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Abstract

Background: Prognostic models often show poor performance when applied to independent validation data sets.
We illustrate how treatment use in a validation set can affect measures of model performance and present the uses
and limitations of available analytical methods to account for this using simulated data.

Methods: We outline how the use of risk-lowering treatments in a validation set can lead to an apparent
overestimation of risk by a prognostic model that was developed in a treatment-naïve cohort to make predictions
of risk without treatment. Potential methods to correct for the effects of treatment use when testing or validating a
prognostic model are discussed from a theoretical perspective.. Subsequently, we assess, in simulated data sets, the
impact of excluding treated individuals and the use of inverse probability weighting (IPW) on the estimated model
discrimination (c-index) and calibration (observed:expected ratio and calibration plots) in scenarios with different
patterns and effects of treatment use.

Results: Ignoring the use of effective treatments in a validation data set leads to poorer model discrimination and
calibration than would be observed in the untreated target population for the model. Excluding treated individuals
provided correct estimates of model performance only when treatment was randomly allocated, although this
reduced the precision of the estimates. IPW followed by exclusion of the treated individuals provided correct
estimates of model performance in data sets where treatment use was either random or moderately associated
with an individual's risk when the assumptions of IPW were met, but yielded incorrect estimates in the presence of
non-positivity or an unobserved confounder.

Conclusions: When validating a prognostic model developed to make predictions of risk without treatment,
treatment use in the validation set can bias estimates of the performance of the model in future targeted
individuals, and should not be ignored. When treatment use is random, treated individuals can be excluded from
the analysis. When treatment use is non-random, IPW followed by the exclusion of treated individuals is
recommended, however, this method is sensitive to violations of its assumptions.

Background
Prognostic models have a range of applications, from
risk stratification, to use in making individualized
predictions to help counsel patients or guide healthcare
providers when deciding whether or not to recommend
a certain treatment or intervention [1–3]. Before prog-
nostic models can be used in practice, their predictive
performance (e.g. discrimination and calibration)- in

short, performance- should be evaluated in a set of indi-
viduals who are representative of future targeted individ-
uals. In studies that use independent data to validate a
previously developed prognostic model, performance is
often considerably worse than in the development set
[4]. This may be due to, for example, overfitting of the
model in the development data set [5, 6] or differences
in case-mix (between the development set and validation
sets [7–10].
One aspect that can vary considerably between data

sets used for model development and validation is the
use of treatments or preventative interventions that
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affect (reduce) the occurrence of the outcomes under
prediction. Although a difference in the use of treat-
ments between a development and validation set is
generally viewed as a difference in case-mix characteris-
tics, treatment use in a validation set can actually lead to
further problems. When additional treatment use in a
validation set (compared to the development set) results
in a markedly lower incidence of the outcome under
prediction, the predictive performance of the model will
likely be affected. A challenge arises when a prognostic
model has originally been developed in order to make
predictions of “untreated risks”, i.e. predictions of an
individual’s prognosis without certain treatments, to
guide the decision to initiate those treatments in future
targeted individuals. Ideally these models should be vali-
dated in data sets in which individuals remain untreated
with those specific treatments throughout follow-up, so-
called treatment-naïve populations. However, the use of
such treatment-naïve populations is uncommon and
poor performance of a prognostic model seen in a
validation study could be directly attributed to treatment
use in the validation data set [11, 12].
Ignoring the effects of treatment use in the develop-

ment phase of a prognostic model for the prediction of
untreated risks has already been shown to lead to a
model that underestimates this risk in future targeted
individuals [13]. However, it is not clear to what extent
treatment use in a validation set might influence the
observed performance of a prognostic model that was
developed in a treatment-naïve population, or how one
can account for additional treatment use in a validation
set in order to correctly estimate how a prognostic
model would perform in its target (untreated) popula-
tion using a treated validation set.

In this paper, we provide a detailed explanation of
when and how treatment use in a validation set can bias
the estimation of the performance of a prognostic model
in future targeted (untreated) individuals and compare
different analytical approaches to correctly estimate the
performance of a model using a partly treated validation
data set in a simulation study.

