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Abstract
Background: To compare the diagnostic accuracy of two continuous screening tests, a common approach is to test the
difference between the areas under the receiver operating characteristic (ROC) curves. After study participants are
screened with both screening tests, the disease status is determined as accurately as possible, either by an invasive,
sensitive and specific secondary test, or by a less invasive, but less sensitive approach. For most participants, disease status
is approximated through the less sensitive approach. The invasive test must be limited to the fraction of the participants
whose results on either or both screening tests exceed a threshold of suspicion, or who develop signs and symptoms of
the disease after the initial screening tests.

The limitations of this study design lead to a bias in the ROC curves we call paired screening trial bias. This bias reflects
the synergistic effects of inappropriate reference standard bias, differential verification bias, and partial verification bias.
The absence of a gold reference standard leads to inappropriate reference standard bias. When different reference
standards are used to ascertain disease status, it creates differential verification bias. When only suspicious screening test
scores trigger a sensitive and specific secondary test, the result is a form of partial verification bias.

Methods: For paired screening tests with bivariate normally distributed scores, we give formulae and programs to
quantify the effect of paired screening trial bias on a paired comparison of area under the curves. We fix the prevalence
of disease, and the chance a diseased subject manifests signs and symptoms. We derive the formulas for true sensitivity
and specificity, and those for the sensitivity and specificity observed by the study investigator.

Results: The observed area under the ROC curves is quite different from the true area under the ROC curves. The
typical direction of the bias is a strong inflation in sensitivity, paired with a concomitant slight deflation of specificity.

Conclusion: In paired trials of screening tests, when area under the ROC curve is used as the metric, bias may lead
researchers to make the wrong decision as to which screening test is better.
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Background
Paired trials designed to compare the diagnostic accuracy
of screening tests using area under the receiver operating
characteristic (ROC) curve may fall victim to a strong bias
that renders the conclusions of the trial incorrect. In Eng-
lish, "bias" often has a pejorative connotation, implying
that those who conduct the study prefer one scientific
conclusion, rather than another. We use the term "bias" in
the epidemiological and statistical sense, as the difference
between the results obtained in a study, and the true
results.

The bias occurs because limitations in the trial design may
differentially affect the area under the ROC curve for each
screening test. Many competing statistical approaches
have been suggested for comparing the diagnostic accu-
racy of two continuous tests. We consider area under the
ROC curve, because it continues to be used as the standard
in prominent medical journals [1-3].

A common design for the comparison of two continuous
screening tests is to evaluate participants with both screen-
ing tests. The disease status is then determined by either
an invasive secondary test, or by a less invasive, but less
sensitive approach. Ethically and practically, the invasive
secondary test must be reserved only for those participants
who have a suspicious result on one or both screening
tests, or for those who have signs and symptoms of dis-
ease. For those who have a normal result on both screen-
ing tests, a less sensitive process is used to approximate the
disease status. As the true disease status is not known cor-
rectly for all participants, the observed disease status is used
for calculations of diagnostic accuracy.

For potentially lethal diseases like cancer, where the inva-
sive test is biopsy, this design is the best possible available
design. The imperfections of the study design occur
because the disease is difficult to diagnose since it is clin-
ically occult, and the study designers must keep the risk of
potential harm to subjects as low as possible.

The limitations of this design leads to a previously unde-
scribed bias we call paired screening trial bias. This bias
results from the synergistic effects of inappropriate refer-
ence standard bias, differential verification bias, and par-
tial verification bias [4]. Here, verification is used to
describe the process of ascertaining the disease status. In
classical partial verification bias, only some participants
undergo determination of disease status. A variant of par-
tial verification bias is extreme verification bias, when
only strongly abnormal results on one of the screening
tests lead to secondary testing [5]. In the paired screening
trial design we discuss here, an effect similar to partial ver-
ification bias operates. A disease status is assigned for all
participants, but determined with great sensitivity and

specificity only for those with strongly abnormal results
on an initial screening test. Because different methods are
used to ascertain disease status, depending on the results
of the initial screening tests, the trial is subject to differen-
tial verification bias. Finally, paired screening trials often
yield fewer observed than true cases of disease. Some cases
of disease are missed because the ascertainment of disease
status is not perfect. Thus, the trial is subject to inappro-
priate reference standard bias. All three of these biases
interact to inflate the sensitivity and to slightly deflate the
specificity, in potentially differential amounts for each
screening test.

