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Abstract

Background: Relative survival analysis is a subfield of survival analysis where competing risks data are observed, but
the causes of death are unknown. A first step in the analysis of such data is usually the estimation of a net survival
curve, possibly followed by regression modelling. Recently, a log-rank type test for comparison of net survival curves
has been introduced and the goal of this paper is to explore its properties and put this methodological advance into
the context of the field.

Methods: We build on the association between the log-rank test and the univariate or stratified Cox model and
show the analogy in the relative survival setting. We study the properties of the methods using both the theoretical
arguments as well as simulations. We provide an R function to enable practical usage of the log-rank type test.

Results: Both the log-rank type test and its model alternatives perform satisfactory under the null, even if the
correlation between their p-values is rather low, implying that both approaches cannot be used simultaneously. The
stratified version has a higher power in case of non-homogeneous hazards, but also carries a different interpretation.

Conclusions: The log-rank type test and its stratified version can be interpreted in the same way as the results of an
analogous semi-parametric additive regression model despite the fact that no direct theoretical link can be
established between the test statistics.

Keywords: Relative survival, Net survival, Log-rank test, Regression model

Background
Relative survival analysis is a subfield of survival analysis
with competing risks, where cause-specific information
is of interest, but the types of events are unknown. The
most common example is the cancer registry data, which
contains information on survival for patients diagnosed
with cancer, but has no reliable cause of death informa-
tion available. Since the proportion of non-cancer related
deaths is considerable, cancer-specific analysis is of inter-
est.
To overcome this issue, additional assumptions are

introduced in the field: we assume that the causes of
death can be split into ‘disease’ and ‘other’ and we assume
that the hazard of dying of ‘other’ causes of the observed
patients is comparable to the mortality of their coun-
terparts in the general population that do not have the
disease. Further, we assume that the effect of mortality
due to the disease in question on the total mortality of the
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country’s population is negligible. Under these assump-
tions, we can use the population mortality tables to deter-
mine the ‘other’ cause mortality of our patients and hence
deduce the excess mortality due to the disease in question.
Several measures may be of interest in the relative sur-

vival field. When interested in the excess (disease specific)
hazard, one may wish to first estimate the survival curve
associated with it and then to compare it between sub-
groups and possibly use a regression model to study it
further. The focus of our paper is the recently introduced
log-rank type test [1] that compares net survival between
subgroups.
Our motivating example comes from a study of sur-

vival of patients after acute myocardial infarction (AMI)
which was carried out at the University Clinical centre
in Ljubljana, Slovenia, see [2] for example. Being inter-
ested in the excessmortality that these patients experience
due to the infarction, we focus on a subgroup of 494
patients, aged between 45 and 75, who were recruited
from 1984 to 1986 and followed for 10 years. The patients
were included in the study at the time of release from the
hospital after an infarction, the end point was death of
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any cause, whereas cause-of-death information was not
available. Several variables were recorded at the time of
admission, but we focus here on sex and age only. In this
work, we are not interested in the overall mortality of
these patients, but rather in the excess hazard that can be
attributed to their cardio-vascular disease and the effect
of sex on it. The net survival curves with respect to sex
are markedly different and the newly introduced log-rank
type test [1] reports a significant difference (p = 0.02).
However, the authors of this method warn that this test
assumes homogeneous hazards for all individuals within
each group, an assumption which is obviously violated in
our case, where patients of each gender differ substan-
tially with respect to age which most likely affects also
their excess hazard. The stratified test using age in 5-year
intervals indicates that the difference between males and
females is no longer statistically significant (p = 0.09).
One could resort to a parametric regression model with
sex and age as covariates instead, but for that purpose, fur-
ther assumptions about the baseline hazard are needed.
Two semi-parametric approaches to modelling (that do
not require any additional assumptions about the base-
line hazard) have also been proposed [3, 4], but have not
been used much in practice and their properties have not
been examined in depth. Furthermore, the possibility to
stratify with respect to a covariate has not yet been imple-
mented with these models, whilst introducing age as an
additional covariate requires additional assumptions. It is
thus not clear to what extent these methods are compa-
rable and what is the method of choice to answer our
question.
In this paper we investigate the properties of the non-

stratified and stratified version of the test (as defined in
[1]) and give advice for its usage. The goal of the paper
is to simplify the understanding of the new methodol-
ogy by paralleling it with the related existing methods
both in classical survival framework and within the net
survival setting: we build on the association between the
log-rank test and the univariate or stratified Cox model
and explain how the story changes when comparing net
survival curves. With this approach we wish to provide a
clear place for the new method among the existing ones,
by providing an efficient implementation in R, we wish to
make it directly usable.

Methods
Let ˜TE,i, ˜TP,i and Ci denote the time to death due to the
disease in question, time to death due to other reasons
and time to censoring of ith individual, respectively. We
assume that the censoring times Ci are independent of
˜TP,i and ˜TE,i. Only one of these times may be observed for
each individual, we denote it by Ti = min(˜TP,i,˜TE,i,Ci).
Assuming this framework, our data, in which the cause of
death is unknown, consists of pairs (Ti, δi), where δi is the

censoring indicator that equals 1 in case of death and 0 in
case of censoring.
Denote the hazard of ith individual as λO,i(t), the sub-

script O indicating that this is the overall hazard whose
effect we can observe. We assume that this hazard can be
split into two additive components - the hazard due to
the disease λE,i (excess hazard due to the disease) and the
hazard due to other causes λP,i:

λO,i(t) = λE,i(t) + λP,i(t) (1)