Methods
Problems with ignoring treatment use in a validation
study
If individuals in a validation set receive an effective treat-
ment during follow-up, their risk of developing the out-
come will decrease. Figs. 1a and b show the effect of
treatment use on the distribution of risks in data sets that
represent data from a randomized trial (RCT) and a non-
randomized study (e.g. routine care data or data from an
observational cohort study) in which treatment use was
more likely in high-risk individuals. In the event of the use
of an effective treatment, fewer individuals will develop the
outcome than would have, had they remained untreated,
and thus the observed outcome frequencies will be lower
than the predicted “untreated” outcome frequencies. As a
result, a prognostic model developed for making predic-
tions of risk without that treatment (i.e. models used to
guide the initiation of a certain treatment) will erroneously
appear to overestimate risk in a partially treated validation
set, regardless of how treatments have been allocated. As
the aim, in this case, is to estimate the performance of the
model when used for future, untreated individuals, mea-
sures of model discrimination and calibration will give a
biased representation of the performance of the model
when used in practice for making untreated outcome pre-
dictions, if treatment use in the validation set is ignored.
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Observed risk

All untreated
50% treated

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Non−random treatment

Observed risk

All untreated
50% treated

a) b)

Fig. 1 a-b: Risk distributions in two simulated validation sets. 50% of individuals received an effective treatment (relative odds reduction on
treatment: 0.5), (see Table 2 scenarios 2 and 1, respectively, for details). a the model was validated on the combined treatment and control group
of a randomised trial. b the model was validated using data from a non-randomised setting where the probability of receiving treatment
depended on an individual’s (untreated) outcome risk. Black lines represent the observed risks in the validation set, after treatment. Grey lines
represent the risks of the same individuals had they (hypothetically) remained untreated
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The effect that treatment use will have on measures of
model performance in a validation study will depend on a
number of factors, including the strength of the effect of
treatment on the outcome risk, the proportion of individ-
uals receiving treatment, and the underlying pattern of
treatment use. If a treatment has a weak effect on the out-
come risk or only a small proportion of individuals are
treated in a validation set, the impact on model discrimin-
ation and calibration will be relatively small. Furthermore,
the way in which treatments are allocated to individuals,
whether treatment is allocated randomly, as in data from
an RCT, or non-randomly and treatment use is rather
based on an individual’s risk-profile or according to strict
treatment guidelines, will influence the impact that treat-
ment use will have in a validation study. If, for example,
high-risk individuals are selectively treated, we can

anticipate an even greater impact of treatment use on
measures of model performance. In this case, the distribu-
tion of observed risks will become narrower, due to the
risk-lowering effects of treatment in the high-risk individ-
uals (see Fig. 1b), making it more difficult for the model to
discriminate between individuals who will or will not
develop the outcome, and the calibration in high-risk
individuals will be most greatly affected.

Methods to account for treatment use
In this section we describe possible approaches to account
for treatment use in a validation study. For each method,
the rationale, expected result of its use, and potential
issues are outlined. A summary of the methods, including
additional technical details can be found in Table 1.

Table 1 Possible methods to account for the effects of treatment in a validation set

Approach Implementation Key considerations

1. Exclude treated individuals 1. Exclude any individual who received treatment
between the point of prediction and the assessment
of the outcome from the analysis.

2. Estimate model performance in only the untreated
subset.

- Provides correct estimates of performance in the
(untreated) target population if treatment use is
not associated with other prognostic factors.†

- Decreases the effective sample size.

2. Inverse probability weighting 1. Fit a propensity score (PS) model for treatment in
the validation set using logistic regression:

logit(Tri) = α0 þ
Pn

i¼1 αiXið Þ
2. Calculate PS for individuals using the estimates from
the fitted PS model:

PSi =
Pn

i¼1 α̂ iXi
� �

3. Calculate inverse probability weights (wi) for each
untreated individual based on their individual PS:

wi = 1 / (1 - PSi) [17]
4. Exclude treated individuals from the analysis set.
5. (optional) Truncate weights [21].
6. Estimate weighted measures of model performance
in only the untreated subset.

- Provides correct estimates of performance in
(untreated) target population if treatment use
is or is not associated with other prognostic
factors, provided key assumptions of IPW are met.†

- Does not provide correct estimates in the presence
of non-positivity, or when there are unobserved
predictors that are strongly associated with both
the outcome and use of treatment [15, 18].

- Exclusion of treated individuals decreases the
effective sample size.

- Extreme weights can further reduce precision and
introduce bias.

3. Recalibration 1. Calculate the linear predictor of the prognostic
model:
LP0i =

Pn
i¼1 β̂ iXi

� �

2. Re-estimate the model intercept in the full
validation data [23, 22].

logit(Yi) = γ0 + offset(LP0i)
3. Calculate the updated linear predictor.
LP1i = γ̂0 + LP0i
4. Estimate model performance using LP1.

- Does not affect discrimination.
- Not sufficient to correct calibration if relative
treatment effects are heterogeneous or use is
associated with an individual’s risk.

- Adjusts for other differences in case-mix leading
to misleading estimates of the calibration of the
original model.