When differentially biased estimates of sensitivity and
specificity are used to construct receiver operating charac-
teristic (ROC) curves for the two screening tests, the result-
ing areas under the ROC curves are also incorrect.
Therefore, when tests are used to compare the areas under
the ROC curves, the conclusions drawn regarding the rel-
ative diagnostic accuracy of the two tests may be wrong.
This potential pitfall has strong clinical implications
because a paired comparison of areas under ROC curves is
one of the most common tests used to compare screening
modalities. Thus, paired screening trial bias may have a
large impact on the design and interpretation of screening
trials. We provide formulas to quantify the bias. We
describe the conditions that cause incorrect scientific con-
clusions as to which screening modality is better. We also
demonstrate that paired screening trial bias may not affect
the scientific conclusion, and explain when the scientific
conclusion is likely to be correct.

Methods
Study design
We consider a hypothetical trial in which each subject
receives two screening tests at the same time in a paired
design. In the trial, the disease status is determined either
by a secondary, sensitive and specific but invasive test, like
biopsy, or approximated by a less sensitive process, like
follow-up for a certain time period. The diagnostic accu-
racy of the two screening tests is to be compared using a
paired comparison for the difference in area under the
ROC curve for each screening test.

There are two possible viewpoints for the trial. One is
omniscient, in which the true disease status is known for
each subject. The other is the viewpoint of the study inves-
tigator, who observes the disease status with error due to
the limitations of the trial design. Because we use a math-
ematical model, we can derive the probability of all out-
comes from each point of view.

A flow chart of the hypothetical study is shown in Figure
1. Disease is observed by the study investigator in one of
four ways. 1) A patient has an abnormal result on screen-
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ing Test 1 only and then has an abnormal secondary test,
leading to the diagnosis of disease. 2) A patient has an
abnormal result on screening Test 2 only and then has an
abnormal secondary test, leading to the diagnosis of dis-
ease. 3) A patient has abnormal results on both screening
Test 1 and screening Test 2 and then has an abnormal sec-
ondary test, leading to the diagnosis of disease. 4) A
patient has normal results on both screening Test 1 and
screening Test 2, and thus no secondary test, but later
presents with signs and symptoms, which lead to an
abnormal secondary test, and the subsequent diagnosis of
disease.

In this analysis, we will refer to the disease status observed
in the study as the observed disease status and the true dis-

ease status as the true disease status, with observed and true
as shorthand, respectively. We quantify bias by examining
the difference between the ROC curves drawn using the
observed disease status, and those drawn using the true dis-
ease status.

Model, Assumptions and Definitions
We model the potential errors due to paired screening trial
bias for this hypothetical trial. A series of assumptions
allow us to examine the potential impact of paired screen-
ing trial bias in a situation with no experimental noise.

First, we assume that the results of screening Test 1 and
screening Test 2 have a bivariate normal distribution for
the participants with disease, and a potentially different

Paired screening trial flowchartFigure 1
Paired screening trial flowchart. Trial design, and observed and true outcomes for a paired screening trial of two continu-
ous tests, with two possible secondary tests used determine disease status. Cases of disease which escape detection during the 
study appear in the shaded oval. The study investigator will miss cases of disease when 1) no signs or symptoms are observed; 
2) the less sensitive secondary test is used; and 3) the participant has disease. One or both screening tests may cause a partici-
pant without disease to be recalled. By assumption, the invasive, sensitive and specific secondary test will never diagnose dis-
ease when there is in fact no disease. Thus, the study investigator never declares a participant to have disease when in fact they 
do not.
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bivariate normal distribution for the participants without
disease. While normally distributed data is not typically
observed in studies, the assumption of normality under-
lies the popular ROC analysis technique of Metz et al. [6].

Suppose that the variance, σ2, is the same for both distri-
butions. The equal variance assumption prevents the true
ROC curves from crossing. Let μC1 and μC2 be the mean
scores for participants with disease given by screening Test
1 and screening Test 2, and μN1 and μN2 be the mean scores
for participants without disease given by screening Test 1
and screening Test 2, respectively. Suppose ρC is the corre-
lation between the two test scores for participants with
disease, and ρN is the correlation between the two test
scores for participants without disease. Scores for different
participants were assumed to be independent.

We assume that a high score on a screening test results in
an increased level of suspicion. We define x to be the cut-
point for each 2 × 2 table that defines the ROC curve.
Scores above x are declared positive on each test, while
scores below x are declared negative. We assume that the
invasive, yet sensitive and specific secondary test never
misses disease when disease is present. Likewise, if a sub-
ject has no disease, the invasive, yet sensitive and specific
secondary test always correctly indicates that the subject is
disease free. We also assume that all test scores above a
pre-specified threshold lead to the invasive, yet sensitive
and specific secondary test. θ is the value of the test score
above which participants must have the invasive, yet sen-
sitive and specific secondary test. We will call θ the thresh-
old for recall. All participants who do not undergo the
invasive, yet sensitive and specific secondary test have a
less sensitive, but less invasive secondary test, such as fol-
low-up.

