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Abstract 

Background Clinical trials assessing new treatment effects require a control group to compare the pure treatment 
effects. However, in clinical trials on regenerative medicine, rare diseases, and intractable diseases, it may be ethically 
difficult to assign participants to the control group. In recent years, the use of historical control data has attracted 
attention as a method for supplementing the number of participants in the control group. When combining historical 
control data with new randomized controlled trial (RCT) data, the assessment of heterogeneity using outcome data 
is not sufficient. Therefore, several statistical methods that consider participant outcomes and baseline characteristics, 
including the propensity score (PS) method have been proposed.

Methods We propose a new method considering “information on whether the data are RCT data or not” in the PS 
model when combining the RCT and historical control data. The performance of the proposed method in estimating 
the treatment effect is evaluated using simulation data.

Results When the distribution of covariates is similar between the RCT and historical control data, not much differ-
ence in performance is found between the proposed and conventional methods to estimate the treatment effect. 
On the other hand, when the distribution of covariates is not similar between the two kinds of data, the proposed 
method shows higher performance.

Conclusions Even when it is not known whether RCT and historical control data are similar, the proposed PS model 
is useful to estimate the treatment effect appropriately in RCTs using historical control data.

Keywords Historical control, Propensity score, Causal inference, Randomized controlled trial, Clinical trial

Introduction
Clinical trials that assess new treatment effects require 
a control group to compare the pure treatment effects, 
which exclude baseline characteristics [1]. Randomized 
controlled trials (RCTs) are considered the gold stand-
ard approach in confirmatory trials for reducing bias and 
assessing objective effects. However, in clinical trials for 
regenerative medicine, rare diseases, and intractable dis-
eases, random assignment of participants to the control 
group may be ethically difficult. Recently, there has been 
active collection of real-world data and construction of 
a disease registry [2–4], and the utilization of historical 
control data has attracted attention as a supplement for 
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the number of control group participants in clinical tri-
als. Appropriate utilization of historical control data can 
ensure that patients are offered promising treatments 
faster by reducing the number of participants assigned 
to control groups, thus accelerating drug development 
[5, 6]. The U.S. Food and Drug Administration has issued 
draft guidance on natural history studies for rare disease 
drug development [7], and further utilization of external 
control is expected [2–4].

The use of historical control data is still being debated 
[8–10]. Frequentist approaches include, the pooling 
method in which historical control data are equated with 
the new trial control group and merged as is, and the 
test-then-pool method, which is used after determining 
the similarity between both outcome data by hypothesis 
test [11]. Bayesian approaches include power priors [12] 
and hierarchical modeling [13, 14], which discount the 
amount of information in historical control data [11, 15]. 
A previous study proposed a method that calculates the 
difference between outcome data of a new trial control 
group and historical control data and used weighting as 
an estimate of heterogeneity [16]. Evaluation of hetero-
geneity with outcome data is useful, but not sufficient 
in  situations with different measurement periods and 
conditions. Besides, the information from historical con-
trol data may distort the true results from new trials [15], 
or conversely, historical control data may be hardly used 
[16], which poses a large risk for implementation.

In the causal inference framework, propensity scores 
(PS) [17, 18] may be used to compare groups that are not 
randomized. The PS indicates the probability of treat-
ment allocation calculated using baseline characteristics. 
Thus, by aligning the baseline characteristics between 
treatment groups, it is possible to estimate the treat-
ment effect while minimizing the effect of confounding 
on treatment allocation. When utilizing historical con-
trol data, a method using the PS has been proposed for 
considering the heterogeneity of baseline characteristics. 
In general, the matching [19, 20] and inverse probability 
of treatment  weighting (IPTW) [21] methods are used 
as PS methods [22, 23]. Methods using PS to assess the 
generalizability of the population participating in RCT 
to the patient population [24], and to merge RCT data 
with observational data [25] have also been proposed.  
Additionally, a method combining the PS methods 
and Bayesian dynamic borrowing framework has been  
proposed [26].

Furthermore, as this study considers a special clinical 
trial that uses historical data in combination with new 
RCT data includes information on whether the data are 
RCT or historical control data. This information could 
be an important confounding factor along with baseline 

characteristics. Accordingly, we evaluate the perfor-
mance of the method used for the clinical trial that newly 
considers “information on whether the data are RCT data 
or not” in the conventional PS model when estimating 
the treatment effect using simulation data.