4. Model treatment 1. Refit the original prognostic model using the full
validation data, including an indicator term for
treatment use and treatment interaction terms.

i) with recalibration of the intercept:
logit(Yi) = γ0 + offset(LP0i) + γTrTri *
ii) with a full refit of the original model:
logit(Yi) = γ0 +

Pn
i¼1 γiXið Þ + γTrTri *

2. Calculate the updated linear predictor.
i) LP2i = γ̂0 +

Pn
i¼1 β̂ iXi

� �
+ γ̂TrTri *

ii) LP3i = γ̂0 +
Pn

i¼1 γ̂ iXi
� �

+ γ̂TrTri *
3. Estimate model performance using LP2 or LP3.

- Can lead to an over-estimation of model
discrimination.

- Adjusts for other differences in case-mix leading
to misleading estimates of the calibration of the
original model.

Abbreviations: Xi design matrix (predictor values) for individual i; Yi outcome for individual i; LP linear predictor; PS propensity score; Tr treatment
α̂ i represent coefficients of the treatment propensity model for individual i
β̂ i represent coefficients of the original prognostic model for individual i
γ̂ i represent coefficients of the updated prognostic model for individual i
*Interaction terms between treatment use and predictors should be included where necessary
†Estimates will be correct providing all other modelling assumptions are met
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Exclusion of treated individuals from the analysis
A common and straightforward approach to remove
the effects of treatment is to exclude from the
analysis individuals in the validation data set who re-
ceived treatment. In doing this, one assumes that the
untreated subset will resemble the untreated target
population for the model.
As Fig. 2a shows, in settings where treatment is ran-

domly allocated (Table 2, scenario 2), the exclusion of
treated individuals will result in a validation set that is
indeed still representative of the target population. As a
result, measures of discrimination and calibration are
the same as they would be had all individuals remained
untreated, and thus are correct estimates of the perform-
ance of the model in its target population.. However, the
effective sample size is reduced, (e.g. a 50% reduction in
the case of an RCT with 1:1 randomization).
Figure 2b represents a study where treatment allo-

cation was non-random and high-risk individuals had

a higher probability of being treated (Table 2, sce-
nario 1). If treatments were initiated between the mo-
ment of making a prediction and the assessment of
the outcome, the exclusion of treated individuals re-
sults in a subset of individuals with a lower risk on
average than in the untreated target population. As a
result, the case-mix (in terms of risk profile) in the
data set will become more homogenous, and one can
expect measures of discrimination to decrease [9, 14],
underestimating the true discriminative ability of the
model in future targeted individuals. While this ap-
proach may appear to provide correct estimates of
calibration, the interpretation of these measures is
limited due to the inherent selection bias. The non-
randomly untreated individuals only represent a por-
tion of the total target population. Hence, estimates
of model performance may provide little information
about how well calibrated the model is for high-risk
individuals, as these have been actively excluded.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Randomized treatment

Observed risk

All untreated
50% treated
Treated excluded

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Non−random treatment

Observed risk

All untreated
50% treated
Treated excluded

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Non−random treatment

Observed risk

All untreated
50% treated
IPW weighted

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Non−random treatment

Observed risk

All untreated
50% treated
IPW weighted, treated excluded

a) b)

c) d)

Fig. 2 a-d: Risk distributions in two simulated validation sets, before and after applying different approaches to correct for treatment use. 50% of
individuals received an effective treatment (relative odds reduction on treatment: 0.5) (see Table 2 scenarios 2 and 1, respectively, for details). a the model
was validated on the combined treatment and control group of a randomised trial. b-d the model was validated using data from a non-randomised
setting where the probability of receiving treatment depended on an individual’s (untreated) outcome risk. Solid black lines represent the observed risks in
the validation set after treatment. Dashed black lines represent the risks observed after applying correction methods to the data: a-b the exclusion of treated
individuals, c IPW, d IPW followed by the exclusion of treated individuals. Grey lines represent the risks of the same individuals had they
remained untreated
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Inverse probability weighting
An alternative approach for model validation in data sets
with non-random treatment use would be to balance the
data in such a way that it resembles that of an RCT. In-
verse probability weighting (IPW) is a method applied in
studies where the aim is to obtain an estimate of the
causal association between an exposure and outcome,
accounting for the influence of confounding variables on
the effect estimate [15]. A “treatment propensity model”
is first fitted to the validation data, regressing an indica-
tor (yes/no) of treatment use (dependent variable) on
any measured variables that may be predictive of treat-
ment use (independent variables), including the predic-
tors of the prognostic model that is being evaluated [16].
Subsequently this treatment propensity model is then
used to estimate for each individual in the validation set
the probability of receiving the treatment, based on his/
her observed variables (risk profile). Following this, each
individual is weighted by the inverse of their own prob-
ability of the actual treatment received [17], resulting in
a distribution of risks in the validation set that resembles
what would have been seen had treatments been ran-
domly allocated, as shown by the similarity of the solid
black line in Fig. 2a and the dashed black line in Fig. 2c.
By excluding treated individuals after deriving weights,
the resulting validation set should resemble the un-
treated target population, as seen in Fig. 2d. However,
this will again result in a smaller effective sample size
for the validation.
IPW is subject to a number of theoretical assumptions