For convenience in the derivation, we use the same value
of the threshold for recall, θ, for both screening tests.
Because ROC analysis is invariant to translation, choosing
the same values of θ for each screening test, and then shift-
ing the means of the screening test scores has the same
mathematical result as choosing different values of θ for
each screening test.

During the follow-up period, some participants will expe-
rience signs and symptoms of disease. We assume that
only participants with disease will experience signs and
symptoms of disease. Participants who experience signs
and symptoms of disease are then given the invasive, yet
sensitive and specific secondary test, which we have previ-
ously assumed is infallible. For participants with signs and
symptoms, the study investigator always observes the cor-
rect outcome. The study investigator incorrectly specifies
that a participant has no disease when all three of the fol-
lowing conditions are met: 1) the participant has disease,

2) the participant scores below θ on both screening tests,
avoiding the invasive, yet sensitive and specific secondary
test, and 3) never experiences signs or symptoms during
the follow-up period.

The prevalence of disease in the population is r. The pro-
portion of participants with disease who experience signs
and symptoms within the study follow-up period, but not

at study entry, is ψ. We write Φ(x) to indicate the cumula-
tive distribution function of a normal distribution with
mean 0 and standard deviation 1, evaluated at the point x,

and Φ(x, y, ρ) to indicate the cumulative distribution
function of a bivariate normal distribution with mean vec-

tor [0, 0], standard deviations both 1 and correlation ρ,
evaluated at the points x and y. That is, if X and Y have a

bivariate normal distribution, we write Φ(x, y, ρ) to indi-

cate Pr (X ≤ x and Y ≤ y| ,  = 1, ρ)

The data are paired, so there are two observed test scores
for each subject. By assumption, the two scores are corre-
lated. Each test score could fall above or below θ, the
threshold value for referral to the invasive, yet sensitive
and specific secondary test. Thus, for each value of x, we
can describe a series of events cross-classified by the Test 1
score, the Test 2 score, the true disease status of the subject
and the presence of signs or symptoms. We classify each
event both as it truly occurs, and how it is observed by the
study investigator. There are 22 possible situations when
x <θ (Table 1), and 19 such situations when x > θ (Table
2).

For each screening test and each value of the test cutpoint
x, we can define a table that cross classifies the response of
the test (positive or negative), and the truth (the presence
or absence of disease). The cell and marginal probabilities
for this cross-classification are shown in Tables 3 and 4.
We obtain the probabilities in two steps. First, we use our
model, assumption and definitions to assign probabilities
to each situation shown in Tables 1 and 2. Then, using the
disease status and screening test results to classify the
events in Tables 1 and 2 into the appropriate four groups,
we sum the appropriate event probabilities to obtain the
cell and marginal probabilities shown in Tables 3 and 4.
For example, in Table 3, the screening Test 1 +, true dis-
ease + cell has the probability formed by summing all
entries in Table 1 where screening Test 1 is + and the sub-
ject has disease.

We then calculate the true sensitivity for each test as the
number of true positives identified by that screening test
divided by the total number of true cases. The true specif-
icity for each test is the number of true negatives correctly
identified as negative by that screening test divided by the

σ X
2 σ Y

2
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Table 1: For x <θ, observed screening test results, and observed and true disease status.

Test 1 Score 
Inequality

Test 1 Result Test 2 Score 
Inequality

Test 2 Result Signs and 
Symptoms

Observed Disease 
Status

True Disease 
Status

T1 <x - T2 <x - - -
T1 <x - T2 <x - No signs - +
T1 <x - T2 <x - Signs + +
T1 <x - x <T2 <θ + - -
T1 <x - x <T2 <θ + No signs - +
T1 <x - x <T2 <θ + Signs + +
T1 <x - θ <T2 + - -
T1 <x - θ <T2 + + +

x <T1 <θ + T2 <x - - -
x <T1 <θ + T2 <x - No signs - +
x <T1 <θ + T2 <x - Signs + +
x <T1 <θ + x <T2 <θ + - -
x <T1 <θ + x <T2 <θ + No signs - +
x <T1 <θ + x <T2 <θ + Signs + +
x <T1 <θ + θ <T2 + - -
x <T1 <θ + θ <T2 + + +
θ <T1 + T2 <x - - -
θ <T1 + T2 <x - + +
θ <T1 + x <T2 <θ + - -
θ <T1 + x <T2 <θ + + +
θ <T1 + θ <T2 + - -
θ <T1 + θ <T2 + + +

The situations listed in this table are those where x <θ, i.e. that the test score is less than the threshold that leads to referral to the invasive, yet 
sensitive and specific secondary test. The signs and symptoms column is left empty in those cases where the observed disease status does not 
depend on the development of signs or symptoms.

Table 2: For x > θ, observed screening test results, and observed and true disease status.