Proposal of the PS model
In a clinical trial in which the primary endpoint is binary 
outcome Y  (presence or absence of an event), we assume 
historical control data are combined with new two-
armed RCT data as part of a control group. Yi = 1 indi-
cates that an event has occurred, and Yi = 0 indicates 
that no event has occurred with participant i (i = 1 . . . l) . 
We set T  as the treatment group indicator ( Ti = 1 for the 
treatment and Ti = 0 for the control groups for partici-
pant i ) and X as the vector of all covariates Xj ( j = 1 . . . k 
and Xij denotes the j th covariate of participant i ), which 
are the possible confounding factors. When estimating 
the PS, a model would generally be expressed as

using a logistic regression [27, 28], where βj j = 1 . . . k  
denotes a coefficient of the regression model.

Here, we might consider the information on whether 
the data were derived from the new RCT or historical 
control data as an important confounding factor. There-
fore, in the proposed method of this study, the PS model 
newly considers information on whether the data are 
RCT data or not and sets that information as indicator 
variable Xr . Xir = 1 indicates that participant i is from 
the RCT, and Xir = −1 indicates that participant i is 
from the historical control group. As a proposed method 
including Xr , the PS model could be expressed as

We considered that the performance in estimating the 
treatment effect between the conventional method using 
π and proposed method using π∗ may vary due to the dif-
ference in the distribution of covariates between the RCT 
and historical control data. In Stimulation study section, 
we evaluate the performance of the method using simu-
lated data.

As a PS method, although the matching method is easy 
to understand, there is a possibility that the amount of 
information will be drastically reduced. In this study, we 
apply the IPTW method to utilize more information when 
evaluating the model’s performance. When estimating 
the treatment effect, each participant’s weight w could be 
w = T/expit(π)+ (1− T )/

{

1− expit(π)
} in the conventional method 

and w = T/expit(π∗)+ (1− T )/
{

1− expit(π∗)
}

 in the 
proposed method.

(1)π = logit{Pr(T = 1|X)} = β0 + β1X1 + β2X2 + · · · + βkXk ,

(2)
π∗ = logit{Pr(T = 1|X ,Xr )} = β0 + β1X1 + β2X2 + · · · + βkXk + βrXr .
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Simulation study
Settings
In this simulation study, to evaluate the treatment effect, 
we set the total number of participants as n =  900 and 
the allocation ratio between the RCT treatment group, 
RCT control group, and historical control group as 1:1:2. 
Moreover, we set the outcome event rates as 50%, 10%, 
and 5%; the odds ratios as 1.0, 2.0, 5.0, and 10.0; and the 
two-sided significance level as 5%. Furthermore, we also 
examined cases where the number of participants was 
small. The simulation results assuming the total num-
ber of participants as n =  200 are shown. The method 
and conditions in the simulation setting are the same as 
those shown in the setting assuming that n = 900, except 
for the total number of participants. The supplementary 
examination was conducted by assuming a situation with 
odds ratios of 1.5 and 2.5 (Additional file  1: Appendix 
A). In addition, we assume a situation wherein the allo-
cation ratios are different (Additional file 1: Appendix B) 
and one of the four covariates is binary data (Additional 
file  1: Appendix C). We also conducted simulations in 
which the assignment of treatment variables was com-
pletely random in the RCT population (Additional file 1: 
Appendix D), and simulations were based on parameter 
settings from the actual clinical trial [29] (Additional 
file 1: Appendix G). To estimate the treatment effect, the 
IPTW using the PS method is applied, and the odds ratio 
based on the weight is estimated by the logistic regres-
sion model.

The performance measurements of the simulation result 
include the following: (1) difference of the estimated log 
odds ratio from the true log odds ratio (bias), (2) mean 
squared error (MSE), (3) coverage of 95% confidence inter-
val (coverage), and (4) type I error rate and power. The 
simulation data are generated while assuming two sce-
narios wherein the distribution of covariates is either simi-
lar or not similar between the RCT and historical control 
data.

Scenario (I)
In this situation, the distribution of covariates is similar 
between the RCT and historical control data. From the 
multivariate standard normal distribution, four covari-
ates are generated for participant i as

Here, the true PS model πi,true is

and the parameters are {β0,β1,β2,β3,β4} =
{

b0, 1.00,−0.50, 0.25, 0.10
}

 . b0 is a constant correction 
value corresponding to the treatment allocation ratio 

(3){Xi1,Xi2,Xi3,Xi4} ∼ N (0, 1) .

