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Abstract 

Background The design of a multi-center randomized controlled trial (RCT) involves multiple considerations, such 
as the choice of the sample size, the number of centers and their geographic location, the strategy for recruitment 
of study participants, amongst others. There are plenty of methods to sequentially randomize patients in a multi-center 
RCT, with or without considering stratification factors. The goal of this paper is to perform a systematic assessment of such 
randomization methods for a multi-center 1:1 RCT assuming a competitive policy for the patient recruitment process.

Methods We considered a Poisson-gamma model for the patient recruitment process with a uniform distribu-
tion of center activation times. We investigated 16 randomization methods (4 unstratified, 4 region-stratified, 4 
center-stratified, 3 dynamic balancing randomization (DBR), and a complete randomization design) to sequentially 
randomize n = 500 patients. Statistical properties of the recruitment process and the randomization procedures 
were assessed using Monte Carlo simulations. The operating characteristics included time to complete recruitment, 
number of centers that recruited a given number of patients, several measures of treatment imbalance and estima-
tion efficiency under a linear model for the response, the expected proportions of correct guesses under two different 
guessing strategies, and the expected proportion of deterministic assignments in the allocation sequence.

Results Maximum tolerated imbalance (MTI) randomization methods such as big stick design, Ehrenfest urn design, 
and block urn design result in a better balance–randomness tradeoff than the conventional permuted block design 
(PBD) with or without stratification. Unstratified randomization, region-stratified randomization, and center-stratified 
randomization provide control of imbalance at a chosen level (trial, region, or center) but may fail to achieve balance 
at the other two levels. By contrast, DBR does a very good job controlling imbalance at all 3 levels while maintaining 
the randomized nature of treatment allocation. Adding more centers into the study helps accelerate the recruit-
ment process but at the expense of increasing the number of centers that recruit very few (or no) patients—which 
may increase center-level imbalances for center-stratified and DBR procedures. Increasing the block size or the MTI 
threshold(s) may help obtain designs with improved randomness–balance tradeoff.

Conclusions The choice of a randomization method is an important component of planning a multi-center RCT. 
Dynamic balancing randomization with carefully chosen MTI thresholds could be a very good strategy for trials 
with the competitive policy for patient recruitment.
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Introduction
The randomized controlled trial (RCT) is the hallmark 
research methodology for evaluating which (if any) of two 
or more treatments is more effective [1]. In the simplest 
case, the design of a 1:1 RCT involves quantifying study 
objectives and determining the required sample size ( n ) 
to detect a statistically significant difference between the 
experimental and control groups for the assumed trial 
parameters. For the chosen n , randomization is applied 
to sequentially randomize eligible participants to either 
experimental or control group, and after the target num-
ber of participants are randomized, treated, and assessed 
for a defined period, their primary outcomes are analyzed 
to test the pre-specified clinical research hypothesis.

In practice, the design of RCTs may involve additional 
important considerations, such as utilization of more 
than one research site (center) for study conduct, stochas-
tic nature of the study participant recruitment process, 
and stratification of the design by some important prog-
nostic factors, including center [2]. A multi-center RCT 
model has several advantages. It enables a more inclusive 
experiment with broader coverage of patients across dif-
ferent geographies and it can expedite the recruitment of 
the target number of study participants. For some indica-
tions, such as rare diseases, using multiple centers may be 
the only feasible way to implement the study. At the same 
time, there are some important methodological and prac-
tical issues with the multi-center RCT model [3]. At the 
study planning stage, the number of centers is typically 
pre-determined based on the budgetary considerations 
and expected sites’ capacities for enrolling and treating 
patients. However, during the trial conduct some centers 
that are unable to recruit any patients may be terminated, 
and new centers may be added to fulfil the recruitment 
targets. In practice, study centers are activated over time, 
and they may have different capabilities to recruit and 
retain patients; therefore, the number of participants per 
center is, in general, a random variable. Stochastic models 
for patient recruitment and prediction of enrollment in 
multi-center RCTs are increasingly used in practice [4, 5].

Randomization—the assignment of treatments to study 
participants using a chance procedure—is an essential 
component of any RCT, and the choice of a randomiza-
tion method for a given trial may not be simple [6, 7]. One 
important consideration is the choice between unstratified 
and stratified randomization. Unstratified randomization 
means that eligible participants are randomized to treatment 
arms according to a single randomization schedule that can 
be pre-generated before the trial starts. Different restricted 

randomization procedures can be used to produce a rand-
omization sequence with equal or nearly equal numbers of 
treatment assignments [8]; however, in a multi-center RCT 
unstratified randomization does not guarantee that treat-
ment numbers are balanced within study centers, and this 
may add to variability in the study results and may cause an 
additional level of uncertainly for drug supply planning [9].