Test 1 Score 
Inequality

Test 1 Result Test 2 Score 
Inequality

Test 2 Result Signs and 
Symptoms

Observed Disease 
Status

True Disease 
Status

T1 <θ - T2 <θ - - -
T1 <θ - T2 <θ - No signs - +
T1 <θ - T2 <θ - Signs + +
T1 <θ - θ <T2 <x - - -
T1 <θ - θ <T2 <x - + +
T1 <θ - x <T2 + - -
T1 <θ - x <T2 + + +

θ <T1 <x - T2 <θ - - -
θ <T1 <x - T2 <θ - + +
θ <T1 <x - θ <T2 <x - - -
θ <T1 <x - θ <T2 <x - + +
θ <T1 <x - x <T2 + - -
θ <T1 <x - x <T2 + + +

x <T1 + T2 <θ - - -
x <T1 + T2 <θ - + +
x <T1 + θ <T2 <x - - -
x <T1 + θ <T2 <x - + +
x <T1 + x <T2 + - -
x <T1 + x <T2 + + +

The situations listed in this table are those where x > θ, i.e. that the test score is greater than the threshold that leads to referral to the invasive, yet 
sensitive and specific secondary test. The signs and symptoms column is left empty in those cases where the observed disease status does not 
depend on the development of signs or symptoms
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total number of true non-cases. The true ROC curve is gen-
erated by plotting the true sensitivity on the vertical axis
versus one minus the true specificity on the horizontal
axis.

We use a similar technique to calculate the observed sensi-
tivity and observed specificity. In order to generate the
observed ROC curves, for each test and each value of the
cutpoint x, we define a table that cross classifies the
response of the test (positive or negative), and the observed
disease status (the presence or absence of observed dis-
ease). The cell and marginal probabilities for this cross-
classification are shown in Tables 5 and 6. We then calcu-
late the observed sensitivity and the observed specificity. The
observed sensitivity is the fraction of participants observed
to have disease who have a positive screening test result.
The observed specificity is the fraction of participants who
apparently have no disease who have a negative screening
test result. Some participants actually may have disease,
but the disease is not detected in the trial.

The observed ROC curve is generated by plotting the
observed sensitivity on the vertical axis versus one minus
the observed specificity on the horizontal axis. Simpson's
rule numerical integration methods [[7], p. 608] with
accuracy of 0.001 are used to calculate the area under the
ROC curve (AUC) for each screening test.

We calculate the theoretically correct ROC curves and
AUCs (ignoring the error of integration), using our math-
ematical derivations. In a real trial, the study investigator
would use a hypothesis test and a p-value to compare the
difference in AUCs. Depending on the sample size chosen
for the trial, the precision of the estimates and the accu-
racy of the decision may change.

To illustrate the effect of the bias, we present the theoreti-
cal results. To illustrate the effect of sample size on the
precision of the estimates, we conduct a simulation. For
the simulation, we suppose that the study investigator
decided to test the null hypothesis of no difference
between the areas under the ROC curves, using a non-par-
ametric AUC test for paired data [8], and fixing the Type I
error rate at 0.05. To ensure adequate power, for a fixed set
of parameters, we set the sample size so that 90% of the
time, if the true state of disease were known, the null
hypothesis would be rejected. For that fixed set of param-
eters and sample size, we simulate 10,000 sets of data. For
both the true state of disease, and the observed state of dis-
ease, we record the magnitude of the differences in AUCs,
and the decision whether to reject the null. The propor-
tion of rejections for the true and observed data is estimated
by the number of rejections, divided by 10,000. Ten thou-
sand is chosen so the maximum half width for the confi-
dence interval for the proportion rejected is no more than
0.01.

Results
Our derivations demonstrate that the observed ROC curve
differs from the true ROC curve, with the amount of bias
depending on the correlation between the screening tests
for participants with disease, ρC, the rate of signs and
symptoms, ψ, and the threshold for recall, θ. In some
cases, the bias equally affects the observed ROC curve for
both screening tests, and the scientific conclusion is the
same as it would have been had the true disease state been
observed. In other cases, the bias causes a change in the
direction of the scientific conclusion. The scientific con-
clusion only changes direction when for one screening
test, for participants with disease, a higher proportion of
the scores lead to recall than for the other screening test.
Thus, for that screening test, a larger percent of partici-
pants with true disease go on to have their disease status

Table 3: True disease status and Test 1 results.

True Disease Status

+ -
Test 1 + r [1 - Φ (x - μC1)] (1 - r) [1 - Φ (x - μN1)]

- r Φ (x - μC1)] (1 - r) Φ (x - μN1)

Test 1 is + if the score on Test 1 is greater than x.

Table 4: True disease status and Test 2 results.

True Disease Status

+ -
Test 2 + r [1 - Φ (x - μC2)] (1 - r) [1 - Φ (x - μN2)]

- r Φ (x - μC2)] (1 - r)Φ (x - μN2)

Test 2 is + if the score on Test 1 is greater than x.
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correctly ascertained, and observed in the study, than for
the other screening test.

