case, this is relatively simple to calculate. The
probability distribution for the total number of cases in
the state is described by the continuous approximation:
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where the definition of g(t) describes the triangular distri-
bution and h(s) the uniform distribution, and k is the
scale factor to make f(x) a probability density function.
The continuous approximation is necessary not just for
computational convenience, but because the form of the
error distributions was continuous. Since our practical
interest is for ranges of values, and not the exact probabil-
ity for a given value, nothing is lost by this approximation.

For this distribution, the middle 90% of the probability
mass falls in the range 260,000 to 380,000. A normal dis-
tribution with a mean of 1.0 and a standard deviation of
.11 would also have represented the researchers' beliefs
about the bias from extrapolation, and would have
yielded the same interval (after rounding) for the middle
90% of the probability mass.

Solving this equation (and thus figuring out uncertainty
intervals) is easy. But adding much more complication
makes it unwieldy. A third layer of multiplicative uncer-
tainty would require a double integral over a more com-
plicated product, and so on. An uncertain input that
entered the equation other than by multiplying would be
more complicated still. Indeed, simply using the normal
distribution for the uncertainty from the extrapolation
would make this calculation considerably more compli-
cated. The implication is clear: with more than a few sim-
ple sources of uncertainty, closed-form (analytic)
calculation is not a practical method for quantifying it.

Estimating complex combinations of uncertainty
Any calculation with a large number of inputs is likely to
resist closed-form calculation of uncertainty and intuitive
statements about total uncertainty are likely to be worth-
less. ("Large," in this case, can mean as few as three or four
inputs if they all introduce uncertainty.) However, there
are tools developed in finance and engineering that can be
used to calculate uncertainty in such health research.

To estimate the probability density for parameters of
interest given multiple uncertain input values, we propose
using Monte Carlo (random number-based) numerical
methods as follows:

1. Probability distributions are specified for the inputs, as
presented above.

2. A random draw is made from each of those distribu-
tions, producing one set of possible true values. The calcu-
lation (the same one used to generate the point estimate)
is carried out for those values to produce a possible final
value of the estimate.

3. Step 2 is iterated a large number of times, producing a
new candidate value for each new set of random draws.

4. These values are recorded, and can then be used to cal-
culate the probability of the true value being in a particu-
lar interval or grouped into fixed-width intervals and
represented by a histogram that approximates the proba-
bility density function for the total uncertainty.

This approach takes a difficult problem and approximates
the answer by carrying out simple calculations a large
number of times. Since these simple calculations are the
ones that had to be constructed to get the point estimate
in the first place, a relatively small amount of extra effort
is required. Monte Carlo simulations of this sort are used
extensively for similar calculations of uncertainty in busi-
ness and engineering applications (often under the rubric
"risk analysis"), and so there is user-friendly off-the-shelf
software that does these calculations. (Further back-
ground in these applications is available, at the time of
writing, from the manufacturer of the software we used at
http://www.crystalball.com/risk-analysis-start.html.)
Extremely complicated Monte Carlo simulations are used
to model everything from nuclear explosions to biological
evolution, but the tools needed for present purposes are
usable by any competent quantitative researcher.

Monte Carlo uncertainty calculations have been proposed
for the errors in a typical epidemiologic study, [1–4,6,7]
which are much more complicated than the errors consid-
ered in the examples presented here. Such applications
involve complicated interactions of random error, selec-
tion bias, measurement error, and other sources of uncer-
tainty that compound in mathematically complicated
ways. For the straightforward adding and multiplying
used in the examples presented here, these calculations
are simple to program and do not require much computer
time.

Indeed, the biggest challenge for quantifying uncertainty
in these calculations – quantifying the various input
uncertainties – is partially ameliorated by the ease with
which different values can be run to produce sensitivity
analyses. While sensitivity analyses cannot determine
which values are better to use, they can point out which
ones matter enough to warrant more attention.