We further assume that for each individual i, the value
of hazard of other causes can be read from the national
population mortality tables for age, sex and calendar year
of diagnosis of the ith individual. It is hence often referred
to as the population hazard and denoted by subscript P.
In this work, our interest lies in λE and we are interested

in net survival, i.e. the survival curve that depends solely
on λE , SE(t) = exp

{

− ∫ t
0 λE(u)du

}

. The ideal data to esti-
mate this quantity would be the pairs (TE,i, δE,i), where
TE,i is the possibly censored time to death from the dis-
ease for each individual (TE,i = min(˜TE,i,Ci)) and δE,i = 1
if ˜TE,i ≤ Ci and 0 otherwise. These data cannot be avail-
able in real world, where there is no way to exclude other
causes, but we can use it in theory and in simulations
to better understand the properties of the log-rank type
test. We shall refer to it as the hypothetical world data,
as opposed to the real world data (Ti, δi). The real world
data in our case present the competing risks setting from
which we wish to extract information about λE , whereas
the hypothetical world data present the simpler frame-
work where patients are subject only to one hazard and
thus the basic survival analysis methods (Kaplan-Meier,
Cox model) can be directly used.
With the hypothetical world data, the classical log-rank

test can be used to compare the net survival curves with
respect to a covariateX which splits the data into k groups.
The null hypothesis states that SE,1(t) = . . . = SE,k(t), or
alternatively λE,1(t) = . . . = λE,k(t).

Hypothetical world data
Using the counting process notation, we let NE,i(t) denote
the counting process for individual i: NE,i(t) = I(TE,i ≤
t,˜TE,i ≤ Ci) and YE,i(t) denote the at risk process for each
individual: YE,i(t) = I(TE,i ≥ t). Further, we use NE,h(t)
and YE,h(t) for the sum of NE,i and YE,i for all individuals i
belonging to each of the subgroups h = 1, . . . , k. The test
statistic compares the observed and the expected num-
ber of events in group h at each time point. The observed
number of events at each time u is denoted as dNE,h(u),
the expected number of events is calculated from the
total number of deaths at that time(dNE,·(u)) as the pro-
portion corresponding to the ratio between the number
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of individuals at risk in group h (YE,h(u)) and the total
number of individuals still at risk (YE,·(u)):

Zh(τ )=
∫ τ

0
I
(

YE,·(u)>0
)

[

dNE,h(u)−YE,h(u)

YE,·(u)
dNE,·(u)

]

,(2)

where τ is the follow-up time. The test statistic is then
calculated as

U = ZT
̂�−1Z,

where Z = (Z1(t), . . . ,Zk−1(t))′ and ̂� is the estimated
variance-covariance matrix, see [5] for details. Under the
null hypothesis, the test statistic can be shown to be
asymptotically χ2

k−1 distributed.
The derivation of the log-rank test requires the hazard

λE,h,i to be equal for all individuals i in a certain group h,
we shall refer to this property as the homogeneity of the
hazards. If this is not true and there is another categori-
cal variable S which explains the differences within each
subgroup, one can use the stratified log-rank test, where
the homogeneity property is required to hold only within
the strata of each group. We calculate the Zh value in each
stratum separately

Zh,s(τ ) =
∫ τ

0
I
(

YE,·,s(u) > 0
)

×
[

dNE,h,s(u) − YE,h,s(u)

YE,·,s(u)
dNE,·,s(u)

]

(3)

and then sum over allm strata to get the test statistic (see
[5] for more details)

U =
( m

∑

s=1
Zs

)T ( m
∑

s=1

̂�s

)−1 ( m
∑

s=1
Zs

)

,

where Zs = (Z1,s(t), . . . ,Zk−1,s(t)).

Real world data
With the real world data, we wish to test the same null
hypothesis of equal excess hazards, but the number of
cause-specific deaths (dNE,h in formula Eq. (2)) and the
number at risk in the hypothetical world (YE,h in formula
Eq. (2)) cannot be directly observed. We thus have to esti-
mate it by the help of population tables, we shall denote
these estimates by ̂dNE,h and̂YE,h respectively. Let (Ni,Yi)
denote the counting process defined as above from the
observed data (Ti, δi). We use these data andmerge it with
the population mortality data to estimate the number of
deaths due to the disease in question (see [6] for details):

̂dNE,i(t) = dNi(t)
SP,i(t)

−
∫ t

0
̂YE,i(u)λP,i(u)du, (4)

where ̂YE,i(t) = Yi(t)
SP,i(t) , and SP,i(t) and λP,i(t) are the pop-

ulation survival and hazard for ith individual which are
obtained from the populationmortality tables. In this esti-
mation, we follow the idea of the PP estimator (Pohar
Perme estimator) [6]: the total number of events must

be diminished by the number of expected deaths in the
population (second term on the right of (4)) and both
the observed number of deaths and number at risk must
be weighted (by SP,i) to properly represent the numbers
we would observe in the hypothetical world where no
one dies of λP,i. Therefore, the analogous test statistic is
calculated using [1]:

Zh(τ ) =
∫ τ

0
I
(

̂YE,·(u) > 0
)

×
[

̂dNE,h(u) − ̂YE,h(u)

̂YE,·(u)
̂dNE,·(u)

]

(5)

Similarly, the stratified version is calculated as

Zh,s(τ ) =
∫ τ

0
I
(

̂YE,·,s(u) > 0
)

×
[

̂dNE,h,s(u) − ̂YE,h,s(u)

̂YE,·,s(u)
̂dNE,·,s(u)

]

(6)

Properties and interpretation of the log-rank type test
The paper by Graffeo et al. [1] defined the test statistic and
derived its distribution under the null hypothesis. They
used simulations to illustrate the asymptotically proven
properties in practice and showed proper behaviour under
the null hypothesis as well as reasonable power under
different alternatives. The log-rank test on hypothetical
world data and the log-rank type test on real world data
have the same null hypothesis and differ only due to the
different data available. We can therefore expect similar
behaviour, but a smaller power in the case of real world
data, where some of the information cannot be observed.
Since the interest lies in the comparison of net survival,
which is defined by the excess hazard part of the model
(1), we can expect the proportion of events due to excess
hazard to crucially affect the power.