(4)πi,true = logit{Pr(T = 1|X)} = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 ,

(Additional file  1: Appendix E). Based on Eq.  (4), each 
participant’s treatment allocation is determined from the 
Bernoulli distribution:

The model that generates outcome data yi is as follows:

where {α0,α1,α2,α3,α4} = {a0, 0.274, 0.137,−0.137, 0.137} . Here, βtreat 
is the true log odds ratio of the treatment effect, and the 
error term εi ∼ N (0, 1) is generated according to inde-
pendent normal distribution. Besides, a0 is a constant 
correction value corresponding to the outcome event 
rate (Additional file  1: Appendix E). Based on Eq.  (6), 
each participant’s outcome Yi is determined from the 
Bernoulli distribution:

Scenario (II)
In this situation, the distribution of covariates is not simi-
lar between the RCT and historical control data. As with 
scenario (I), after generating covariates from the multi-
variate standard normal distribution,

each covariate in the RCT data are transformed as 
follows:

For historical control data, the covariates without 
transformation, Xi1,Xi2,Xi3, andXi4 , are simply used 
from the generation of standard multivariate normal dis-
tributions, that is,

Here, the true PS model π∗
i,true is provided as

where {β0,β1,β2,β3,β4,βr } =
{

(b0 − br ), 1.00,−0.50, 0.25, 0.10, br

} . br 
is the coefficient value of indicator variable Xr in the true 
PS model for each treatment allocation ratio (Additional 
file 1: Appendix F). These parameters are simultaneously 
calculated using a true PS model for only RCT data,

(5)Ti ∼ Bernoulli
{

exp(πi,true)
1+exp(πi,true)

}

.

(6)
yi = logit{Pr(Y = 1|X)} = α0 + βtreatTi + α1Xi1+

α2Xi2 + α3Xi3 + α4Xi4 + εi/100,

(7)Yi ∼ Bernoulli
{

exp(yi)
1+exp(yi)

}

.

(8)
{

X ′
i1,X

′
i2,X

′
i3,X

′
i4

}

∼ N (0, 1),

(9)
{

Xi1 = X
′
i1 − 1,Xi2 = X

′
i2 × 0.7,Xi3 = ln

∣

∣X
′
i3

∣

∣,Xi4 = X
′
i4

}

.

(10)

{

Xi1 = X ′
i1,Xi2 = X ′

i2,Xi3 = X ′
i3,Xi4 = X ′

i4

}

.

(11)

π∗
i,true = logit{Pr(T = 1|X ,Xr)} = β0 + β1Xi1 + β2Xi2+

β3Xi3 + β4Xi4 + βrXir ,

(12)
πi,true,RCT = logit{Pr(T = 1|X)} = b0 + 1.00Xi1−

0.50Xi2 + 0.25Xi3 + 0.10Xi4;
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the true PS model for only historical control data,

and a covariate of each participant (Additional file  1: 
Appendix F; calculation method). Based on Eq.  (12), 
treatment allocation Ti for each participant is determined 

from the Bernoulli distribution:

Outcome data yi are generated by

where {α0,α1,α2,α3,α4,αr} = {a0, 0.274, 0.137,−0.137, 0.137, 0.137} . 
Based on Eq. (15), each participant’s outcome Yi is deter-
mined from the Bernoulli distribution:

Results
The usual number of participants
In scenario (I), wherein the distribution of covariates is 
similar between the RCT and historical control data, not 
much difference in the proposed and conventional meth-
ods was found in the bias, MSE, coverage of 95% confi-
dence interval, and type I error (Table 1).

On the other hand, in scenario (II), wherein the distri-
bution of covariates is not similar between the RCT and 
historical control data, the proposed method tended to 
have a smaller bias, coverage of 95% confidence inter-
val closer to 95%, and a type I error rate closer to 5%. 
In addition, there was not much difference between 
the proposed and conventional methods in the MSE 
(Table 2).