A Monte Carlo-based uncertainty calculation
As an example of a calculation combining many sources
of uncertainty, we use a simplified version of Mead et al.'s
frequently-quoted calculation of the incidence of food-
borne disease in the U.S.[12] (The present example, a
highly simplified version of the second author's master
thesis, [13] is intended primarily to illustrate the method
rather than explore the details of food safety data. Powell,
Ebel, and Schlosser have also conducted a Monte-Carlo-
based analysis of the uncertainty in some of Mead et al.'s
numbers.[14] An in-depth analysis of the uncertainty for
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a particular foodborne disease risk can be found in Vose
et al.[15])

Mead et al.'s calculation was based on literally hundreds
of input numbers, including:

• the U.S. rate of total gastrointestinal illness,

• foodborne illness case counts from passive surveillance
(data reported voluntarily from clinics) and outbreak
reports (health department investigations),

• case counts from active surveillance (attempts to enu-
merate every case) at five county- or state-level sites,

• several estimates of how many unobserved cases are rep-
resented by one observed case (in order to extrapolate
from data to true values),

• estimates of the fraction of cases of each disease that
should be attributed to food,

• several other extrapolations.

The need to understand and quantify uncertainty is obvi-
ous when we observe that Mead et al., despite the clearly
uncertain data and calculations, emphasized (in the
abstract and press releases) a result to two significant fig-
ures, 76 million U.S. cases per year, with no statement of
uncertainty or a plausible range of values. Widely quoted
in this form, this number implies that the experts are con-
fident that the result is not 75 million or 77 million, but
is somewhere between 75.5 and 76.5 million. After all,
they did not report 80 million, which would tend to imply
less precision. (Note a weakness of relying on significant
figures alone: If they had reported 75 million, it would
not have been clear whether they were rounding to the
nearest 1, 5, or 25 million. This would only become clear
if multiple numbers, all with the same rounding, were
reported.) The body of the Mead et al. paper actually con-
tains an estimate to ten significant figures. (Such overly
precise reporting could be justified in a paper if intended
to help the reader duplicate the calculations, rather than
as a conclusory statement. This is unlikely to be the expla-
nation in the present case, since their calculation is diffi-
cult to duplicate from the information given and this kind
of replication is not common in health research.)

Monte Carlo-based numerical methods allow us to esti-
mate the uncertainty for calculations as complicated as
Mead et al.'s. The complexity of their effort to use existing,
highly incomplete data to estimate U.S. foodborne dis-
ease incidence is illustrated by the spreadsheet we devel-
oped to duplicate their calculations, which includes over
200 numerical cells, more than 50 of which are inputs

from outside information. Even if we believe that the
analysis reflected science's best knowledge about these
values, we can be sure that such an estimate is not accurate
to better than 2%. But what more can we say about the
range of possible values?

To answer this, we examined the various inputs and the
certainty of their sources, and developed a model that
incorporated estimates for each source of uncertainty. For
the current example, we use a simplified version of the cal-
culation, reducing the list of 28 different diseases to the 3
that contributed the most to the total plus an "other" cat-
egory, and simplifying some of the multiplicative correc-
tion factors used in the original. The first example
presented here uses conservative uncertainty distributions
that are relatively small and mean-preserving (i.e., they
use the original Mead et al. point estimates as the distribu-
tion mean). Even with this optimistic level of uncertainty,
it is easy to see the need to avoid implying too much
precision.

The calculation is summarized in Table 1. It starts with
incidence rates of several diseases that are partially attrib-
utable to foodborne transmission. Two of the three major
contributors are based on incomplete samples from mon-
itoring efforts. They are multiplied by a factor of 38 to esti-
mate the total incidence. The total incidence of each
disease is then multiplied by an estimate of the portion of
cases that are foodborne. These figures are summed across
the diseases to get the incidence of foodborne illnesses
attributable to known pathogens. The total cases from
unknown sources is then calculated by estimating the
total cases of gastroenteritis in the U.S. and subtracting the
cases of known origins. To get the portion of these that are
attributable to foodborne pathogens, Mead et al. assumed
that the foodborne portion is the same as that for known
pathogens. This result is added to the incidence from
known pathogens to get a total.