[15, 18, 19]. One example of a violation of these assump-
tions is practical non-positivity (i.e. it may be that in
some risk strata no subjects received the treatment) [20],
which may arise if a subset of individuals has a contra-
indication for treatment or when guidelines already rec-
ommend that individuals above a certain probability
threshold should receive treatment. This can lead to in-
dividuals receiving extreme weights, resulting in biased
and imprecise estimates of model performance [15]. In
addition, problems can occur due to incorrect specifica-
tion of the treatment propensity model, for example due
to the presence of unmeasured confounders- predictors
associated with both the outcome and the use of treat-
ment in the validation set. Variants of the basic IPW
procedure can be applied, such as weight truncation,
which may improve the performance of this method in
settings where the assumptions are violated [21].

Model recalibration
The incidence of the predicted outcome may vary be-
tween development and validation data sets. If this is the
case, the predictions made by the model will not, on
average, match the outcome incidence in the validation
data set [22]. As discussed in section 2.1, use of an

effective treatment in a validation data set will lead to
fewer outcome events and thus a lower incidence than
there would have been had the validation set remained
untreated. One approach to account for this would be to
recalibrate the original model using the partially treated
validation data set. In a logistic regression model, a
derivative of the incidence of the outcome is captured by
the intercept term in the model, and thus a simple
solution would seem to be to re-estimate the model
intercept using the validation data set [23, 24]. In doing
this, the average predicted risk provided by the recali-
brated model should then be equal to the (observed)
overall outcome frequency in the validation set. Further
details of this procedure are given in Table 1. Where
treatment has been randomly allocated, intercept recali-
bration should indeed account for the risk-lowering ef-
fects, provided that the magnitude of the treatment
effect does not vary depending on an individual’s risk
and thus is constant over the entire predicted probability
range. In non-randomized settings, where treatment use
by definition is associated with participant characteris-
tics, a simple intercept recalibration is unlikely to be suf-
ficient due to interactions between treatment use and
patient characteristics that are predictors in the model.
However, although recalibration may seem a suitable

solution for modelling the effects of treatment, when ap-
plying recalibration, concerns should also be raised over
the interpretation of the estimated performance of the
model. Differences in outcome incidence between the
development data set and validation data set may not be
entirely attributable to the effects of treatment use. By
recalibrating the model to adjust for differences in treat-
ment use and effects, we simultaneously adjust for
differences in case-mix between the development and
validation set. As the aim of validation is to evaluate the
performance of the original prognostic model, in this
case in a treatment-naïve sample, recalibration may ac-
tually lead to an optimistic impression of the accuracy of
predictions made by the original model in the validation
set. For example, if the validation set included individ-
uals with a notably greater prevalence of comorbidities
and thus were more likely to develop the outcome,
recalibration prior to validation could mask any inad-
equacies of the model when making predictions in this
subset of high-risk individuals. Thus recalibration is not
an appropriate solution to the problem.

Incorporation of treatment in the model
A more explicit way to deal with treatment use would be
to update the prognostic model with treatment use
added as a new predictor. If effective, treatment can
actually be considered to be a missing predictor in the
original developed model. However, unlike other predic-
tors, when validating a model in a non-randomised data
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set, we cannot know whether a person in practice will
indeed receive the treatment at the point of making a
prediction. By adding a binary predictor for treatment
use to the original prognostic model, one may aim to al-
leviate the misfit that results from the omission of this
predictor, and get closer to the actual performance of
the original model in the validation set, had individuals
remained untreated.
There are a number of approaches to updating a model

with a new predictor [23, 22, 25]. One option would be to
incorporate an indicator for treatment on top of the prog-
nostic model, keeping the original model coefficients
fixed. However, in doing this we assume that there is no
correlation between treatment use and the predictors in
the model. Instead the model could be entirely refitted
with the addition of an indicator term for treatment using
the validation data set (for further details, see Table 1). It
may be necessary to include statistical interaction terms in
the updated model, where anticipated [26].
A challenge when considering this approach is the cor-

rect specification of the updated prediction model. Fail-
ure to correctly specify any interactions between
treatment and other predictors in the validation set
could mean that the effects of treatment are not com-
pletely taken into account. Furthermore, the addition of
a term for treatment to the model that is to be validated
may improve the performance beyond that of the ori-
ginal model due to the inclusion of additional predictive
information. Thus, as with recalibration, we do not rec-
ommend this approach.