Log-rank test and regressionmodels
To further understand the properties and the interpreta-
tion of the log-rank type test we compare it to its main
alternative - a regression model. The standard log-rank
test statistics comparing two groups defined by the binary
covariate X is identical to the score test statistic in a uni-
variate Cox model containing covariate X (when no ties
are present) [7]. Therefore, the two approaches have the
same properties and can be interpreted in the same way.
This means that with hypothetical world data, the score
test statistic of the null hypothesis H0 : βX = 0 in the Cox
model

λE(t, x) = λE0(t)eβXx (7)

is identical to the log-rank test statistic.
The analogous model with the real world data (Ti, δi) is
the additive model

λO(t, x) = λP(t, x) + λE0(t)eβXx (8)
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Again, the null hypothesis H0 : βX = 0 is of inter-
est and this null hypothesis is clearly equivalent to the
null hypothesis of the log-rank type test, i.e. λE,1(t) =
λE,2(t), where the two groups are defined by the binary
covariate X.
In order to expect similar behaviour of the additive model
and the log-rank type test when testing this hypothesis,
the assumptions required by both methods should also be
the same. This implies that the λE0(t) in Eq. (8) should
be left completely unspecified, since the log-rank type
test also makes no distributional assumption within each
group. Unfortunately, the idea of using partial likelihood
in the framework of the relative survival does not work,
since the baseline hazard does not cancel out (due to λP
in Eq. (8)). Therefore, the λE0(t) in model Eq. (8) is usually
defined as a function of a few parameters - it has been ini-
tially defined with a stepwise constant hazard function [8]
and many alternative parametric specifications have been
proposed since [9–11]. The fully parametric model spec-
ified in this way can be fitted using maximum likelihood.
On the other hand, only two semi-parametric approaches
allowing λE0(t) to be left unspecified have been proposed
[3, 4]. Both approaches require some smoothing when
fitting (hence making some weak assumptions about the
baseline hazard form), therefore, these models cannot be
expected to give identical results as the log-rank type test
either. It can be quickly seen that the test statistics and
the p-values are not identical, therefore, the question is to
what extent the log-rank type test and the regressionmod-
els behave in the same way and can be interpreted in the
same way.

The stratified vs the non-stratified version
The derivation of the distribution of the log-rank test
statistic under the null hypothesis requires λE(t) to be
equal for individuals within a certain subgroup defined
by X [1]. This may not be true in practice, hence a
stratified version is proposed to take this inhomogeneity
into account. The stratified log-rank test implies that the
groups formed by X are not compared on the whole sam-
ple but rather in strata defined by a covariate S. Then, the
results from all strata are pulled together to form a single
test statistic value. The direct analog of this approach with
the hypothetical world data is the stratified Cox model

λE(t, x, s) = λE0,s(t)eβXx

in which the baseline hazard is allowed to differ between
strata, but a common coefficient βX describing the effect
of X is estimated. In the hypothetical world, where the
framework of the classical survival analysis is used, the
stratified log-rank test and the score test of the strati-
fied regression model give identical results. On the other
hand, the estimation of βX in a Cox model stratified by

S can be compared to a multivariate model containing
both X and S. If the covariate S satisfies the propor-
tional hazards assumption (i.e. λE0,s(t) = λE0(t) exp(βSs)),
βX has the same interpretation with both the stratified
and the multivariate model. Note that if X and S are not
independent, the equality between the stratified and the
multivariate regression model implies that the interpreta-
tion of the stratified model is importantly different from
the non-stratified version (i.e. univariate model).
To draw the analogy further, say we wish to compare

two groups defined by X with the hypothetical world data.
If hazards within these groups are not homogeneous, but
depend on S, the data follow a model with both covari-
ates (X and S) and the Cox model fit will not be perfect
if S is omitted. The estimated coefficient for X will shrink
toward zero, and the power for testing the null hypothesis
H0 : βX = 0 shall be lower. Since the Cox model score test
statistic and log-rank test statistic are equal, loss of power
shall also occur with the log-rank test if S is not taken into
account and the non-stratified version of the test is used.
The same can be then expected also when using the rela-
tive survival methodology.
The stratified log-rank type test may therefore be used
for two reasons: to correct for the fact that hazard is
not homogeneous within subgroups and to compare sub-
groups conditional on a second covariate S.

Simulations
Based on theoretical relationships given in the previous
sections, we can formulate two main issues to be explored
with simulations:

• How does the log-rank type test relate to the additive
model? We know that the two tests address the same
null hypothesis, but their test statistics are not the
same. The questions to be answered are: can we
expect the same size under the null hypothesis, do the
tests have the same power with different alternatives?

• Can the non-stratified version of the log-rank type
test be used even if comparing groups with
non-homogeneous hazards? How does the
homogeneity assumption affect the size of the test,
how is the power affected, when should the stratified
test be used instead?

Simulation design
The scenarios of all simulations have some common prop-
erties, that will allow for clear comparisons:

• We fix the data set size to 1000, since small sample
behaviour is not an issue of interest in this paper.
5000 simulation runs are performed in each scenario.

• We simulate the times following the competing risks
model (8) by first simulating the latent times (˜TE , ˜TP
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and C) and then taking the respective minima. This
enables us to generate both the real world as well as
the hypothetical world data.

• Several covariates enter the model. The population
part always depends on demographic variables, we
use age, sex and calendar year and denote them by D.
The excess hazard part can depend on D, but also on
other variables Z, the vector of all covariates will be
denoted by (D,Z). Some of these variables will be
used as X and S in our simulations. All variables are
generated independently of each other.

• We use an exponential model to simulate the times
˜TE , λE(t, x) = λeβXx, i.e. the baseline excess hazard is
fixed in time.

• We use the Slovene population tables and match
them with the demographic variables to simulate the
times ˜TP .