Stratified randomization means that eligible partici-
pants are grouped according to baseline covariate values 
into mutually exclusive strata prior to randomization, 
and within each stratum a separate randomization 
sequence is used to allocate participants to treatments. 
Stratified randomization can be used in RCTs for both 
statistical and pragmatic reasons [10]. In multi-center 
RCTs, study site/center may be considered as a strati-
fication factor, e.g., to optimize the use of drug supply 
and/or avoid confounding of the center effect with other 
known or unknown prognostic factors [2, 11]. While 
potentially useful in some circumstances, center-strat-
ified randomization may lead to an undesirable imbal-
ance in treatment group sizes when there are too many 
study sites/centers with very few patients per center. 
Another possibility is to use geographic region as a 
stratification factor [11, 12]. In this case, study centers 
within the same region belong to the same stratum, and 
treatment assignments of the participants enrolled by 
these centers are determined based on the correspond-
ing stratum-specific randomization sequence. The 2015 
EMA guideline on adjustment for baseline covariates 
has the following text in this regard [11]:

“…If a multicentre trial is not stratified by centre 
(e.g., when the number of patients within many cen-
tres is expected to be very small), it should be consid-
ered whether randomisation could be stratified by, 
for example, country or region. Such a choice might 
be driven by similarities in co-medication, pallia-
tive care or other factors that might make stratifica-
tion advisable. The reasons and justification for the 
choice should be described in the protocol.”

Furthermore, stratification can be done by some 
prognostic baseline covariates (e.g., sex, age, disease 
severity, etc.) that are thought to be strongly related 
to the primary outcome, or their combination with 
administrative factors (center or geographic region). 
One should be always mindful of the total number of 
the resulting strata which can be overwhelming [13, 
14]. The properties of imbalance caused by center-
stratified permuted-block randomization and its 
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impact on the power and sample size of the study were 
investigated in the papers [15–19].

Once the set of stratification factors has been decided 
upon, the next important consideration is the choice of a 
randomization method within strata. The most common 
approach is the stratified permuted block design (PBD), 
for which sequences of permuted blocks of a fixed or ran-
dom length are generated independently within strata. 
Since the number of participants per site/per stratum is 
generally random, there is a potential of treatment imbal-
ance due to unfilled last blocks in some strata, which can 
be aggregated at the trial level, and this may lead to a 
sizable imbalance at the trial level if several strata have 
imbalance in favor of the same treatment. Choosing a 
small block size ensures better balance but increases the 
predictability of the allocation sequence and the risk of 
selection bias in open-label trials. One can replace PBD 
within strata with some less restrictive (and, therefore, 
less predictable) randomization method, such as maxi-
mum tolerated imbalance (MTI) randomization [20–22].

Alternatively, instead of stratified randomization one 
can use one of the dynamic covariate-adaptive alloca-
tion methods that provide balance within centers and/
or regions, such as dynamic balanced randomization 
(DBR) [23, 24], minimization [25, 26], modified Zelen’s 
approach [27, 28] or some other covariate-adaptive 
randomization method. However, identifying the most 
appropriate method for a given trial setting requires 
careful evaluation of different design options.

The goal of the current paper is to perform a system-
atic assessment of randomization methods for a multi-
center 1:1 RCT assuming a stochastic recruitment 
model. We use Monte Carlo simulations for a head-
to-head comparison of various randomization designs 
under different trial assumptions to provide recom-
mendations on the choice of a randomization method 
that achieves “best” performance in terms of balance 
and randomness criteria. The investigation of statistical 
inference criteria (e.g., power and validity of significance 
tests) is beyond the scope of the current work. Note that 
balance and randomness criteria provide some indirect 
measures of statistical efficiency and susceptibility to 
selection bias of randomization procedures.

The rest of the paper is organized as follows. The 
“Methods” section provides some background on the 
stochastic recruitment (Poisson-gamma) model, differ-
ent randomization methods for a multi-center 1:1 RCT 
and describes a simulation study setup. The “Results” 
section presents the results of Monte Carlo simula-
tions comparing 16 different randomization designs in 
terms of balance and randomness criteria. The “Con-
clusions” section summarizes the key findings, provides 
some practical recommendations on the choice of fit 

for purpose randomization methods for the considered 
experimental settings, and outlines some future work.

Methods
In this section, we first describe a model for patient 
recruitment and randomization in the context of 
multi-center RCTs. The model will allow us to link sev-
eral relevant sources of uncertainty—the variation in 
recruitment rates across study centers, different num-
bers of subjects recruited per center due to the com-
petitive recruitment policy, and the random number of 
treatment assignments based on the chosen randomi-
zation method. We will also describe different measures 
of balance and randomness to quantify the statistical 
performance of various randomization designs and a 
Monte Carlo simulation study setup.

Stochastic recruitment model
Consider a multi-center study which is designed to recruit 
n patients from N  centers. There are three different poli-
cies for patient recruitment [29]: 1) competitive recruit-
ment, for which there is no restriction on the number of 
patients recruited per center; 2) balanced recruitment, 
which assumes waiting until the number of patients in each 
center reaches some fixed value n0 = n/N  ; and 3) restricted 
recruitment, which assumes that every center must enroll 
at least n∗ patients and cannot enroll more than n∗ patients, 
where n∗ and n∗ are given threshold values. Throughout the 
paper, we assume the competitive recruitment policy, which 
is most realistic in practice. The target time to complete the 
recruitment is set to T > 0 . The actual recruitment time, 
T (n,N ) , is a random variable. In practice, the values (n,N ) 
may be chosen based on statistical and budgetary consid-
erations as a solution to some formal optimization problem 
[29–31]. One may require that Pr(T (n,N ) < T ) ≥ p for 
some pre-specified value of p , e.g., p = 0.90.