When the allocation ratios between the RCT treat-
ment group, RCT control group, and historical con-
trol group were 2:1:3 (Additional file 1: Appendix Table 
B.3), 1:1:4 (Additional file  1: Appendix Table B.5), 2:1:6 
(Additional file  1: Appendix Table B.6), 2:1:1 (Addi-
tional file 1: Appendix Table B.11), and 3:1:2 (Additional 
file  1: Appendix Table B.12)—that is, different but not 
extremely skewed—the same tendency in all performance 
measurements was observed as in the allocation ratio of 
1:1:2. However, when the allocation ratios were 9:1:10 
(Additional file 1: Appendix Table B.4), 9:1:20 (Additional 
file  1: Appendix Table B.7), 1:1:18 (Additional file  1: 
Appendix Table B.8), 2:1:27 (Additional file 1: Appendix 
Table B.9), and 9:1:90 (Additional file 1: Appendix Table 

(13)πi,true,HC = logit{Pr(T = 1)} = 0;

(14)Ti ∼ Bernoulli

{

exp
(

π∗
i,true

)

1+exp
(

π∗
i,true

)

}

.

(15)
yi = logit{Pr(Y = 1|X)} = α0 + βtreatTi + α1Xi1+

α2Xi2 + α3Xi3 + α4Xi4 + αrXir + εi/100,

(16)Yi ∼ Bernoulli
{

exp(yi)
1+exp(yi)

}

.

B.10)—that is, extremely skewed—the bias and MSE had 
increased.

In addition, the same trends were observed for all per-
formance measures when one of the four covariates was 
binary data (Additional file  1: Appendix Table C.1) as 
when the four covariates were continuous data.

Moreover, the simulation where the treatment variable 
in RCT population was generated independent of covari-
ates (Additional file  1: Appendix Table D.1) shown also 
almost the same result in the text. In a simulation where 
the parameter settings of an actual clinical trial were 
applied (Additional file 1: Appendix Table G.1) was also 
similar result in the text.

Small number of participants
In the case where the total number of participants is 
n =  200, the same tendency was observed in all perfor-
mance measurements as in the case where the number of 
participants is n = 900.

That is, in scenario (I), wherein the distribution of 
covariates is similar between the RCT and historical con-
trol data, not much difference in the proposed and con-
ventional methods was found in the bias, MSE, coverage 
of 95% confidence interval, and type I error rate (Table 3).

And then, in scenario (II), wherein the distribution of 
covariates is not similar between the RCT and histori-
cal control data, the proposed method tended to have a 
smaller bias, coverage of 95% confidence interval closer 
to 95%, and a type I error rate closer to 5%. In addition, 
there was not much difference between the proposed and 
conventional methods in the MSE (Table 4).

Discussion
The results in this study suggest that a situation wherein 
the distribution of covariates is similar between the RCT 
and historical control data—that is, scenario (I)—the esti-
mation bias of the treatment effect in the PS model would 
not be affected by including the information on whether 
the participant data is RCT data or not. On the other 
hand, a situation wherein the distribution of covariates is 
not similar between the RCT and historical control data—
that is, scenario (II)—the use of the proposed PS method 
is recommended because the performance of estimating 
the treatment effect is improved by including the informa-
tion on whether the participant data is RCT data or not.

As for the relationship between the outcome event 
rate and performance of estimating the treatment effect, 
it is considered appropriate that the higher the outcome 
event rate, the higher the performance of the estima-
tion. Therefore, in the situation where the distributions of 
covariates are similar, the treatment effect could be esti-
mated appropriately using both the proposed and con-
ventional methods for this situation. Meanwhile, where 
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Table 1 Scenario (I): performance of the estimated propensity score (PS) model