Outline of a simulation study
We assess the performance of different methods to ac-
count for the effects of treatment in fifteen scenarios
using simulated data. The effectiveness of two methods
described in section 2.2, model recalibration and the in-
corporation of a term for treatment use in the model,
are not present, as their inferiority has already been
discussed.
Details of the simulation study are provided in Table 2,

which describes 15 scenarios that were studied. For each
scenario, a development data set of 1000 individuals of
whom all remained untreated throughout the study was
simulated. A prognostic model was developed with two
predictors using logistic regression analysis, specifying
the model so it matched the data generating model. Fif-
teen validation sets of 1000 individuals were drawn using
the same data generating mechanism as their corre-
sponding development data sets, representing an ideal
untreated validation set to estimate the model’s ability to
predict untreated risks. Subsequently, 50% of the indi-
viduals in each validation set were simulated to receive a
risk-lowering point-treatment with a constant effect of a
reduction in the outcome odds by 50%.

In scenarios 1, 3 and 4, an individual’s probability of
receiving treatment was a function of their untreated
risk of the outcome, representing observational data. In
scenario 2, treatment was randomly allocated to individ-
uals, simulating data from an RCT. In scenarios 1 and 3,
there was a moderate positive association between risk
and treatment allocation, and thus individuals with a
more “risky” profile were more likely to receive treat-
ment. In scenario 4 this association was large: treatment
was allocated to most (95%) of the individuals with a
predicted risk higher than 18%. In scenario 3, the rela-
tive treatment effect was allowed to increase with in-
creasing risk. Using scenario 1 as a starting point, in
scenarios 5–12, the effect of treatment on risk varied
from strong to weak, and the proportion of individuals
treated varied. In scenarios 13–15, an unobserved
predictor with varying association (moderate negative,
weak positive or strong positive) with the outcome was
included in the data generating model.
The performance of the prognostic model was esti-

mated in each of these data sets, first ignoring the effects
of treatment, and again either by first excluding treated
individuals from the analysis, or by applying IPW
methods (as specified in Table 1). We applied standard
IPW and IPW with weight truncation (at the 98th per-
centile). For scenarios 1–12, the treatment propensity
model was correctly specified; for scenarios 13–15, the
unobserved predictor was (by definition) omitted from
the treatment propensity model.
In all simulated validation sets and for all methods be-

ing applied, performance was estimated in terms of the
c-index (area under the ROC curve) and observed:ex-
pected (O:E) ratio. For scenarios 1–4 and 13–15 calibra-
tion plots were constructed. For IPW methods,
calculated IPW weights were used to estimate weighted
statistics (see Additional file 1 for further details). In
order to obtain stable estimates of the c-index and O:E
ratio, we repeated the process of data generation, model
development and validation 10,000 times, calculating the
mean and standard deviation (SD) of the distribution of
the 10,000 estimates. Calibration plots were based on
sets of 1 million individuals (equivalent to combining re-
sults from 1000 repeats in data sets with 1000 individ-
uals) for each scenario. R code to reproduce the analyses
can be found in Additional file 1.

Results
Results of the simulation study are presented below. A
summary of the estimated performance measures in
each scenario can be found in Tables 3 and 4, and cali-
bration plots for scenarios 1–4 and 13–15 are depicted
in Figs. 3 and 4, respectively.
Results were derived from development and validation

sets of 1000 individuals. Performance estimates are the
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means (and standard deviations) of the distribution of
O:E ratios from 10,000 simulation replicates. See Table 2
for details of the scenarios.
Results were derived from development and validation

sets of 1000 individuals. Performance estimates are the
means (and standard deviations) of the distribution of c-
indexes from 10,000 simulation replicates. See Table 2
for details of the scenarios.