• We censor all the individuals after 10 years of
observation. We do not censor any data before that
time since censoring is not a crucial issue we would
like to research.

• The real world data is formed by
Ti = min(˜TE,i,˜TP,i,Ci), δi = I(˜TE,i < Ci ∨ ˜TP,i < Ci)

• The hypothetical world data is formed by
TE,i = min(˜TE,i,Ci), δE,i = I(˜TE,i < Ci).

Since both the log-rank type test and the additive regres-
sion model address the same question defined in the
hypothetical world, any difference that may be observed
between the two methods must come from the different
amount of information available in the real world.We thus
design the simulations in a way that allows us to care-
fully study these differences. Note that the simulations are
not attempting to perfectly reflect the data we might meet
in practice (we believe this is an endless task that pro-
vides very little understanding), instead they try to address
the various situations which may cause differences in the
test statistics. All the simulations are simplified so that
the cause for the properties can be tracked and different
grades of effects are used in several cases to show how a
certain property gains importance. Figure 1 presents the
parameters for the two simulation scenarios we consider:

• We use two distributions for demographic variables
D: sex is always balanced, calendar year is uniform
between 1990 and 2000, age can be either between 45
and 75 or between 25 and 55, in both cases we use a
mixture of two uniform distributions to get more
older patients, see Fig. 1. The first distribution is a
simplified version of our motivating example. The
demographic variables determine population
mortality hazard λP .

• To make the two scenarios comparable in real world
data, we set the baseline excess hazard λE0 to get a

similar overall number of deaths - approximately half
of the individuals die of any cause in the period of
observation (10 years).

The main factor we have thus changed in the two sce-
narios is the importance of the excess hazard λE compared
to the population hazard λP. We measure this importance
with the proportion of deaths due to excess hazard, i.e.
the proportion of patients that died (δi = 1) in which
˜TEi < ˜TPi, with our parameters the two proportions are
approximately 62% and 93%. The first scenario presents
a simplified version of what we could expect in practice,
the second is used to show how the results converge to
those of the hypothetical world when the excess hazard
becomes high compared to population hazard. A third
scenario with 41% of patients dying due to excess hazard
(age between 50 and 80, mixture of two uniform distri-
butions as above) is added to show that the results follow
the same logic even with lower proportions, the detailed
results for this scenario are reported in the Additional
file 1.
In terms of the covariates X and S, the main differ-

ences in the real world when compared to the hypothetical
world could arise from the fact that a covariate is or is
not in the population tables (we denote this by X ∈ D
or X /∈ D, respectively). We also change the number of
groups defined by both covariates and, in case of binary
variables, make their distribution balanced (the groups
occurring with equal probability, denoted as bal) or imbal-
anced (the group with the higher value of X occuring with
probability 0.9).
We simulate data so that both the real world and the

hypothetical world data are available and compare four
different test statistics.

• The log-rank type test (denoted as LRt) calculated on
the real world data.

• The results of a coefficient test in the
semi-parametric additive model (sAM). The EM
model [3] was chosen since the functions are readily
available in the relsurv [12] package. The Wald
test is used in all cases.

• The results of a Wald test for a coefficient in a
fully-parametric additive model (fAM) by (8). This
model is modelled as in [8] with λE0 being constant. It
is used as the reliable option since the
semi-parametric models have not been used much in
practice. We use it primarily to double-check our
simulations. Its results are not directly comparable to
LRt in terms of power since it works under the
additional assumption that the baseline excess hazard
is constant (which is true in our simulations).

• The log-rank test (denoted as LRh) calculated on the
hypothetical world data. This test is used as an ideal
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Fig. 1 Simulation design

situation to which the other tests can only approach.
It is also used to double-check our simulations. The
results of the Cox model coefficient test in the
hypothetical world are not reported, since they are
practically the same.

Technical note: Wald test is used for practical reasons - it
is available in the software for both semi-parametric and
fully parametric additive model. It is also asymptotically
equivalent to the score test and the differences should be
minimal since we are using large samples.

The function rs.diff and its usage
To ensure straightforward usability of the log-rank type
test, we provide a function named rs.diff which
we include in the package for relative survival analysis
relsurv [12] that is readily available from CRAN [13].
This function directly mimics the function for the calcu-
lation of the classical log-rank test survdiff, which is
available in the survival package [14]. The main dif-
ference between the syntax of the two functions is in the
usage of the population tables, where we follow the syntax
of the other functions of the relsurv package that rely
on the object ratetable (provided in the survival
package). For example, take a data set data1, in which the
first three lines equal:

> head(data1)

ID time cens age sex diag X

165 2165 0 55 1 8860 1

366 3625 1 60 1 8768 0

374 2932 1 70 2 8777 0

where time denotes the time Ti in days, cens denotes
the censoring status δi, age is the age of the patients in
years, sex denotes the gender (1= male, 2=female) and
diag denotes the date of diagnosis in date format which
counts the number of days since January 1st, 1960. The

log-rank test comparing the overall survival curves with
respect to sex is run as

> survdiff(Surv(time,cens)~sex,data=data1)

and the log-rank type test comparing the net survival
curves with respect to sex is run as

> rs.diff(Surv(time,cens)~sex+ratetable

(age=age*365.24,sex=sex,year=diag),

+ data=data1,ratetable=slopop)