π (without Xr ): the conventional method; π∗ (with Xr ): the proposed method

Performance measurement PS model Outcome event rate Odds ratio

1.0 2.0 5.0 10.0

Bias π (without Xr) 50% 0.004 -0.016 -0.034 -0.032

10% -0.026 -0.022 -0.018 -0.013

5% -0.060 -0.031 -0.009 0.017

π∗ (with Xr) 50% 0.035 0.014 -0.005 -0.007

10% 0.019 0.020 0.023 0.030

5% 0.000 0.023 0.045 0.074

MSE π 50% 0.045 0.050 0.069 0.097

10% 0.117 0.092 0.086 0.097

5% 0.228 0.175 0.160 0.201

π∗ 50% 0.037 0.039 0.052 0.074

10% 0.097 0.080 0.084 0.100

5% 0.187 0.154 0.160 0.217

Coverage (%) π 50% 95.0 94.6 94.0 93.2

10% 93.9 94.3 94.8 94.7

5% 93.2 93.9 94.3 94.4

π∗ 50% 94.9 94.8 94.8 94.3

10% 94.7 94.9 94.6 94.4

5% 94.3 94.1 94.5 94.1

Type I error and power (%) π 50% 5.0 86.6 99.8 100.0

10% 6.1 63.7 100.0 100.0

5% 6.8 41.7 98.5 100.0

π∗ 50% 5.0 94.1 99.9 100.0

10% 5.2 72.4 99.8 100.0

5% 5.7 50.7 98.4 99.8

Table 2 Scenario (II): performance of the estimated propensity score (PS) model

π (without Xr ): the conventional method, π∗ (with Xr ): the proposed method

Performance measurement PS model Outcome event rate Odds ratio

1.0 2.0 5.0 10.0

Bias π (without Xr) 50% 0.169 0.151 0.135 0.128

10% 0.154 0.155 0.151 0.151

5% 0.135 0.153 0.172 0.190

π∗ (with Xr) 50% 0.044 0.026 0.010 0.006

10% 0.029 0.034 0.035 0.038

5% 0.007 0.032 0.062 0.091

MSE π 50% 0.053 0.049 0.052 0.065

10% 0.090 0.079 0.080 0.092

5% 0.154 0.132 0.140 0.212

π∗ 50% 0.036 0.038 0.050 0.070

10% 0.094 0.080 0.084 0.103

5% 0.183 0.150 0.161 0.248

Coverage (%) π 50% 81.5 85.6 90.4 92.7

10% 89.6 89.6 90.6 92.6

5% 91.8 92.1 93.2 94.9

π∗ 50% 94.4 95.1 94.7 94.3

10% 94.5 94.1 94.1 94.1

5% 94.1 94.2 93.7 93.8

Type I error and power (%) π 50% 18.5 99.9 100.0 100.0

10% 10.4 94.2 100.0 100.0

5% 8.2 74.7 100.0 100.0

π∗ 50% 5.6 96.1 100.0 100.0

10% 5.5 74.9 99.9 100.0

5% 5.8 52.5 98.8 99.9
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Table 3 Scenario (I): performance of the estimated propensity score (PS) model by simulation setting assuming n = 200

π (without Xr ): the conventional method; π∗ (with Xr ): the proposed method

Performance measurement PS model Outcome event rate Odds ratio

1.0 2.0 5.0 10.0

Bias π (without Xr) 50% -0.001 0.002 0.034 0.112

10% -0.199 -0.076 -0.007 0.104

5% -1.264 -0.356 0.312 1.424

π∗ (with Xr) 50% 0.030 0.029 0.048 0.105

10% -0.101 0.006 0.069 0.187

5% -1.087 -0.218 0.447 1.593

MSE π 50% 0.229 0.245 0.336 0.865

10% 1.835 0.555 0.611 1.618

5% 22.016 7.358 7.516 25.242

π∗ 50% 0.187 0.202 0.271 0.711

10% 1.636 0.493 0.605 1.702

5% 20.447 6.941 8.031 27.171

Coverage (%) π 50% 93.3 93.2 92.5 90.6

10% 91.8 92.5 93.2 93.9

5% 88.4 91.2 92.1 85.8

π∗ 50% 94.2 94.4 93.8 93.4

10% 93.6 93.2 93.2 93.6

5% 89.3 92.8 92.9 87.2

Type I error and power (%) π 50% 6.5 35.7 88.0 96.7

10% 8.1 21.5 74.9 94.7

5% 11.4 16.7 51.9 78.2

π∗ 50% 5.6 41.2 92.8 98.1

10% 6.1 26.4 79.3 95.5

5% 10.6 21.0 60.3 83.1

Table 4 Scenario (II): performance of the estimated propensity score (PS) model by simulation setting assuming n = 200