Ignore treatment
Ignoring the effects of treatment resulted, as expected,
in predicted risks that were always greater than the
observed outcome frequencies, suggesting poor model
calibration in all scenarios. This was exacerbated in non-
randomised settings, in which there appeared to be
greater mis-calibration in high-risk individuals. When
treatment allocation was non-random, ignoring

Table 3 Estimated calibration in the validation set (observed:expected (O:E) ratio) across fifteen different simulated scenarios

Scenario Method

Reference: untreated Ignore treatment Exclude treated IPW IPW, exclude IPWtrunc exclude

1 1.00 (0.09) 0.76 (0.07) 1.01 (0.13) 0.79 (0.09) 1.00 (0.13) 1.00 (0.12)

2 1.00 (0.09) 0.79 (0.07) 1.00 (0.11) 0.79 (0.07) 1.00 (0.11) 1.00 (0.11)

3 1.01 (0.09) 0.69 (0.07) 1.00 (0.13) 0.76 (0.09) 1.00 (0.13) 1.00 (0.12)

4 1.00 (0.09) 0.72 (0.07) 1.01 (0.16) 0.74 (0.30) 0.98 (0.44) 1.00 (0.17)

5 1.00 (0.09) 0.80 (0.08) 1.00 (0.13) 0.68 (0.07) 1.00 (0.10) 1.00 (0.10)

6 1.00 (0.09) 0.87 (0.08) 1.01 (0.10) 0.79 (0.08) 1.00 (0.10) 1.00 (0.10)

7 1.00 (0.09) 0.96 (0.09) 1.01 (0.10) 0.93 (0.10) 1.00 (0.10) 1.00 (0.10)

8 1.00 (0.09) 0.63 (0.06) 1.01 (0.12) 0.68 (0.08) 1.00 (0.13) 1.00 (0.12)

9 1.00 (0.09) 0.91 (0.08) 1.01 (0.12) 0.92 (0.09) 1.00 (0.13) 1.00 (0.12)

10 1.00 (0.09) 0.49 (0.06) 1.00 (0.17) 0.68 (0.11) 1.00 (0.20) 1.00 (0.18)

11 1.00 (0.09) 0.66 (0.07) 1.00 (0.17) 0.79 (0.11) 1.00 (0.20) 1.00 (0.18)

12 1.01 (0.09) 0.88 (0.08) 1.01 (0.17) 0.92 (0.12) 1.00 (0.20) 1.00 (0.18)

13 1.00 (0.09) 0.75 (0.07) 0.90 (0.12) 0.76 (0.08) 0.87 (0.12) 0.88 (0.11)

14 1.00 (0.09) 0.74 (0.07) 0.70 (0.10) 0.72 (0.07) 0.67 (0.10) 0.67 (0.09)

15 1.00 (0.09) 0.76 (0.07) 0.39 (0.07) 0.74 (0.07) 0.38 (0.07) 0.38 (0.07)

Abbreviations: Exclude: exclusion of treated individuals from the analysis; IPW inverse (treatment) probability weighting; IPWtrunc IPW with weight truncation at
98th percentile

Table 4 Estimated discrimination in the validation set (c-index) across fifteen different simulated scenarios

Scenario Method

Reference: untreated Ignore treatment Exclude treated IPW IPW, exclude IPWtrunc exclude

1 0.67 (0.02) 0.63 (0.02) 0.65 (0.03) 0.66 (0.03) 0.66 (0.05) 0.65 (0.04)

2 0.67 (0.02) 0.66 (0.02) 0.67 (0.03) 0.66 (0.02) 0.67 (0.03) 0.67 (0.03)

3 0.67 (0.02) 0.59 (0.03) 0.65 (0.03) 0.64 (0.03) 0.66 (0.05) 0.65 (0.04)

4 0.67 (0.02) 0.59 (0.03) 0.60 (0.04) 0.59 (0.08) 0.57 (0.15) 0.60 (0.05)

5 0.67 (0.02) 0.62 (0.02) 0.65 (0.03) 0.66 (0.03) 0.67 (0.03) 0.66 (0.03)

6 0.67 (0.02) 0.64 (0.02) 0.65 (0.03) 0.66 (0.03) 0.66 (0.03) 0.66 (0.03)

7 0.67 (0.02) 0.66 (0.02) 0.65 (0.03) 0.67 (0.03) 0.67 (0.03) 0.66 (0.03)

8 0.67 (0.02) 0.60 (0.03) 0.65 (0.03) 0.66 (0.03) 0.66 (0.05) 0.65 (0.04)

9 0.67 (0.02) 0.65 (0.02) 0.65 (0.03) 0.66 (0.03) 0.66 (0.05) 0.65 (0.04)

10 0.67 (0.02) 0.61 (0.03) 0.65 (0.05) 0.66 (0.05) 0.66 (0.08) 0.65 (0.06)

11 0.67 (0.02) 0.64 (0.03) 0.65 (0.05) 0.66 (0.05) 0.66 (0.08) 0.65 (0.06)

12 0.67 (0.02) 0.66 (0.02) 0.65 (0.05) 0.66 (0.04) 0.66 (0.08) 0.65 (0.06)

13 0.66 (0.02) 0.63 (0.02) 0.63 (0.03) 0.65 (0.03) 0.64 (0.05) 0.63 (0.04)