For the patient recruitment process, we assume a Pois-
son-gamma model [17, 29, 30]. The patients arrive at 
different centers according to independent Poisson pro-
cesses with some rates. As different centers have different 
capacity and recruitment speed, the recruitment rates are 
modelled using a gamma distribution. Centers can also 
be activated at different times.

Let us describe the recruitment processes in clinical 
centers: consider a trial with N  centers (located in G geo-
graphic regions) that are activated independently over 
time. For the i th center ( i = 1, . . . ,N  ), the center activa-
tion time is ui ≥ 0 , which can be either fixed or random. 
For this center, the recruitment follows a Poisson process 
with the recruitment rate �i which is assumed to follow the 
gamma distribution, i.e., �i ∼ Gamma(α,β) with proba-
bility density function (p.d.f.) p(x|α,β) = βα

Ŵ(α)
xα−1e−βx , 
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x > 0 , where α,β > 0 are the hyperparameters defined at 
the study planning stage. With this parametrization, 
E�i =

α
β

 and var�i = α

β2.
Let ni(t) be the number of patients recruited at the i th 

center by time t > 0 . Consider first the “idealized” scenario 
when all N  centers are activated simultaneously at time 
zero, i.e., ui ≡ 0 for i = 1, . . . ,N  . In this case, ni(t) is a 
mixed Poisson process (i.e., Poisson-gamma process) with 
random rate �i , and for any fixed t , the variable ni(t) has a 
negative binomial distribution ( NBin ) with parameters 
(α, t

β
) such that E[ni(t)] = αt

β
 and var[ni(t)] = αt

β
+ αt2

β2  . 
Furthermore, the global recruitment n(t) =

∑N
i=1ni(t) is 

also a mixed Poisson process with random rate 
� =

∑N
i=1�i and for any fixed t , n(t) ∼ NBin(αN , t

β
) . The 

recruitment time T (n,N ) has a Pearson type VI distribu-
tion, and its p.d.f., mean, and variance can be found in [30]. 
Finally, let n = (n1, . . . , nN ) denote the vector of the num-
ber of patients recruited by different centers at time 
T (n,N ) , where 0 ≤ ni ≤ n and 

∑N
i=1ni = n . Set 

� =
∑N

i=1�i , pi =
�i
�

 , and p = (p1, . . . , pN ) . Then the con-
ditional distribution of n|p is multinomial with parameters 
(n,p) , the unconditional distribution of vector n is Dir-
ichlet-multinomial, and the marginal distributions of ni ’s 
are Beta-binomial:

where pi ∼ Beta(α,αN − α) , i = 1, . . . ,N  [32].
In practice, it is unrealistic for all centers to be acti-

vated at once. It is more plausible to consider a sto-
chastic process for center activation over time. Suppose 
that centers are activated with delay, i.e., ui ’s are ran-
dom variables; for instance, ui ∼ Uniform(a′, a′′) , 
where the constants 0 ≤ a′ < a′′ are defined at the 
planning stage. Then ni(t) is a non-homogeneous Pois-
son process with cumulative rate on the interval [0, t] 
equal to �i(t) = �i(t − ui)χ(ui ≤ t) , where χ(A) stands 
for the indicator of the event A . Also, n(t) is a non-
homogeneous Poisson process with cumulative rate 
�(t) = N

i=1�i(t − ui)χ(ui ≤ t) . In the case of a random 
center’s activation, uniform distribution was considered 
in [33], and a more general case of using beta and gamma 
distributions in [34]. However, characterizing the rand-
omization process on the top of the recruitment process 
analytically is difficult, therefore we use Monte Carlo 
simulation.

Randomization
Unstratified randomization
For a 1:1 RCT with n sequentially enrolled patients, a rand-
omization sequence is a random vector �n = (δ1, . . . , δn) , 
where δm = 1 (or 0), if the m th patient in the sequence is 

Pr
(
ni = j

)
=

(
n
j

)
E
[
p
j
i(1− pi)

n−j
]
, j = 0, 1, . . . , n,

randomized to treatment E (or treatment C). The simplest 
procedure is complete (a.k.a. “simple”, “unrestricted”) rand-
omization for which any participant is randomized to E or C 
with probability 0.5, i.e., the elements of �n are independent 
Bernoulli(0.5) random variables [35]. A major limitation of 
complete randomization is that it can result, with non-negli-
gible probability, in deviations from the 1:1 target allocation. 
In practice, some restrictions on randomization are applied. 
A restricted randomization procedure aims at balancing 
treatment assignments over time according to the target 
allocation ratio (e.g., 1:1), and it can be defined by specifying 
the conditional randomization probability of the ( m+ 1)st 
patient to treatment E given the past treatment assignments:

Note that with unstratified restricted randomization, 
the patients in the sequence may come from different 
study sites and different geographic regions, but this 
information is irrelevant to their treatment assignment. 
Let nE(m) =

∑m
l=1δl and nC(m) = m− nE(m) denote 

the number of patients randomized to E and C, respec-
tively after m allocations, and let D(m) = nE(m)− nC(m) 
denote the treatment imbalance. For many unstrati-
fied restricted randomization procedures, the allocation 
rule (1) is expressed in the form

where F(·) is some nonincreasing, symmetric around 
zero function of imbalance in treatment assignments. We 
shall consider four restricted randomization procedures 
with different form of F(·) , all of which have the maxi-
mum tolerated imbalance (MTI) property, i.e., for some 
pre-specified small positive integer b , |D(m)| ≤ b for any 
allocation step m ≥ 1 . The procedures are:

• Permuted block design (PBD) [36]: treatment assign-
ments are made at random in blocks of 2b (exactly b 
assignments to each treatment E and C in each block).