π (without Xr ): the conventional method, π∗ (with Xr ): the proposed method

Performance measurement PS model Outcome event rate Odds ratio

1.0 2.0 5.0 10.0

Bias π (without Xr) 50% 0.168 0.164 0.168 0.224

10% 0.032 0.132 0.177 0.268

5% -0.908 -0.106 0.516 1.758

π∗ (with Xr) 50% 0.050 0.050 0.060 0.126

10% -0.096 0.011 0.077 0.187

5% -0.989 -0.203 0.447 1.750

MSE π 50% 0.144 0.151 0.202 0.862

10% 1.686 0.459 0.326 1.431

5% 19.574 6.274 7.605 27.879

π∗ 50% 0.174 0.193 0.261 0.880

10% 1.640 0.532 0.421 1.584

5% 18.505 6.120 8.210 29.796

Coverage (%) π 50% 92.4 94.0 95.2 95.8

10% 93.9 94.2 95.1 96.6

5% 89.8 94.6 95.5 88.4

π∗ 50% 94.5 94.0 93.6 94.0

10% 94.0 94.0 93.9 93.7

5% 90.0 93.4 93.4 86.8

Type I error and power (%) π 50% 7.5 68.6 99.9 100.0

10% 6.0 39.1 93.1 99.5

5% 10.2 25.2 72.3 92.3

π∗ 50% 5.4 44.4 94.1 98.7

10% 5.9 26.6 81.1 96.2

5% 9.9 20.7 98.8 99.9
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the distributions of covariates are not similar, a similar 
tendency is observed when using the proposed method, 
and so it is considered that the appropriate treatment 
effect can be estimated. However, in the conventional 
method, the lower the outcome event rate, the higher the 
performance that can be estimated, and so there is a pos-
sibility that the appropriate treatment effect cannot be 
estimated.

Moreover, even when the allocation ratio between the 
RCT treatment group, RCT control group, and histori-
cal control group is changed, if the allocation ratio is 
not extremely skewed, the same consideration is pos-
sible as in the allocation ratio of 1:1:2 in this situation. 
Namely, in the situation where the distributions of 
covariates are similar, when considering the informa-
tion on whether the data are RCT data or not in the PS 
model, the effect on the performance of estimating the 
treatment effect was not as marked. And also, in the 
situation where the distributions of covariates are not 
similar, the performance of estimating the treatment 
effect was improved by considering whether the data 
are RCT data or not. Meanwhile, when the allocation 
ratio was extremely skewed, bias and MSE increased 
tremendously, and the estimation could not be con-
ducted appropriately. This is because the number of 
participants in the RCT control group was extremely 
small when the allocation ratio was extremely biased.

As another situation, even if the total number of par-
ticipants is small or and the covariates include binary 
data, the same consideration is possible as that when the 
total number of participant is n =  900 and the covari-
ates are all continuous data. The same trend is suggested 
when the treatment variables in the RCT population 
are considered completely independently and randomly 
from the covariates. In other words, when the distribu-
tion of covariates is similar between the RCT and histor-
ical control data, not much difference in performance is 
found between the proposed and conventional methods 
to estimate the treatment effect. And, when the distribu-
tion of covariates is not similar between the two kinds of 
data, the proposed method shows higher performance. 
In addition, the same argument as above can be consid-
ered to apply even when there is variation in data such as 
actual clinical trial data.

For these reasons, when combining the RCT and his-
torical control data in the clinical trial setting, it is impor-
tant to consider whether the distribution of important 
participant baseline characteristics that influence the 
outcomes is similar or not. Moreover, for appropriate uti-
lization of historical control data, it is useful to apply the 
proposed PS model that considers Xr while assessing pos-
sible differences. However, when considering the utiliza-
tion of historical control data to reinforce the number of 

participants in the RCT control group, it is necessary to 
simulate several patterns of allocation ratio and evaluate 
the performance of the allowable range of how small the 
control group can be from the planning stage of the clini-
cal trial, and use this with caution. In addition, since the 
proposed method uses PS, the possibility of the presence 
of unmeasured confounding factors, that is, whether the 
covariates used in the PS model are sufficient, should also 
be considered. And, this method is assuming that use sin-
gle historical control data set, and have limited that could 
not have considered for difference between two or more 
historical control data set. Furthermore, in this study, 
we focused on the treatment effect in the entire popula-
tion, including historical control data, and investigated 
a method for estimating the Average Treatment Effect 
(ATE). However, there may be situations in which it is 
desirable to estimate the Average Treatment Effect on the 
Treated (ATT) in the RCT population or treatment group, 
and we would like to consider the performance evaluation 
in such cases to be a future issue. While paying attention 
to issues such as the increase in type I error rate, it is pos-
sible to appropriately reduce the number of participants 
assigned to the RCT control group. We believe that this 
will help improve the efficiency of clinical trials, solve eth-
ical problems, and thus save more people.

Conclusions
In clinical trials utilizing historical control data, considering 
information on whether the data are RCT data or not in the 
proposed PS model is useful for appropriately estimating 
the treatment effect, even when it is not known whether the 
RCT data and the historical control data are similar. Pro-
motion of appropriate utilization of historical control data 
will contribute to the realization of better medical care.
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