14 0.65 (0.02) 0.63 (0.02) 0.60 (0.04) 0.62 (0.03) 0.61 (0.04) 0.60 (0.04)

15 0.62 (0.02) 0.61 (0.03) 0.57 (0.05) 0.58 (0.03) 0.57 (0.05) 0.57 (0.05)

Abbreviations: Exclude: exclusion of treated individuals from the analysis; IPW inverse (treatment) probability weighting; IPWtrunc IPW with weight truncation at
98th percentile
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treatment led to an underestimation of the c-index by
up to 0.08 (scenario 3), whereas the c-index did not no-
ticeably change in the RCT scenario. As expected, when
either the effectiveness of treatment or the proportion of
individuals treated increased, both the O:E ratio and c-
index were more severely underestimated.

Method 1: Exclude treated individuals
Excluding treated individuals resulted in calibration
measures that appeared to reflect those of the untreated
target population in most scenarios. However, as Fig. 3
shows, use of this approach when treatment allocation is
dependent on an individual’s risk results in a loss of in-
formation about calibration in high risk individuals.
When treatment allocation was random (scenario 2), this
approach yielded a correct estimate of the c-index. As
treatment allocation became increasingly associated with
an individual’s risk across scenarios, this method yielded
lower estimates for discrimination than observed in the

untreated set, due to the selective exclusion of high-risk
individuals, and consequently a narrower case-mix. The
estimates of the c-index and O:E ratio were constant as
the treatment effect and proportion treated changed
across scenarios 5–12. In the presence of a strong un-
measured predictor of the outcome associated with
treatment use (scenarios 14–15), exclusion of treated in-
dividuals resulted in an underestimation of the perform-
ance of the model. In addition, in all scenarios the
precision of estimates of both the O:E ratio and c-index
decreased due to the reduction in effective sample size.

Method 2: Inverse probability weighting
Across all scenarios, IPW alone did not improve calibra-
tion, compared to when treatment was ignored, whereas
IPW followed by the exclusion of treated individuals
provided correct estimates for calibration. IPW alone or
followed by the exclusion of treated individuals im-
proved estimates of the c-index in all scenarios where

Fig. 3 Calibration curves calculated in a treated validation set, following different approaches to account for the effects of treatment. Scenario 1:
P(treatment) increases with risk, fixed treatment effect; scenario 2: randomized treatment, fixed treatment effect; scenario 3: P(treatment) increases
with risk, treatment effect increases with risk; scenario 4: 18% baseline risk threshold for treatment, fixed treatment effect. Plots were based on
sets of 1 million individuals
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the assumptions of positivity and no unobserved con-
founding were met. In scenario 4, where treatment allo-
cation was determined by a strict risk-threshold and
thus the assumption of positivity was violated, IPW was
ineffective, and resulted in the worst estimates of dis-
crimination across all methods. In addition, the extreme
weights calculated in scenario 4 led to very large stand-
ard errors. In scenarios 13–15, the presence of an unob-
served confounder led to the failure of IPW to provide
correct estimates of the c-index. Weight truncation at
the 98% percentile increased precision, but was less
effective in correcting of the c-index for the effects of
treatment.

Discussion
We showed that when externally validating a prognostic
model that was developed for predicting “untreated”
outcome risks, treatment use in the validation set may
substantially impact on the performance of the model in
that validation set. Treatment use is problematic, if ig-
nored, regardless of how treatment has been allocated,
though more challenging to circumvent when non-
randomized. While the risk-lowering effect of treatment
seems to have little effect on model discrimination in
randomised trial data, the model will appear to

systematically over-estimate risks (mis-calibration). This
effect worsens with greater dependency of treatment use
on patient characteristics (e.g. baseline risk).
We present simple methods that could be considered

when attempting to take the effects of treatment use into
account. While the use of IPW in prediction model re-
search is uncommon, the rationale behind using IPW in
settings with non-randomized treatments is motivated
by its use to remove the influence of treatment on causal
(risk) factor-outcome associations [27, 28]. Although the
use of IPW prior to the exclusion of treated individuals
is a promising solution in data where treatments are
non-randomly allocated, it should not be used when
there are severe violations of the underlying assump-
tions, e.g. in the presence of non-positivity (where some
individuals had no chance of receiving treatment), or
when there is an unobserved confounder, strongly asso-
ciated with both the outcome and treatment use. There
is thus a need to explore alternative methods to IPW to
account for the effects of treatment use when validating
a prognostic model in settings with non-random
treatment use.
Although the results of our simulations support the

expected behaviour of the methods described in section
2.2, some findings warrant further discussion. First,