• Big stick design (BSD) [37]: every subject is rand-
omized to E or C with probability 0.5 as long as 
treatment imbalance is less than b > 0 ; if 

∣∣D(j)
∣∣ = b , 

the next allocation is made deterministically to the 
underrepresented treatment to restore near-balance 
within acceptable limits.

• Ehrenfest urn design (EUD) [38]: Consider two urns 
representing treatment groups E and C. There are 
2b balls, initially equally distributed between the 
urns. For a given subject, a ball is drawn at random 
from the pool of 2b balls. The selection of a ball from 
urn k corresponds to the assignment of treatment 
k = E,C . The chosen ball is then placed into the 

(1)
φm+1 = Pr(δm+1 = 1|�m), 1 ≤ m ≤ n− 1; and φ1 = 0.5.

(2)φm+1 = F(D(m)),
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opposite urn. The described steps are repeated for 
the next subject.

• Block urn design (BUD) [39]: Consider two urns: 
active and inactive. Initially the active urn contains 
2b balls ( b balls of each type E or C) and the inactive 
urn is empty. For a given subject, a ball is drawn at 
random from the active urn. If type k ball is drawn 
( k = E,C ), then treatment k is assigned and the 
ball is placed in the inactive urn. The procedure is 
repeated until one type E ball and one type  C ball 
appear in the inactive urn, in which case these two 
balls are placed into the active urn. The described 
steps are repeated for the next subject.

The formulas for the function F(·) of PBD, BSD, EUD, 
and BUD are as follows:

In the above, int(x) stands for the function that returns 
an integer less than or equal to x , and sign(x) stands for 
the function that returns value -1, 0, 1 if x is negative, 
zero, or positive, respectively.

Stratified randomization
Stratified randomization utilizes independent restricted 
randomization procedures within M mutually exclu-
sive strata defined by all possible combinations of the 
given factor levels. Let zl denote the stratum ID for the 
l th patient ( zl = s , if the l th patient belongs to stratum 
s , where s = 1, . . . , S ). In practice, {zl}l≥1 is possibly a 
random sequence. The first patient in each stratum is 
randomized to treatment E or C with probability 0.5. 
Subsequent treatment assignments within a stratum are 
made conditional on the past treatment assignments in 
that stratum. Let zm = (z1, . . . , zm) be the information 
on the strata of first m patients in the study and suppose 

PBD : 0.5

(
1−

D(m)

2b+ 2b · int
(
m
2b

)
−m

)

BSD : 0.5

(
1− sign(D(m)) · int

(
|D(m)|

b

))

EUD : 0.5

(
1−

D(m)

b

)

BUD : 0.5

(
1−

D(m)

2b− |D(m)|

)

zm+1 = s is the stratum ID of the next, ( m+ 1)st patient. 
Let n(s)(m) =

∑m
l=1χ(zl = s) be the total number of 

patients in the s th stratum among the m patients in the 
study, and �(s)

m  be the corresponding vector of treatment 
assignments of n(s)(m) patients in the s th stratum. Note 
that since n(s)(m) is random, the vector �(s)

m  has a random 
length. The conditional randomization probability for the 
( m+ 1)st patient belonging to stratum s is expressed as 
φm+1 = Pr

(
δm+1 = 1|�(s)

m

)
,m ≥ 1.

Let n(s)k (m) be the number of patients in the s th 
stratum randomized to treatment k = E,C , and 
D(s)(m) = n

(s)
E (m)− n

(s)
C (m) be the imbalance in the s th 

stratum after m allocation steps. Then, the allocation rule 
for the ( m+ 1)st patient can be formulated as

where F(·) is a pre-specified allocation function of 
some restricted randomization procedure, such as PBD, 
BSD, EUD, or BUD (cf. Unstratified randomization). 
Note that since the strata are mutually exclusive, only one 
term in the sum at the right-hand side of Eq. (3) will be 
non-zero, i.e., the term F(D(s)(m)) that corresponds to 
the stratum s of the ( m+ 1)st patient.

Next, we introduce some notations for the two spe-
cial cases—when the randomization is stratified by 
center, and when it is stratified by region—to dis-
tinguish different types of treatment counts and 
imbalances within the strata. Suppose the stratifica-
tion variable is the study center. For the i th center 
( i = 1, . . . ,N  ), define ni(m) = number of patients 
recruited by the i th center, ni,k(m) = number of 
patients in the i th center randomized to treatment 
k = E,C , and Di(m) = ni,E(m)− ni,C(m) = imbal-
ance in the i th center after m allocation steps. For the 
four center-stratified randomization procedures con-
sidered in this paper, the allocation rule (3) becomes 
φm+1 =

∑N
i=1F(Di(m)) · χ(zm+1 = i) , where F(·) is the 

pre-specified allocation function (cf. Unstratified ran-
domization). With center-stratified randomization, it is 
expected that the final imbalance within center, Di(n) , 
is close to 0 for every i = 1, . . . ,N .