Figure 2 and Figure 3 demonstrate the possible effects of
bias on the scientific conclusions. In Figure 2, the study
investigator will draw the wrong scientific conclusion. In
Figure 3, the study investigator will draw the correct scien-
tific conclusion, despite the presence of bias. For Figure 3,
the participants with the highest 8% of both screening
Test 1 and screening Test 2 scores will be recalled for the
sensitive and specific secondary test. For Figure 2, the par-
ticipants with the highest 34% of the screening test scores
for Test 1 will be recalled, but only the highest 8% for Test
2. In general, the scientific conclusion is correct when
both screening tests lead to a secondary test at the same
rate. The scientific conclusion may be wrong when the
chance of proceeding to the secondary test depends on
which screening test produced a high score.

As shown in Figure 2 and Figure 3, the observed curves have
inflection points, where the slope changes. There is no
inflection point in the true ROC curves for either test,
because the formulae that govern the sensitivity and spe-

cificity for the true curves are the same no matter what the
ROC cutoff points are (see Tables 3 and 4). By contrast, as
shown in Tables 5 and 6, the formulae for the observed
ROC curves change depending on whether the cutpoint is
above or below θ. This causes a change in slope for the
observed ROC curve. The inflection point is more obvious
for Test 2 than for Test 1. The inflection point for Test 1
occurs at specificity of about 0.80, and is obscured in Fig-
ure 2. In general, as θ increases relative to the mean of the
test score distribution, the point of inflection occurs at
higher values of specificity.

In Figure 2, the true ROC curve for screening Test 2 is
higher than the true ROC curve for screening Test 1. Thus,
screening Test 2 has better true diagnostic accuracy than
screening Test 1. However the observed ROC curve for
screening Test 1 is higher than the observed ROC curve for
Test 2.

In Figure 2, bias in the observed ROC curves leads to a bias
in the observed AUC for each test. Recall that in reality,
screening Test 2 has better diagnostic accuracy than
screening Test 1. The true AUC of screening Test 1 is 0.64,

Table 5: Observed disease status and Test 1 results.

Test 1 Observed Disease Status Probability

+ +

+ -

- +

- -

Test 1 is + if the score on Test 1 is greater than x.
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and the true AUC of screening Test 2 is 0.70. However, the
observed AUC tells a different story. The observed AUC for
screening Test 1 is 0.82, and the observed AUC for screen-
ing Test 2 is 0.75.

Since Test 2 truly has better diagnostic accuracy than Test
1, the true difference in AUC between screening Test 2 and
Test 1 is positive (Test 2 true AUC – Test 1 true AUC = 0.70
- 0.64 = 0.06). However, in Figure 2, the observed differ-
ence in AUC between Test 2 and Test 1 is negative (Test 2
observed AUC – Test 1 observed AUC = 0.75 – 0.82 = -
0.07). If the study investigator were to observe these exact
theoretical results, the study investigator would conclude
that screening Test 1 has better diagnostic accuracy than
Test 2, when in fact the opposite is true.

Study investigators never observe the true state of nature.
They observe data, and make estimates, the precision of
which depends on the sample size. They decide which
screening test is better using hypothesis tests. To see which
conclusion the hypothesis tests would suggest, both for
the true and observed disease status, we conducted a simu-
lation. For the parameters of Figure 2, for a Type 1 error

rate of 0.05, if the true disease status were known, a non-
parametric test [8] would have 90% power with 33,000
participants. With the true disease status known, we
would reject the null roughly 90% of the time. The
remaining 10% of the time, we would conclude no differ-
ence in AUC between Test 1 and Test 2. If the true disease
status were known, every time we rejected the null, we
would conclude correctly that Test 2 is better than Test 1.

If we conduct the same simulation experiment from the
point of view of the study investigator, for the experimen-
tal situation of Figure 2, we see only the observed state of
disease. In that case, the study investigator will reject the
null hypothesis only 71% of the time. The remaining 29%
of the time, the study investigator will conclude that there
is no difference in AUC between Test 1 and Test 2. The
lower power is due to more variance in the observed data,
compared to the true data. When the study investigator
rejects the null, every time, she concludes incorrectly that
Test 1 is better than Test 2.

The incorrect conclusion in Figure 2 is the result of a cas-
cade of errors. The observed sensitivity for Test 1 is inflated

Table 6: Observed disease status and Test 2 results.

Test 2 Observed Disease Status Probability
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more than the observed sensitivity for Test 2. The increase
in observed sensitivity makes the observed ROC curve higher
for Test 1 than for Test 2. A higher observed ROC curve
means a higher observed AUC for Test 1 than for Test 2.