Here, the ratetable object in the formula part
ensures that the demographic variables are in the right for-
mat (age has to be in days, the calendar year is denoted
as year in the population tables and as diag in the
data) and the ratetable argument tells that the Slovene
population tables should be used for the analysis. A test
stratified by covariate X can in both cases be called by
adding an object named strata(X) into the formula.
While the syntax is intentionally similar with the two

tests, there is an important difference in the calculation of
the two test statistics. The integral in Eqs. (2) or (3) can
be written as a simple sum at each event time since both Y
and N are step-wise constant functions.
However, the calculation of the log-rank type test com-

paring the net survival curves is not that straightforward.
The reason lies in the fact that the integral in Eqs. (5)
and (6) cannot be written as a simple sum at event times,
the reason for this stems from the integral in the term
Eq. (4). This integral is a continuous function in time and
is non-zero also at times when there is no event. There-
fore, the integral of ̂dNE cannot be written as a finite
sum. Furthermore, the λPi values are piecewise constant,
but they change at different times t for different individ-
uals (they change on the first of January each year and
when the patient gets a year older), so this cannot be
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easily solved. Therefore, a simplification is used in our
function - we calculate the integral in daily intervals, in
which λPi is constant and the replacement of the integral
by a sum causes negligible effect. Nevertheless, we can-
not avoid the additional computational intensity added by
the term Eq. (4), since the λPi values must be read from
the population tables for all individuals at all times while
still at risk. We use a C++ routine to make the R functions
faster, but the rs.diff function remains slower than the
survdiff function. It should be noted however, that the
same problem arises with the semi-parametric additive
regression model (and the net survival curve estimation):
while the fully parametric models only require the knowl-
edge of λP at the time of death of each individual, the
values at all times at risk must be obtained for the semi-
parametric model. The intuition behind this important
difference is yet to be fully understood. A similar problem
of continuity exists also for the traditional estimators of
net survival (Ederer II), but has been entirely overlooked
in the literature.

Results
Simulation results
In this section we present the simulations results. A large
scale simulation study has been performed but only the
results that bring interesting insight are reported in the
tables.

Log-rank type test and regression - comparison of the size
First, we compare the behaviour of the log-rank type test
with that of the additive model. We start with a compari-
son of the size of the two tests under the null hypothesis.
In Table 1 the results of several tests are compared. For
each test, we report the proportion of simulation runs in
which the null hypothesis was rejected, i.e. the p-value was
below 0.05.

Results We can see (Table 1) that the size of the log-
rank type test (LRt) is close to nominal and does not
seem to be liberal in in any of the scenarios. The same
can be claimed for the fully parametric model (fAM) and
the semi-parametric model (sAM), the only exception is

the scenario with only 41% of deaths due to excess haz-
ard, where the size of the latter can be above its nominal
value (a problem noted already in [3]). The log-rank test
in the hypothetical world (LRh) serves as a check that the
simulations are properly conducted.

Correlation of the p-values: While the sizes of both the
log-rank type test and of the semi-parametric additive
model are acceptable, the actual p values do not coincide
as well. The correlation of the p values of the LRt and
sAM in the above examples in the left part of the table is
around 0.72.When the proportion of excess hazard deaths
becomes large (right part of the table), both tests’ results
become more similar to their versions in the hypothetical
world (which are equal), hence the correlation in all the
above examples in the right part of the table is above 0.98.
The low correlation implies that one has to make a choice
between which test to perform (both LRt and sAM reject
the null hypothesis in around 3% of the cases, at least one
of the two tests rejects the null hypothesis in 7% of the
cases).

Log-rank type test and regression - comparison of the power
Comments on the simulation scenarios: Since we know
that both tests simplify to the same test statistic in the
hypothetical world, we can expect them to respond to the
same alternative hypotheses also with the real world data.
This reasoning is checked with simulations reported in
Table 2. We look at several situations, in particular, we
add two situations (last two rows in the table) where the
effect of X on excess hazard is not constant in time and
hence the proportional excess hazards assumption of the
additive model is not met. We simulate crossing hazards,
first in a situation where the overall effect is approximately
0 (β starts at 0.5 and changes to −0.5), and second, in
a situation where the overall effect is similar as in other
simulations (β starts at 0 and changes to 1).
In all cases, the power of the regression models is

expected to be higher than the power of log-rank type
test - regressionmodels work with additional assumptions
that are true in our scenarios. We are hence more inter-
ested in whether the difference between the log-rank type

Table 1 Comparison of the log-rank type test and the additive model: size

62% events due to ex. haz. 93% events due to ex. haz.

LRt sAM fAM LRh LRt sAM fAM LRh

X ∈ D, bal, bin (sex) 0.046 0.050 0.045 0.052 0.047 0.049 0.049 0.047

X /∈ D, bal, bin 0.049 0.052 0.046 0.053 0.047 0.048 0.048 0.049

X /∈ D, imbal, bin 0.050 0.053 0.050 0.052 0.049 0.045 0.045 0.047

X /∈ D, bal, 4 grps 0.052 0.052 0.041 0.050 0.046 0.046 0.046 0.047

Methods included: log-rank type (LRt), semi-parametric additive model (sAM), fully parametric additive model (fAM), log-rank test in hypothetical world (LRh). ((im)bal =
(im)balanced variable, i.e., the groups occur with (un)equal probabilities; bin= binary variable; 4 grps = a variable with four groups). X is the categorical covariate of interest, D
denotes the demographic variables
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Table 2 Comparison of the log-rank type test and the additive model: power

62% events due to ex. haz. 93% events due to ex. haz.

LRt sAM fAM LRh LRt sAM fAM LRh

X ∈ D, bal, bin (sex) 0.499 0.561 0.552 0.786 0.878 0.874 0.877 0.903

X /∈ D, bal, bin 0.487 0.578 0.567 0.792 0.877 0.877 0.876 0.903

X /∈ D, imbal, bin, ef > 0 0.467 0.391 0.359 0.700 0.857 0.793 0.792 0.847

X /∈ D, imbal, bin, ef < 0 0.537 0.720 0.711 0.864 0.888 0.931 0.933 0.943

X /∈ D, bal, 4 grps 0.339 0.408 0.385 0.629 0.736 0.743 0.745 0.787

X /∈ D, bal, bin, NPH, ef ≈ 0 0.052 0.074 0.062 0.047 0.048 0.053 0.051 0.049

X /∈ D, bal, bin, NPH 0.524 0.510 0.476 0.819 0.880 0.865 0.861 0.912

Methods included: log-rank type (LRt), semi-parametric additive model (sAM), fully parametric additive model (fAM), log-rank test in hypothetical world (LRh). ((im)bal =
(im)balanced variable, i.e., the groups occur with (un)equal probabilities; bin= binary variable; 4 grps = a variable with four groups; ef = variable’s effect; NPH =
nonproportional effect). X is the categorical covariate of interest, D denotes the demographic variables

tests and the regression models is similar across different
scenarios, if it is not, we could say that the tests are not
susceptible to the same alternative hypotheses and hence
have a different interpretation.