Suppose the stratification variable is the geographic region. 
For the g th region ( g = 1, . . . ,G ), define ̃ng (m) =

∑
i∈Ig

ni(m) = 
number of patients recruited by the centers located in region 
g , ñg ,k(m) =

∑
i∈Ig

ni,k(m) = number of patients recruited  
in region g that are randomized to treatment k = E,C , 
and D̃g (m) = ñg ,E(m)− ñg ,C (m) = treatment imbalance in 
region g after m allocation steps. For the four region-
stratified randomization procedures considered in this 
paper, the allocation rule (3) for the ( m+ 1)st patient 

(3)φm+1 =
∑S

s=1
F(D(s)(m)) · χ(zm+1 = s)
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(assuming the patient is recruited in region g ) is cast as 
φm+1 =

∑G
g=1F(D̃g (m)) · χ(z̃m+1 = g) , where F(·) is the 

pre-specified allocation function (cf. Unstratified randomi-
zation). With region-stratified randomization, it is expected 
that the final within-region imbalance, D̃g (n) , is close to 0 
for every g = 1, . . . ,G.

Dynamic balancing randomization
Dynamic balancing randomization (DBR) is a covariate- 
adaptive randomization method proposed by Signorini 
and co-authors [23]; see also references [24, 40]. It 
attempts to sequentially balance treatment assign-
ments according to a pre-specified hierarchy of clas-
sification factors. With DBR, it is not possible to 
pre-generate the randomization sequence, and so it 
is created dynamically, depending on the imbalances 
within the observed levels of the factors of the new 
patient. To contextualize DBR for our example, let 
b1, b2, b3 be some pre-specified positive integers that 
define the “acceptable” limits for treatment imbalance 
at the center, region, and trial level. Consider a point 
in the trial when m patients have been randomized, 
and based on the data ( �m , zm , z̃m ), we have the values 
of imbalances at the center level: Di(m)(i = 1, . . . ,N ) , 
region level: D̃g (m) (g = 1, . . . ,G) , and trial level: D(m) . 
Suppose the (m+ 1)st  patient is recruited at center i 
located within geographic region g  (i.e., zm+1 = i and 
z̃m+1 = g  ). Then the DBR algorithm to determine the 
treatment assignment for the (m+ 1)st patient involves 
the following steps:

• Step 1 (balance at the center level): If |Di(m)| = b1 , 
then choose the treatment assignment deterministi-
cally, to reduce imbalance within this center; other-
wise go to Step 2.

• Step 2 (balance at the region level): If 
∣∣∣D̃g (m)

∣∣∣ ≥ b2 , 
then choose the treatment assignment deterministi-
cally, to reduce imbalance within this region; other-
wise go to Step 3.

• Step 3 (balance at the trial level): If |D(m)| ≥ b3 , then 
choose the treatment assignment deterministically, 
to reduce imbalance at the trial level; otherwise go to 
Step 4.

• Step 4: Allocate a treatment at random: φm+1 = 0.5.

The DBR can be thought of as a covariate-adaptive 
extension of the big stick design [37]. One important 
practical question is the choice of imbalance thresholds 
b1, b2, b3 that would provide a sensible tradeoff between 
treatment balance and allocation randomness.

Measures of balance and randomness
Balance and randomness are two competing require-
ments for any RCT. Restricted randomization is 
applied to balance treatment assignments (overall in 
the study or/and within baseline covariate strata) while 
maintaining the randomized nature of the experiment. 
Balanced allocation is desirable from the standpoints 
of statistical efficiency and drug supply management. 
There are different ways of quantifying imbalance. 
Here we focus on the end-of-enrollment measures, 
calculated after n patients have been randomized in 
the study.

To understand why treatment balance is important, it is 
instructive to consider a statistical model and the concept 
of loss [41, 42]. Suppose the responses of n patients in the 
trial (conditional on the treatment assignments and the 
selected covariates) satisfy a normal linear model.

where Y  is n× 1 vector of responses and ε ∼ N (0, σ 2I) 
is a vector of error terms. The design matrix for model (4) 
is of the form X = [Z t] , where Z is an n× p matrix of 
covariates (including the intercept), and t is an n× 1 vec-
tor of treatment assignment indicators ( tm = 1 or -1 for 
treatment E or C, m = 1, . . . , n ). Here, we use tm instead 
of δm for mathematical convenience; a simple transforma-
tion can be applied: tm = 2δm − 1.

The vector of model parameters is θ = (β ,α) , and the 
primary interest is the estimation of the treatment effect 
α . The least squares estimator of θ is θ̂ =

(
X
′
X
)−1

X
′
Y  

with variance–covariance matrix σ 2
(
X
′
X
)−1. The vari-

ance of α̂ is the lower diagonal element of this matrix, 
expressed as

The second term in the denominator is referred to as 
loss [41]:

The loss can be thought of as the number of patients 
in the study from whom information is lost due to ran-
domization-induced treatment imbalance compared to 
the “idealized” balanced design (note that var

(
α̂
)
 in (5) is 

minimized when (6) is equal to zero, which means that 
t is orthogonal to the columns of Z that are assumed to 
be fixed, i.e., non-stochastic). Depending on the structure 
of Z , one can have different forms of (6). For instance, if 
Z = 1 , a single column of 1’s, we have

(4)Y = Z
′β + αt + ε,

(5)var
(
α̂
)
=

σ 2

n− t ′Z
(
Z
′
Z
)−1

Z
′
t

(6)L = t
′
Z
(
Z
′
Z
)−1

Z
′
t
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Note that L1 in (7) is a random variable whose distri-
bution is determined by the randomization procedure 
used in the study. Since for most 1:1 randomization 
procedures we have E[D(n)] = 0 , the expected value 
of (7) is E{D(n)}

2

n =
var[D(n)]

n  . Therefore, the efficiency in 
estimating the treatment effect is directly related to the 
variability of the randomization procedure—the most 
efficient procedure is one for which var[D(n)] = 0 i.e., 
a randomization procedure that always results in final 
equal allocation per arm. Note that an MTI procedure 
ensures that |D(n)| ≤ b , and so L1 ≤ b2

n  , which is negli-
gible for large n.