Every one of these inputs introduces uncertainty. To
reflect this, we introduced the following distributions.
(Most of these distributions have some external basis.
However, this calculation should be seen primarily as a
demonstration of the methods for doing the analysis and
a rough estimate of the minimal uncertainty in Mead et
al.'s number, rather than a claim that these are the right
distributions.) For the total cases of each of the three iden-
tified diseases, the point estimate is replaced by a normal
distribution, with a mean of the point estimate and a
standard deviation of 10 percent of the point estimate. For
the 25 other pathogens, which each contributed a rela-
tively small portion of the total, we simply used the point
estimates because the uncertainty for each is inconsequen-
tial. (Assuming their errors are uncorrelated, they tend to
average out, leaving a relatively tight distribution of total
Page 7 of 10
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uncertainty. If one believes that inaccuracies in the esti-
mates of incidence rates are correlated across diseases, the
overall uncertainty would be greater.) For the multiplica-
tive factor used for two of those, we used a symmetrical tri-
angular distribution centered on the original 38, with a
range of (24,52).

For the percent of each disease attributable to food, we
used the point estimates for two of the pathogens because
they were fairly close to 100% (leaving little room for
error) and appeared to be reasonably solid estimates. The
remaining pathogen, Norwalk-like viruses, accounts for
most of the total cases and the fraction that are foodborne
is highly uncertain and far from either 0 or 100%, leaving
room for substantial variation. Not only does this percent-
age affect the estimated number of foodborne cases of that
disease, but it dominates the overall estimated percentage
of gastroenteritis cases attributed to food, and thus the
estimate for cases of unknown etiology. Given the large
impact of uncertainty in this input parameter, we conduct
a sensitivity analysis for its impact below. For the initial
example, we modeled the uncertainty as a uniform distri-
bution on [20%,60%], centered on the Mead et al. point
estimate of 40 percent.

For total cases of gastroenteritis, we used a normal distri-
bution with a mean of the original point estimate, and a
standard deviation of 20 percent of the original estimate.
To represent the uncertainty of the assumption that the
portion of gastroenteritis cases of unknown origin attrib-
utable to foodborne pathogens is the same as for cases of
known origin, we draw the portion of unknown cases
from a normal distribution around the portion of known

cases (after it is calculated, since it varies with each itera-
tion) with a standard deviation of 8 percentage points.

This example was constructed and calculated using a
Microsoft Excel spreadsheet and the off-the-shelf Monte
Carlo simulation package, Crystal Ball (Decisioneering
Inc., Denver, Colorado). We ran half a million iterations
of the model, producing the histogram in Figure 1 that
approximates the probability density for the total number
of cases that results from these input uncertainties. It
would overstate the quality of our estimates to interpret
this as providing precise probability estimates. But the
rough cut at estimating the total uncertainty is very
informative. Even with these relatively conservative esti-
mates of uncertainty, chances are about half that the real
total is outside the range of 50 million to 100 million.

Table 1: Simplified calculation of foodborne disease incidence.

Infectious Agent Estimated Total Cases Observed Cases Estimated %
 Foodborne Transmission

Foodborne Incidence

Campylobacter spp 2,453,926 64,577 80 1,963,141
Salmonella, nontyphoidal 1,412,498 37,171 95 1,341,873
Norwalk-like viruses 23,000,000 40 9,200,000
Other 11,763,217 1,309,910
Total for Known Pathogens 38,629,641 13,814,924

Multiplier, observed to total cases 38.0
Total cases of gastroenteritis 210,813,750

of unknown origin (subtract) 172,184,109
Illness of known etiology, % foodborne (divide) 36%
Foodborne illness, unknown etiology (multiply) 61,986,279
Total foodborne illness (not rounded) 75,801,203

Boldface = parameters with uncertainty distributions in the example. Italics = input parameters (other numbers are calculated within model) An 
downloadable interactive version of this calculation, which can be used to run the Monte Carlo simulation to estimate total uncertainty, can be 
accessed via a link in the text.