Results Several results can be read from Table 2:

• As expected, the semi-parametric model test in the
62% case has more power than the log-rank type test
in most scenarios. This may be at least partly
attributed to the additional implicit assumption of
the semi-parametric model (λE0 is smooth), which is
true in our simulation scenarios (λE0 is taken as a
constant in simulations). Interestingly, the power of
the fully parametric model is not higher than the
power of the semi-parametric model, though it works
with the additional information that the baseline
hazard is constant throughout the interval.

• With the 62% case, the difference between the power
of the log-rank type test and the semi-parametric
model is similar in all cases of proportional hazards
and balanced covariates. As the proportion of excess
hazard deaths increases, the power of all tests
becomes similar.

• Holding other simulation parameters equal, the
power changes in the case of imbalanced groups.
When the more common group has a lower hazard
(ef < 0), the power of any test gets higher, the
opposite effect on power can be seen when patients
in the more common group have a higher hazard.
Interestingly, this effect seems more pronounced
with the regression models than with the log-rank
type test, an explanation for this may be the results of
the 41% scenario: with an extremely low number of
events due to excess hazard, the model fitting
procedure does not converge, leading to huge
variances and unreliable results (see Additional file 1:
Table S4). The log-rank test thus seems the more
stable and reliable option.

• When the proportionality assumption fails, the
power of log-rank type test and the regression models
becomes very similar, indicating that the tests not
only have the same null hypotheses but also follow
the same logic which makes them susceptible to the
same alternatives. For example, none of methods can
detect crossing hazards when the average effect is 0.

Based on these results, we can conclude there is no
important difference between the interpretation of the
log-rank type test and the test of a coefficient in a uni-
variate additive model, but the power in the individual
scenariosmay be higher with themodels if their additional
assumptions are met.

Further notes on the power of log-rank type test
Comments on the simulation scenarios: The excess
hazard mortality is a crucial factor for the power of the
tests in the hypothetical world, however, the power in
the real world depends also on the proportion of the
hypothetical world deaths that we actually observe. The
population hazard can thus bee seen as a nuisance fac-
tor. To illustrate this fact with simulations we consider
two scenarios (columns A and B in Table 3) with equal
distribution of D (and hence equal λP values) and equal
baseline excess hazard (λE0 ) values. Working with a cen-
tered covariate (age) and changing only the sign of its
effect (|βAGE| remains equal in both scenarios), we get two
scenarios with equal power in the hypothetical world. In
column A, the effect of age is in the same direction as in
the population mortality tables (older individuals have a
higher population and excessmortality hazard), in column
B, the effect works in the opposite direction. We calcu-
late the proportion of individuals who die due to excess
hazard (TEi < TPi) among all individuals who die in the
hypothetical world (TEi < τ ) (‘Observed proportion of
excess hazard deaths‘ in Table 3). We then add a third
scenario, where this proportion is held equal, but the age
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Table 3 Results of the log-rank type test (LRt) when varying the proportion of excess hazard deaths observed in real world data among
all excess hazard deaths in hypothetical world data (’observed proportion’)

A B C

Proportion with TP < 10 0.34 0.34 0.29

Proportion with TE < 10 (1- net survival) 0.35 0.35 0.35

Effect of age β > 0 β < 0 β > 0

Proportion of patients that die in 10 years 0.55 0.58 0.52

Proportion of excess hazard deaths among all deaths 0.51 0.51 0.57

Observed proportion of all excess hazard deaths 0.83 0.86 0.86

Power of LRh 0.934 0.933 0.935

Power of LRt 0.507 0.538 0.572

of individuals is lowered and hence the total number of
population deaths is lower.
For these simulations, age was considered as the covari-

ate in question as it has the largest effect on population
mortality hazard and changing the direction of its effect
can thus make an observable difference. We simplified its
distribution and considered a binary covariate (55 or 75
years with 50% probability in columns A and B and 53 and
73 years in column C). Therefore, the proportion of excess
deaths among all deaths is no longer equal to 62%. Note
that fixing the mortality in the hypothetical world and in
the population, scenarios that provide larger differences
could not be designed. We thus repeated the simulations
50000 times, to guarantee that the differences are not a
consequence of random variation.

Results Table 3 confirms the importance of the amount
of information lost in the real world, compared to the
information available in the hypothetical world. This can-
not be directly estimated with the real world data, but
the direction of the covariate effect can serve as a guide-
line. The power in column B of Table 3 is higher as the
power in column A, since the proportion of individuals
who die due to excess hazard in the real world data is
higher (86% of all hypothetical world deaths compared to
83% in column A). In fact, the columns A and B also dif-
fer in the total number of deaths (more deaths in column
B), column C is added to prove that the observed differ-
ence in power is not due to the total number of deaths -
with equal observed proportion of excess hazard deaths,
a lower number of individuals dying due to other causes
increases the power.

Non-stratified and stratified log-rank type test - comparison
of the size
We now turn to the comparison of the stratified and
non-stratified version. While we need the homogeneity
assumption in theory, we would like to evaluate how
important this assumption is in practice.