Suppose that geographic region is an impor-
tant covariate that affects the response. Then 
Z = Zn×G = [1 z̃1 . . . z̃G−1] , where 1  is an intercept 
( n× 1 vector of ones), z̃g ( g = 1, . . . ,G − 1 ) is an n× 1 
vector that has ñg entries equal to 1 (for those subjects 
who were recruited in region g  ) and the remaining 
n− ñg entries are equal to 0. In this case, the loss (6) is 
expressed as

If study center is an important covariate that affects 
the response, then we have Z = Zn×N = [1 z1 . . . zN−1] , 
where 1  is an intercept ( n× 1 vector of ones), zi 
( i = 1, . . . ,N − 1 ) is an n× 1 vector that has ni entries 
equal to 1 (for those ni patients that have been recruited 
by center i ) and the remaining n− ni entries equal to 0. 
In this case, the loss (6) has the form

The proof of formulas (8) and (9) can be found in Sup-
plemental Appendix 3.

We can also consider estimation efficiency of a particu-
lar randomization design with var

(
α̂
)
= σ 2

n−L relative to 
the “idealized” balanced design for which var

(
α̂
)
= σ 2

n  . 
We have

where L takes one of the forms (7), (8), or (9). RE is a 
random variable taking values in the range 0–1 whose 

(7)L1 =
(nE(n)− nC(n))

2

n
=

{D(n)}2

n
.

(8)L2 =
∑G

g=1

{
D̃g (n)

}2

ñg
.

(9)L3 =
∑N

i=1

{Di(n)}
2

ni

(10)RE =
σ 2/n

σ 2/(n− L)
= 1−

L

n
.

probability distribution can be evaluated using Monte 
Carlo simulations.

Another useful and easy-to-interpret measure is the 
standard deviation of absolute overall imbalance:

Some researchers (e.g., [43]) suggested using probabil-
istic measures to quantify the risk of imbalance. We con-
sider probability distributions of imbalance at the trial, 
center, and region level; i.e., Pr

(∣∣Imbalance
∣∣ ≥ d

)
 for 

d = 0, 1, 2 . . . , where 
∣∣Imbalance

∣∣ is equal to: |D(n)| for the 
trial level; max

i=1,...,N
|Di(n)| for the center level; or 

max
g=1,...,G

∣∣∣D̃g (n)
∣∣∣ for the region level.

Finally, to quantify how frequently a randomization 
design results in “extreme” allocation sequences at the 
center level, we propose the measure Pskewed , which is the 
expected proportion of centers (among all centers that 
recruited at least 2 patients) that resulted in the alloca-
tion ratio more skewed that 1:2 or 2:1. In other words, 
if for the i th center that recruited ni ≥ 2 patients, the 
absolute difference in treatment allocation proportions 
is > 1/3 , then the treatment allocation sequence for that 
center would be classified as “skewed”. More formally, we 
are interested in

For quantifying lack of randomness in the study 
(which is directly linked to the selection bias), we con-
sider the expected proportion of correct guesses under 
two different guessing strategies—the convergence 
strategy and the deterministic strategy [44], and the 
expected proportion of deterministic assignments in 
the sequence.

With the convergence guessing strategy, it is assumed 
that an investigator at the site/center level knows the 
number of treatment assignments in that center at any 
point in the trial, and applies the following intelligent 
guessing rule: Guess next treatment assignment in their 
center as E (or C), if the current number of allocations to 
E is less than (or greater than) the number of allocations 
to C (or E); otherwise make a random guess (with prob-
ability 0.5). With this approach, the expected proportion 
of correct guesses, PCGc , is

(11)SD|D(n)| =
√
var|D(n)|

(12)

Pskewed = E



�N

i=1 χ

�
|Di(n)|

ni
> 1

3

�
· χ(ni ≥ 2)

�N
i=1 χ(ni ≥ 2)



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where G1 = 0.5 and for m ≥ 1 , Gm+1 is a random vari-
able defined as follows:

Note that for the most random procedure, complete 
randomization design, PCGc = 0.50 regardless of the 
guessing strategy, and for any other (restricted) rand-
omization procedure PCGc > 0.50 . The selection bias 
is proportional to PCGc − 0.5.