To understand how and why paired screening trial bias
occurs, consider a single specificity value on the true and
observed ROC curves shown in Figure 2. Choose the value
of specificity where there is the greatest increase in observed
sensitivity relative to true sensitivity, for Test 1. This occurs
when specificity is 0.82. For a hypothetical study of
10,000 participants, and specificity of 0.82, the observed
and true 2 × 2 tables for Test 1 and Test 2 are shown in Fig-
ure 4.

Each one of the four tables uses a slightly different ROC
cutpoint. For the observed table, Test 1 is positive if it
exceeds 2.511; for the true table, Test 1 is positive if it
exceeds 2.515. For the observed table, Test 2 is positive if it

exceeds 1.269; for the true table, Test 2 is positive if it
exceeds 1.265. The tables have different ROC cutpoints
because they were chosen to have the same specificity, not
the same cutpoint.

Also, the number of cases of disease observed in the study,
45, is much smaller than the true number of cases of dis-
ease in the population, 100. The observed number of cases
of disease is smaller than the true number because not
every participant undergoes the invasive, yet sensitive and
specific secondary test, and thus some cases of disease are
missed. The observed number of cases of disease is the
denominator of the observed sensitivity. Because the
denominator is smaller for observed sensitivity than for
true sensitivity, the observed sensitivity is strongly inflated
for both tests. When specificity is 0.82, the observed sen-
sitivity of Test 1 is 0.72, with true sensitivity of 0.33. For
Test 2, the observed sensitivity is 0.52, with true sensitivity
of 0.43.

True and observed ROC curves for a hypothetical example where bias changes the scientific conclusionFigure 2
True and observed ROC curves for a hypothetical example where bias changes the scientific conclusion. The 
parameters for this example were chosen to illustrate a case where paired screening trial bias may cause an incorrect scientific 
conclusion. The incorrect conclusion occurs because for participants with disease, one screening test leads to a higher chance 
of recalls than the other screening test. The chance of recall for Test 2 for a participant who had disease was 34%, while for 
Test 1 it was 8%. For this example, we fixed the disease rate, r = 0.01; the chance that participants with disease would experi-
ence signs and symptoms within the year of follow-up, ψ = 0.1; the variance, σ2 = 1. The means of the distributions of test 
results for cases for Test 1 and Test 2 were 2.1 and 1.1, respectively, and the means for non-cases for Test 1 and Test 2 were 
1.6 and 0.35. The correlation between test scores for cases was fixed at 0.1, as was the correlation for non-cases. All test 
scores above 2.5 on either test, or participants who had signs or symptoms had an infallible secondary test to determine dis-
ease status. For participants with scores below 2.5 on both tests, a less sensitive method was used to approximate disease sta-
tus.
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Yet if the bias only affected the denominator, the inflation
in sensitivity would be the same for both tests. After all,
the same number of observed cases is used as the denom-
inator for both tests. The differential inflation for Test 1
compared to that for Test 2 must be due to the numerator
of the observed sensitivity.

For Test 2, the numerator of the observed sensitivity is the
number of study participants who are positive on Test 2,
and who are observed to have disease in the study. For
Test 2, the numerator for observed sensitivity, 23, is
smaller than the true numerator, 43. The difference occurs
because disease can only be observed if the invasive, yet
sensitive and specific secondary test is used. Even though
the participants have a score that exceeds the ROC cut-
point for Test 2, they do not all undergo the invasive, yet
sensitive and specific secondary test. Thus, they do not
yield observed cases of disease. By contrast, for Test 1,
because the ROC cutpoint is higher than the threshold
which leads to the invasive, yet sensitive and specific sec-
ondary test, every participant positive on Test 1 undergoes

the secondary test, and is shown to have disease. For each
test, there is a different proportion of participants who
exceed the cutpoint, who truly have disease, and who pro-
ceed to secondary testing. This is the source of the differ-
ential bias that causes the curves to reverse order in Figure
2.

Paired screening trial bias also increases as the proportion
of participants with disease who have signs and symp-
toms (ψ) decreases. If all the cases of the disease were
observed during the trial, there would be no difference
between true and observed disease status, and no bias. Yet,
in every screening trial, some cases of diseases are not
identified by either screening test, and never present with
signs and symptoms. As the proportion of participants
presenting with signs and symptoms (ψ) decreases, fewer
cases of disease are discovered during the trial in the inter-
val after screening, and the difference between observed
and true disease status grows.