Comments on the simulation scenarios: We simulate
scenarios with two covariates affecting the excess haz-
ard and check whether the non-stratified version remains
reliable under the null hypothesis. We try scenarios with
balanced and imbalanced covariates, different number of
strata and consider covariates that are or are not included
in the population tables. Since sex is the only categorical
variable in population tables, only one scenario with both
X ∈ D and S ∈ D is considered here (variable S is age; it
is categorized into three groups for the stratified version
of the test). Further simulations exploring the number of
strata used for stratification when both X ∈ D and S ∈ D
can be found in Table 6. Since no important differences
can be observed between the scenarios, we further study
the power by picking only two of the scenarios in Table 4
with different number of strata and vary the size of the
effect of S, these results are presented in Table 5.

Results The size of both tests is very close to 0.05 with
all the simulations performed (results are included in the
Additional file 1), regardless of the number of strata and
the size of the effect of S. This gives us confidence that
the non-stratified version can be used reliably even if the
hazards are non-homogeneous.

Non-stratified and stratified test - comparison of the power
Comments on the simulation scenarios: We repeat the
same scenarios as in the previous subsection, but now
with a non-zero effect of X (equal in all simulations). In
Table 4 the effect sizes of X and S are comparable in size,
in Table 5 the effect of S is varied.

Results The power of the stratified test tends to be larger
than that of the non-stratified test, but the difference is not
really striking (Table 4), the differences become important
only when the effect of S is large compared to the effect
of X (Table 5, other distributions of the covariates might
bring larger differences). On the other hand, when there is
no effect of S, no power seems to be lost by still performing
the stratified test.
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Table 4 Comparison of the non-stratified and stratified log-rank type test for different covariate types: power

62% events due to ex. haz. 93% events due to ex. haz.

LRt LRt-str LRt LRt-str

X ∈ D, bal (sex); S /∈ D, bal, bin 0.498 0.501 0.879 0.882

X ∈ D, bal (sex); S /∈ D, imbal, bin 0.508 0.510 0.872 0.874

X ∈ D, bal (sex); S /∈ D, bal, 10 str 0.501 0.498 0.875 0.878

X ∈ D, bal (sex); S /∈ D, bal, bin, NPH 0.514 0.520 0.887 0.893

X /∈ D, bal, bin; S ∈ D, bal, bin (sex) 0.483 0.489 0.872 0.875

X ∈ D, bal (sex); S ∈ D, (age; 3 str) 0.512 0.513 0.871 0.873

Methods included: non-stratified (LRt) and stratified log-rank type test (LRt-str). ((im)bal = (im)balanced variable, i.e., the groups occur with (un)equal probabilities; bin= binary
variable; 10 str = 10 strata; NPH = nonproportional effect). X is the categorical covariate of interest, S the stratification covariate, D denotes the demographic variables

Stratified test - the effect of the number of strata
Comments on the simulation scenarios: As the last
point, we further check the performance of the stratified
test in case of many strata. To mimic a real life situation,
we compare groups with respect to sex and stratify by age,
which we can always expect to be an important factor. We
simulate age as a continuous variable with a linear effect
on log excess hazard, but then categorize it to allow for
stratification. The effect of age is substantially larger than
the effect of sex (5 times higher), so that some differences
in power can be observed.

Results Table 6 once again confirms that the size of the
non-stratified version of the test is appropriate and that
the stratified test has more power. However, age is a con-
tinuous variable and thus the question is, howmany strata
to make. We can see that the power is best with 6 strata,
but not much worse with only 3 strata, which is rather few
considering that a strong effect of age was simulated. On
the other hand, splitting to 30 strata which leaves some
strata with only few events (practically all simulation runs
include strata with less than 5 events), still provides an
improved power compared to the non-stratified version.
However, if the strata are far too many (last row of the
Table 6), the power is importantly decreased. The rea-
son is that many strata are without events or there is only
one group within stratum and hence the information on

excess hazard carried by the patients in these strata is
not included in the estimation (on average a third of the
patients belong to such strata).

Example
We return to our example on myocardial infarction. Out
of 494 patients, 204 died (0.41). To get some idea of the
power we can expect with our sample, we consider the
proportion expected to die due to excess hazard (0.22;
PP estimator) and the proportion expected to die in the
population (0.31; population tables). The effect of sex in
our sample is in the opposite direction as in the popula-
tion, which, judging from the simulations, is also a positive
indicator for the power. Figure 2 presents the net sur-
vival curves estimated by the PP estimator, we observe
a marked difference between men and women that is
confirmed by the log-rank type test with respect to sex
(p = 0.02).
To confirm our simulation results, we check also the

semi-parametric and the fully parametric model (with
one parameter for the baseline hazard in the first year
of follow-up and another afterwards). Both yield equal
interpretation, with p values 0.001 and 0.006, respectively.
Of course, both men and women differ in age (age span

45-75) and a univariate model including age shows that
age is an important covariate in terms of excess hazard.
If interested in the effect of sex conditional on age being

Table 5 Comparison of the non-stratified and stratified log-rank type test for different effect sizes: power

62% events due to ex. haz. 93% events due to ex. haz.

LRt LRt-str LRt LRt-str

X ∈ D, bal (sex); S /∈ D, bal, bin, ef 0 0.505 0.505 0.870 0.870

X ∈ D, bal (sex); S /∈ D, bal, bin, ef 2x 0.502 0.519 0.863 0.880

X ∈ D, bal (sex); S /∈ D, bal, bin, ef 5x 0.465 0.559 0.778 0.894

X ∈ D, bal (sex); S /∈ D, bal, 10str, ef 0 0.495 0.496 0.879 0.875

X ∈ D, bal (sex); S /∈ D, bal, 10str, ef 2x 0.486 0.499 0.862 0.878

X ∈ D, bal (sex); S /∈ D, bal, 10str, ef 5x 0.472 0.559 0.772 0.895

Methods included: non-stratified (LRt) and stratified log-rank type test (LRt-str). (bal = balanced variable, i.e., the groups occur with equal probabilities; bin= binary variable; 10
str = 10 strata; ef= variable’s effect). X is the categorical covariate of interest, S the stratification covariate, D denotes the demographic variables
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Table 6 Comparison of the non-stratified and stratified log-rank
type test for different number of strata