Approximate distribution of true foodborne disease inci-dence (base example)Figure 1
Approximate distribution of true foodborne disease inci-
dence (base example)
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(The Microsoft Excel 2000 spreadsheet used to run the
Crystal Ball simulation is available as a 1 to this paper.
Running the simulations directly from the spreadsheet
requires a copy of Crystal Ball 2000 or a later compatible
version.)

What should we make of such a result? That depends on
our goal for the estimate in the first place. If the goal is to
get an estimate into the scientific literature for others to
use, it is probably a good idea to report the entire distribu-
tion, along with sensitivity analyses, and let others use
them as they will. Researchers interested in combining
this with other estimates of the value in question might
want to look at how likely the other estimates are accord-
ing to this calculation and how likely this estimate is
according to other calculations. A sophisticated policy
maker trying to figure out how much attention to devote
to this problem might want to look at the probability that
the total was greater than some critical level, say ten mil-
lion or one hundred million. Indeed, even a rough cut
might be sufficient to answer important policy questions
(e.g., "we are pretty sure that there are more than fifty mil-
lion cases per year, which means this is a bigger problem
than most people think").

Sensitivity analysis
This method for quantifying uncertainty lends itself easily
to sensitivity analysis of the inputs. The quantification of
uncertainty is itself is sometimes called a sensitivity anal-
ysis, but despite involving some of the same math, uncer-
tainty quantification and sensitivity analysis are
fundamentally different. A sensitivity analysis asks ques-
tions like, "if we are wrong about a certain input, how
much does our best estimate change?" An uncertainty dis-
tribution does not answer that question. Rather, the
uncertainty distribution is that best estimate, the best esti-

mate of the probabilities of possible true values given our
knowledge. An uncertainty distribution does not report
deviations from the result of an analysis; it is the result of
an analysis. A sensitivity analysis can be done to see how
much that distribution changes if we change one of our
inputs.

For example, compare a second estimate, identical except
that the distribution of foodborne attribution for Nor-
walk-like viruses is [40%,60%] instead of the previous val-
ues of [20%,60%]. (This is chosen primarily to be
illustrative and emphasize the effect of changing the mean
and variance of the range. It turns out, though, that Mead
et al. based their input of 40% on a single rough estimate
in the literature which was 47%, so the new mean of 50%
is actually closer.) The result, represented in Figure 2,
shows that the new mean value is about 85 million and
that half the probability mass is now in the narrower
range of 70 to 100 million. The substantial difference
between this and our previous distribution makes clear
that one of the most useful things that could be done to
improve our estimate of the total cases is to reduce our
uncertainty about this key input. Furthermore, it calls to
mind the question of whether even experts who see the
estimate of 76 million (which appears, usually presented
as fact, in almost everything written about foodborne ill-
ness in the U.S.) have any idea that it hinges so signifi-
cantly on this one, rather arcane, guesstimate about how
much of the illness caused by one pathogen is attributable
to foodborne transmission.

Summary
It is possible to quantify uncertainty in complex calcula-
tions in health research, as is commonly done for non-
sample-based calculations in business or engineering. In
addition to simply being a more accurate presentation of
scientific knowledge, such quantification could dramati-
cally increase the value of the underlying estimates in sev-
eral ways. It would clarify whether the estimates are
certain enough for the purposes for which they are used.
Furthermore, it would suggest how likely further research
is to produce a substantially different answer and would
direct such research toward improving the particular
inputs that create more of the uncertainty. The notion of
reporting uncertainty sometimes provokes opposition, as
if the revelation of uncertainty were responsible for creat-
ing the uncertainty. But quantification does not introduce
uncertainty that did not previously exist, but rather,
replaces ignorance about the magnitude of that uncer-
tainty with the best available knowledge.
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Approximate distribution of true foodborne disease inci-
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