True and observed ROC curves for a hypothetical example where bias did not change the scientific conclusionFigure 3
True and observed ROC curves for a hypothetical example where bias did not change the scientific conclusion. 
The parameters for this example were chosen to illustrate a case where paired screening trial bias did not change the direction 
of the difference in AUC, nor the scientific conclusion. The chance of recall for either screening test for a participant who had 
disease was 8%. For this example, we fixed the disease rate, r = 0.01; the chance that participants with disease would experi-
ence signs and symptoms within the year of follow-up, ψ = 0.1; the variance, σ2 = 1. The means of the distributions of test 
results for cases for Test 1 and Test 2 were 1.1 and 1.1, respectively, and the means for non-cases for Test 1 and Test 2 were 
1.6 and 0.35. The correlation between test scores for cases was fixed at 0.1, as was the correlation for non-cases. All test 
scores above 2.5 on either test, or participants who had signs or symptoms had an infallible secondary test to determine dis-
ease status. For participants with scores below 2.5 on both tests, a less sensitive method was used to approximate disease sta-
tus.
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Paired screening trial bias increases with the increase in cor-
relation between the results of the screening tests for par-
ticipants with disease, ρC. The bias in the observed ROC
curves increases because as the two index tests become
more highly correlated, the number of observed cases of
disease becomes smaller relative to the number of true
cases of disease. When the two index tests are highly cor-
related, they essentially produce the same information as
to whether a participant has disease. When the index tests
are independent, each test makes diagnoses on its own
that the other test misses. Thus, when the tests are inde-
pendent, and ρC is 0, the number of observed cases is high-
est, relative to the number of true cases. The percentage of

participants receiving the infallible secondary test
increases as ρC decreases. The bias lessens as the true dis-
ease status is ascertained for more participants.

In general, paired screening trial bias tends to strongly
increase the sensitivity, while slightly decreasing the esti-
mate of specificity. The increase in observed sensitivity
compared to true sensitivity is expected with verification
bias [9].

Discussion
In this paper, we define a new type of bias that is a result
of the interaction between a particular design for a paired

For the hypothetical example of Figure 2, true and observed 2 × 2 tablesFigure 4
For the hypothetical example of Figure 2, true and observed 2 × 2 tables. Numbers were rounded to the nearest 
whole number. All tables were calculated at specificity of about 0.82. This point was chosen because the maximum difference 
between the observed and true sensitivity for Test 1 occurs at this point. For Test 1, the true sensitivity is 0.34, withobserved 
sensitivity at 0.76. For Test 2, the true sensitivity is 0.43, withobserved sensitivity at 0.51. Each one of the four tables uses a 
slightly different ROC cutpoint. For the observed table, Test 1 is positive if it exceeds 2.511; for the true table, Test 1 is posi-
tive if it exceeds 2.515. For the observed table, Test 2 is positive if it exceeds 1.269; for the true table, Test 2 is positive if it 
exceeds 1.265. The tables have different ROC cutpoints because they were chosen to have the same specificity, not the same 
cutpoint. For this hypothetical example, the disease rate, r = 0.01; the chance that participants with disease would experience 
signs and symptoms within the year of follow-up, ψ = 0.1; the variance, σ2 = 1. The means of the ROC distributions for cases 
for Test 1 and Test 2 were 2.1 and 1.1, respectively, and the means for non-cases for Test 1 and Test 2 were 1.6 and 0.35. The 
correlation between test scores for cases was fixed at 0.1, as was the correlation for non-cases. All test scores above 2.5 on 
either test, or participants who had signs or symptoms had an infallible secondary test to determine disease status. For partici-
pants with scores below 2.5 on both tests, a less sensitive method was used to approximate disease status.
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screening trial, and the choice of a particular statistical
test. Specifically, the bias occurs when the diagnostic accu-
racy of two continuous tests are compared using area
under the ROC curve in a design with two limitations.
First, different methods are used to ascertain disease sta-
tus, depending on the results of the initial screening tests.
Secondly, only some subjects undergo an invasive, yet
sensitive and specific secondary test. Thus, some cases of
disease are missed because the method used to ascertain
disease status for those who test negative on both initial
screening tests may not be 100% sensitive.

Both the statistical test and the trial design we considered
were modeled closely after recently completed and pub-
lished trials [1-3]. These trials compared the diagnostic
accuracy of two modalities for breast cancer detection.
Although authors have suggested the use of other statisti-
cal approaches to compare screening modalities [10,11],
the area under the full ROC curve remains the most com-
monly used test for paired screening trials in major Amer-
ican journals [1-3].

Although we modeled our trial design on real trials, we
made simplifying assumptions, which may not accurately
reflect reality. We assumed that there was a method for
determining disease status which was infallible. In reality,
all methods of determining disease status may be fallible.
In breast cancer, for example, diagnostic mammography,
biopsy and follow-up all make errors. Too short a follow-
up time may miss cases of disease. While longer follow-up
time will reveal a larger fraction of occult disease, it may
also reveal increasing numbers of cases of disease that
developed after the initial screening period, thus confus-
ing the results. We assumed that all cases of disease are
harmful. In screening studies, cases of disease may
resolve, or proceed so slowly as to be considered harmless.