Length of age interval for stratification (no. of strata) Size Power

non-stratified 0.042 0.500

10 years (3 strata) 0.049 0.538

5 years (6 strata) 0.049 0.546

1 year (30 strata) 0.051 0.534

6 months (60 strata) 0.050 0.516

1 month (360 strata) 0.050 0.368

X ∈ D (sex is the categorical covariate of interest), S ∈ D (age (grouped) is the
stratification covariate)

the same, we can consider the stratified model. However,
the stratification with respect to age cannot be very fine, a
yearly stratification would imply that 10% of the patients
(mostly the young ones) are omitted from the calculations.
Following our simulation results, we therefore limit our-

selves to 2-year or 5-year strata, which results in p values
equal to 0.18 and 0.09, respectively.
The different result than in the non-stratified test is

expected as age and sex are not independent (women are
on average 4.8 years older) and the usage of the stratified
test thus implies a different interpretation. If we include
age into a multivariate model and thus assume linearity of
the effect, we get a significant effect of sex in the case of
the semi-parametric model (p = 0.03) and a borderline
significant effect in the case of the fully parametric model
(p = 0.058). Since the linearity of age is hard to judge on
our data (especially with the younger patients, where there
are only a few individuals), the two models seem rather
unreliable.
We can therefore conclude that the net survival curves

differ significantly by sex, the non-stratified log-rank type

Fig. 2 Comparison of net survival (PP estimator) for men and women

test as a very reliable option can be used to show this.
Whether or not this difference can be fully explained by
the different age at infarction or persists within patients
of same age, remains a question that is hard to respond to
reliably with our sample, since the age-distribution is too
wide for such a small sample and thus very little can be
said about the youngest patients.

Discussion
The inclusion of the log-rank type test into the arsenal of
methods in relative survival may seem rather redundant at
first, since the same hypothesis may be checked by regres-
sion modelling which can be directly generalized also to
more complex problems. We have shown that the proper-
ties and the interpretation of the log-rank type test are in
fact equal to those of the additive model. However, the test
statistics are not identical and regression models require
additional smoothing (semi-parametric models) or addi-
tional assumptions (fully parametric models). Therefore,
the log-rank type test proves to be the simpler alternative
that requires less assumptions (or tuning parameters), has
a clearer form that lands itself to theoretical comparisons
with other methods and at the same time gives very reli-
able results. The performance of the log-rank type test has
been checked under many scenarios and no departures
from the desired values were identified in terms of size.
We have seen that the total sample size and the number
of events do not provide direct information on the power
of the log-rank type test. The key information is given by
net mortality - the number of people that would die in
the hypothetical world. On the other hand, the popula-
tion mortality acts as the nuisance factor and lowers the
amount of information in the real world.
When introduced in [1], two versions of the test statistic

for the log-rank type test were proposed. While it is true
that the assumption of hazard homogeneity is required for
the log-rank type test in theory, we have found no scenario
where the non-stratified version would not remain reliable
under the null hypothesis even if this assumption is not
met. This is consistent with the theory in the hypothetical
world, where we know that omitting a covariate in the Cox
model does not have an important effect on the size of the
test [15] and hence the same is true for the log-rank test.
Note however that, while all the crucial parameters that
could affect the change of properties between the hypo-
thetical and real world were considered in the simulations,
one cannot use these simulations as an indication that
the size of the semi-parametric additive model is reliable,
since the additional assumptions of this test (smoothing)
were not addressed in our simulations. Under the alterna-
tive hypothesis, when the net survival curves truly differ,
the power of the non-stratified test is lower and may be
importantly lower if the effect of the ignored variable that
causes inhomogeneity is high. On the other hand, some
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loss of power can also be observed when the data are
overly stratified and overly small groups are formed, but
we have shown that as long as a reasonable amount of
stratification is performed, no important loss of power can
be expected. While this result may lead to the conclusion,
that the stratified model is a sensible choice, this is in fact
true only for independent covariates, a fact that cannot
be checked in practice. When covariates are not indepen-
dent, the interpretation of the stratified test is conditional
on the stratification covariate and thus importantly dif-
ferent from the interpretation of the non-stratified: the
non-stratifed version tests whether a covariate X is related
to survival, the stratified version tests whether a covari-
ate X is related to survival in patients with equal values
of variable S. Therefore, the stratified version of the test
should not be understood as the alternative with the bet-
ter power, but rather as a test that addresses a different
research question.

Conclusions
The log-rank type test presents a stable and reliable
tool for comparing net survival between groups, which
requires less assumptions than its alternative, the addi-
tive regression model. No scenarios presenting departures
from the nominal size could be identified. The power of
the test depends on the total sample size and the num-
ber of events, with the number of events of interest being
the crucial factor determining power and the number of
other-cause deaths serving as a nuisance factor. The prop-
erties of the test remain favorable also in the case of
non-homogeneous hazards, its stratified version can be
used if comparisons conditional on a second covariate are
of interest. The interpretation of both the log-rank type
test and its stratified version equals to that of an analo-
gous semi-parametric additive regression model despite
the fact that no direct theoretical link can be established
between the test statistics.

Additional file

Additional file 1: Supplementary tables. Additional simulation results.
The file includes two tables containing the estimated size of both the
non-stratified and stratified version of the log-rank type test in different
scenarios (with 62% or 93% of events due to excess hazard). Size is close to
the nominal value of 0.05 in all cases.
Additionally, results for the simulations with proportion of excess hazard
death equal to 41% are included. They exhibit similar behaviour, both
versions of the log-rank type test seem reliable. (PDF 58 kb)
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