Fig. 4: Calibration curves calculated in a treated validation set, following different approaches to account for the effects of treatment, in the
presence of an unmeasured predictor (U) associated with both the outcome and the probability of receiving treatment. Scenario 13: U has a
weak association with the outcome (log(OR) = 1); scenario 14: U has a moderate association with the outcome (log(OR) = 2); scenario 15: U has a
strong association with the outcome (log(OR) = 4). Plots were based on sets of 1 million individuals.
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although excluding treated individuals when treatments
use is non-random theoretically results in incorrect
estimated of model performance, in our simulations, the
impact on model discrimination was small in most
scenarios. However, when the association between an
individual’s risk profile and the chance of being treated
increased (scenario 4), the selection bias due to exclud-
ing treated individuals resulted in a large decrease in the
c-index, as expected. Second, in simulated scenarios in
which an unobserved confounder of the treatment-
outcome relation was present, the performance of the
model greatly decreased after excluding treated individ-
uals, with or without IPW. This is likely due to the
selective exclusion of individuals with a high value for
the strongly predictive unobserved variable. This results
in a narrower case-mix distribution, and consequently
lower model discrimination, as well as mis-calibration
due to the exclusion of a strong predictor of the
outcome.
While it is unclear to what extent treatment use has

affected existing prognostic model validation studies,
findings from a systematic review of cardiovascular
prognostic model studies indicate that changes in treat-
ment use after baseline measurements in a validation
study are rarely considered in the analysis [29]. While a
number of studies excluded prevalent treatment users
from their analyses, the initiation of risk-lowering inter-
ventions, such as statins, revascularization procedures
and lifestyle modifications during follow-up was not
taken into account. An equally alarming finding was that
very few validation studies even reported information
about treatment use during follow-up, raising concerns
over the interpretation of the findings of these studies.
Based on the findings of the present study, we suggest
that information about the use of effective treatments
both at the study baseline and during follow-up should
be reported in future studies.
It must be noted that not all prediction model

validation studies require the same considerations for
treatment use. Although we have discussed prognostic
models used for predicting the risk of an outcome
without treatment, sometimes prognostic models are
developed for making predictions in both treated and
untreated individuals. If, for example, the treatments
used in the validation set are a part of usual care, and
are present in the target population for the model, then
differences in the use of these treatments between the
development and validation sets should be viewed as a
difference in case-mix and not as an issue that we need
to remove. Furthermore, if the model adequately incor-
porates relevant treatments (e.g. through the explicit
modelling of treatment use), differences in treatment use
between the development and validation sets can again
be viewed as a difference in case-mix. In the event that

treatments have not been modelled (e.g. because a new
treatment has become readily available since the devel-
opment of the model), the model could be updated
through recalibration, or better yet by including a term
for treatment in the updated model, leading to a
completely new model, which in turn would require
validation. Researchers must therefore first identify
which treatments used in a validation data set could bias
estimates of model performance, if ignored.
There are limitations to the guidance that we provide.

First, we do not present a complete evaluation of all pos-
sible methods across a range of different settings, which
would require at least an extensive simulation study. We
argue, however, that the logical argumentation provided
for each method forms a good starting point for further
investigation. Furthermore, the list of methods that we
present is by no means exhaustive and we encourage the
consideration and development of new approaches for
more complex settings, such as time-to-event settings,
and where limited sample sizes pose a challenge. Second,
we assumed for simplicity that a model has been devel-
oped in an untreated data set. In reality, it is likely that a
model has been developed also in a partially treated set.
The considerations for validation then remain the same,
but it should be noted that failure to properly account
for the effects of treatment in the development of a
model can lead to a model that underestimates un-
treated risks [13]. Third, for simplicity we considered
single point treatments in our simulated examples.
Patterns of treatment use in reality are often complex,
with individuals receiving multiple non-randomized
treatments, even in RCTs. Finally, we also recognize that
while this paper discusses the validation of prognostic
models, the same considerations for treatment use can,
in some circumstances, be relevant to diagnostic studies
(i.e. where treatment between index testing and outcome
verification could lead to similar- and even more
serious- problems).

Conclusion
When validating a previously developed prediction
model for predicting risks without treatment in another
data set, failure to properly account for (effective) treat-
ment use in that validation sample will likely lead to
poor performance of the prediction model and thus
measures should be taken to remove the effects of treat-
ment use. When validating a model with data in which
treatments have been randomly allocated, simply exclud-
ing treated individuals is sufficient, at the cost of a loss
of precision. In observational studies, where treatment
allocation depends on patient characteristics or risk, in-
verse probability weighting followed by the exclusion of
treated individuals can provide correct estimates of the
actual performance of the model in its target population.
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