We assumed that a test to determine disease status would
be conducted any time a screening test result exceeded a
given threshold. However, in cancer screening, because
other factors may be taken into consideration when decid-
ing a course of clinical action, there is a range of scores
that may result in further testing.

We also made the simplifying assumption that the scores
of the screening tests followed a bivariate normal distribu-
tion. In real paired cancer trials, the scores have a condi-
tional probability structure driven by the fact that real
observers miss cancers (and score a screening test as if no
disease were present), and see cancer where there is none
(and then score a non-cancerous finding as abnormal).
The resulting distribution of scores is far from the bivari-
ate normal distribution we assumed.

There is some theoretical justification that our results will
still hold even if the data are non-normal. Hanley [12]
points out that single test ROC analysis is robust to the
violation of the normality assumption if there exists a
monotonely increasing transformation of the test scores
that yields a normally distributed result. Thus, the results
described in the paper should hold whenever there is a
transformation for screening Test 1, and another for
screening Test 2 so that the transformed data has a bivari-
ate normal distribution.

The previous literature on bias provides some hint of the
plethora of possible designs and tests used for statistical
analysis. Most previous statistical literature dealt with
biases that occur for single, as opposed to paired, tests. A
complete summary of biases is given in [4]. Extreme veri-
fication bias may occur when the diagnostic test is inva-
sive or dangerous [5]. Verification bias has been studied in
binary tests [13,14], and in ordinal tests [15,16]. Alonzo
and Pepe [17] described using imputation and re-weight-
ing to correct verification bias for single continuous tests.
Alonzo [18] suggested corrections for verification bias in
paired binary testing situations. We were unable to find
published techniques to quantify or correct for paired
screening trial bias.

Cancer screening trials in particular are susceptible to
paired screening trial bias, because the secondary test is typ-
ically biopsy. Negative screening results cannot lead to
biopsy because there is no visible lesion to be biopsied.
Because biopsy is painful and invasive, it is infeasible and
unethical to do a biopsy unless there are suspicious
screening test results. Also, one can only biopsy what one
can see: one cannot put a needle in an invisible lesion.
Negative screening test results are verified, but typically by
follow-up, which has lower sensitivity than biopsy.

Our research suggests that in many published paired
screening trials, bias did not affect the scientific conclu-
sion. For example, in Pisano et al., [2], digital and film
mammography led to the recall of a very similar propor-
tion of cases for the secondary test, diagnostic imaging.
Thus, the trial design was more like Figure 3, in which bias
occurs, but does not change the scientific conclusion,
rather than Figure 2, in which bias occurs differentially,
and changes the scientific conclusion.

Epistemology
Why criticize a trial design, that though imperfect, cannot
be improved, because of ethical constraints? It is our phi-
losophy that it is preferable to understand all the causes of
bias. With mathematical formulae for bias, we can defend
trials that are fundamentally correct, and reserve doubt for
those trials that may be subject to incorrect conclusions.
In addition, models for bias are the necessary first step
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toward mathematical corrections for bias in sensitivity
and specificity, and toward designing new clinical trial
methodologies.

Conclusion
Using a simplified paradigm, we have shown that paired
screening trial bias has the potential to subvert the results
of paired screening trials, especially when the fraction of
the population recalled for secondary testing differs for
each screening test. The bias is affected by the rate at which
diseased participants experience signs and symptoms of
disease, and the chance of recall for a sensitive secondary
test. The bias is also influenced by the distributions of the
scores for the cases and non-cases for each screening test,
and by the correlation between the screening tests. Further
research on this bias is needed, so that mathematical cor-
rections for paired screening trial bias can be developed.

Programs implemented in SAS and Mathematica to calculate
the true and observed sensitivity, specificity, ROC curves, and
areas under the curves are available by request from the
authors.
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Appendix
For those readers not familiar with ROC analysis, we give
a short tutorial. For a complete discussion, see [[5];Chap-
ter 4, pages 66–94] or [[19]; Chapter 4, pages 137–153].
The ROC curve is estimated by selecting a series of cut-
points. By convention, for each test, scores below the cut-

point are considered negative, and scores above the
cutpoint are considered positive. The cross-classification
of test results and disease status yields a set of two by two
tables. Each table gives a paired estimate of sensitivity (the
number of true positives correctly identified as positive by
the test divided by the total number of cases) and specifi-
city (the number of true negatives correctly identified as
negative by the test divided by the total number of non-
cases). The ROC curve for each test is graphed with sensi-
tivity on the vertical axis, and 1 – specificity on the hori-
zontal axis. The area under the curve (AUC) is a measure
of the diagnostic accuracy of the test. A non-informative
test follows the 45° line and has an AUC of 0.5. A perfect
test follows the top and left boundaries of the ROC plot
area, and has an AUC of 1.
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