With the deterministic guessing strategy, it is assumed 
that an investigator at the site/center level makes the 
(correct) guess only when the next treatment assign-
ment in their center is known with certainty or guesses 
at random otherwise. With this approach, the expected 
proportion of correct guesses, PCGd , is

where G̃m is a random variable defined as follows:

In (16),  φm is the conditional randomization probabil-
ity of treatment E assignment for the m th patient in the 
sequence, specific to the center at which this patient was 
recruited. For center-stratified MTI procedures—C-BSD, 
C-BUD, and C-EUD—the event  {φm = 0 or 1} occurs if 
and only if the current treatment imbalance has reached 
the MTI value, i.e., |Di(m− 1)| = b . For center-stratified 
PBD, deterministic allocations can occur more frequently 
than with MTI procedures, since more than a single 
assignment at the end of the block can be deterministic. 
Note that in our considered setting, the deterministic 
guessing strategy is meaningful only for center-stratified 
randomization and dynamic balancing randomization. 
For the unstratified and region-stratified randomization 
approaches (where the instants when deterministic allo-
cations are made are unknown to an investigator at any 
given center), the deterministic guessing strategy is mean-
ingless and for these procedures we can set PCGd ≡ 0.5.

Finally, we consider the expected proportion of 
deterministic assignments in the sequence:

(13)PCGc =
1

n

∑n

m=1
E(Gm)

(14)Gm+1 =





1, if (Di(m) < 0 and δm+1 = 1) or (Di(m) > 0 and δm+1 = 0);

0.5, if Di(m) = 0;

0, if (Di(m) < 0 and δm+1 = 0) or (Di(m) > 0 and δm+1 = 1).

(15)PCGd =
1

n

∑n

m=1
E
(
G̃m

)

(16)G̃m =

{
1, if φm = 0 or 1;
0.5, otherwise.

Note that the terms in the sum in the right-hand 
side of (17) are considered without regard to the study 

center. The low value of PD is desirable from the stand-
point of statistical inference, because more random 
procedures have wider reference sets of randomization 
sequences and can result in potentially more powerful 
randomization tests [45].

Simulation study setup
The goal of the Monte Carlo simulation is to compare 
several randomization strategies with respect to bal-
ance and randomness for a multi-center 1:1 RCT with a 
stochastic recruitment model. For the “base case” (Sce-
nario 1), the following parameters will be used for the 
Poisson-gamma model:

• Target recruitment period T = 12 months
• a′ = 0, a′′ = 4 (all centers are activated during the 

first 4-month period)
• n = 500 patients
• N = 80 centers
• G = 5 regions (such that there are 16 centers per 

region)
• α = 1.2× 100 and β = 58× 100

The latter choice of α and β corresponds to a low varia-
bility of center recruitment rates and the goal of recruit-
ing n = 500 patients in the 1-year timeframe with the 
stated above recruitment parameters. To be more pre-
cise, assuming the total enrollment period EP ≈ 365 
days (12  months), and the center activation period 
AP ≈ 122 days (4 months), the mean recruitment rate is 
m = n(

EP− AP
2

)
·N

= 500
(365−61)·80

≈ 0.0206 patients per 

center per day. Then by setting α = 1.2× 100 and 
β = α

m × 100 , we have the mean and variance of the 
recruitment rate for the i th center ( i = 1, . . . , 80 ) as 
E(�i) =

α
β
≈ 0.0206 and var(�i) =

α

β2 ≈ 3.62× 10−6 . 
This case reflects a very low variability in recruitment 
rates and is nearly equivalent to a Poisson model where 
in all centers the recruitment rates are constants. Though 
this is an idealistic situation, we consider is as a baseline 
scenario to compare with a more realistic Scenario 2 (see 

(17)PD =
1

n

∑n

m=1
Pr(φm = 0 or 1)
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below) where the rates are random and have some rea-
sonable variation.

We consider four approaches to randomization: i) 
unstratified; ii) center-stratified; iii) region-stratified; 
and iv) dynamic balancing randomization (DBR). For 
approaches i)–iii), four different methods to generate 
a randomization sequence are considered: permuted 
block design (PBD), big  stick design (BSD), Ehrenfest 
urn design (EUD), and block urn design (BUD). These 
designs ensure that the absolute value of imbalance at 
the chosen level (trial, region, or center) is capped by 
a pre-specified positive integer MTI parameter b . For 
approach iv), there are 3 MTI parameters: b1 (MTI 
parameter for the center level), b2 (pursued but not 
always feasible MTI for the region level), and b3 (pur-
sued but not always feasible MTI for the trial level). 
Overall, 16 randomization methods will be compared:

 I. Unstratified PBD (b = 2)

 II. Unstratified BUD (b = 2)

 III. Unstratified EUD (b = 2)

 IV. Unstratified BSD (b = 2)

 V. Region-stratified PBD (b = 2)

 VI. Region-stratified BUD (b = 2)

 VII. Region-stratified EUD (b = 2)

 VIII. Region-stratified BSD (b = 2)

 IX. Center-stratified PBD (b = 2)

 X. Center-stratified BUD (b = 2)

 XI. Center-stratified EUD (b = 2)

 XII. Center-stratified BSD (b = 2)

 XIII. DBR with b1 = 2 , b2 = 2 , b3 = 2

 XIV. DBR with b1 = 2 , b2 = 4 , b3 = 4

 XV. DBR with b1 = 2 , b2 = 4 , b3 = 8

 XVI. Complete randomization design (CRD)

The algorithm for simulation of patient recruit-
ment and randomization is summarized in Table 1. In 
essence, for each simulation run, we first generate a 
recruitment pattern of n patients in N  centers based on 
the assumed Poisson-gamma model. The resulting data 
structure, Fn will contain the following variables:

• Patient ID ( m = 1, . . . , n)
• Patient enrollment times: tm ∈ [0,T ] , m = 1, . . . , n 

( t1 ≤ t2 ≤ · · · ≤ tn)
• Patient enrollment centers: zn = (z1, . . . , zn)

• Patient enrollment regions: z̃n = (z̃1, . . . , z̃n) (the 
region is determined by the center)

The simulated pattern Fn will be the same for dif-
ferent randomization methods, to ensure a consistent 
comparison. For a given randomization method, a rand-
omization sequence �n = (δ1, . . . , δn) will be generated, 
accounting for the information from Fn , as appropriate. 
Based on 10,000 simulations, we will obtain the meas-
ures of operational efficiency, measures of balance/sta-
tistical efficiency, and measures of randomness.

For the operational efficiency, we obtain:

• The distribution of time to complete recruitment (the 
time at which the n th patient has been enrolled into 
the study)

• The average number of centers that recruited exactly 
j patients ( j = 0, 1, . . . , n).

Table 1 The algorithm for simulation of patient recruitment and randomization

Step 1 Specify the parameters of the trial (see subsection “Simulation Study setup”): T , a′ , a′′ , b, n,N,G,α,β  

Step 2 Generate the recruitment rates for the centers: λi ∼ Gamma (α, β), i = 1, …, N

Step 3 For the ℓ th simulation run ( ℓ = 1, . . . , 10, 000):
a. For the i  th center ( i = 1, . . . ,N):
 • Generate center activation time:ui ∼ Uniform(a′ , a′′)  
 • Generatenpatient arrival times according to the Poisson process with rate�i
 • Record the patient arrival times as(ui + ti1) ≤ (ui + ti2) ≤ · · · ≤ (ui + tin)

b. Create a data structure of the pooled sample of nN virtual patients with the following variables:
 • Patient ID ( l = 1, . . . , nN)
 • Patient enrollment time ( τl = ui + tim,i = 1, . . . ,N,m = 1, . . . , n)
 • Enrollment center
 • Geographic region of the center
c. Sort the data structure from Step 3b by τl , and retain the first n patients ⇒ call the resulting dataset Fn⇒ it will constitute the sample  
    of n patients to be randomized in the ℓ th simulation run
d. Based on Fn from Step 3c, for each considered randomization design, generate:
 • Randomization sequence�n = (δ1, . . . , δn) , where δm = 1 or 0, if the m th patient in the sequence is randomized to treatment E or C
 • Vector�n = (φ1, . . . ,φn) , whereφm is the conditional randomization probability of randomizing the m th patient in the sequence  
       to treatment E

Step 4 Based on10, 000simulation runs, derive the operating characteristics, as described in subsection “Measures of balance and randomness”)
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For quantifying balance/statistical efficiency of each 
randomization method, we obtain:

• The distribution of loss at the trial level ( L1 ), region 
level ( L2 ), and center level ( L3).

• The distribution of estimation efficiency of a rand-
omization design relative to the idealized balanced 
design assuming a linear model with no covariates 
other than treatment ( RE1 = 1− L1/n ), a linear 
model with additive effects of treatment and region 
( RE2 = 1− L2/n ), and a linear model with additive 
effects of treatment and center ( RE3 = 1− L3/n).

• The standard deviation of absolute imbalance, 
SD|D(n)|.

• The expected proportion of centers (among all centers 
that recruited at least 2 patients) that resulted in the 
allocation ratio more skewed that 1:2 or 2:1, Pskewed.

• The probability distributions of imbalance at the trial, 
center, and region level:  Pr

(∣∣Imbalance
∣∣ ≥ d

)
 for 

d = 0, 1, 2 . . . , where 
∣∣Imbalance

∣∣ is equal to: |D(n)| 
for the trial level; max

i=1,...,N
|Di(n)| for the center level; 

or max
g=1,...,G

∣∣∣D̃g (n)
∣∣∣ for the region level.

For quantifying the degree of randomness/predictabil-
ity of each randomization method, we obtain:

• Average proportion of correct guesses assuming the 
convergence guessing strategy, PCGc.

• Average proportion of correct guesses assuming the 
deterministic guessing strategy, PCGd.

• Average proportion of deterministic assignments in 
the sequence, PD.

In addition to the described “base case” Scenario 1, we 
will investigate three more scenarios:

Scenario 2: Increased variability in center recruitment 
rates: α = 1.2 and β = 58 (which corresponds to 
E(�i) =

α
β
≈ 0.0206 and var(�i) =

α

β2 ≈ 3.62× 10−4 ), 
and all other parameters as in Scenario 1. For this scenario, 
the recruitment rates have some realistic variation which is 
confirmed by the analysis of many real trials [30, 33].

Scenario 3: Increased number of centers: N = 160 , 
and all other parameters as in Scenario 2.

Scenario 4: Increased MTI threshold, and all other 
parameters as in Scenario 2. For all MTI randomization 
procedures, we set b = 4 , and for the three DBR proce-
dures we set (b1, b2, b3) = (4, 4, 4) ; (4, 8, 8) ; (4, 8, 16).

Results
Scenario 1
Figure  1 (left plot) shows the simulated distribution of 
the time to complete recruitment by enrolling the 500th 

patient into the study. The distribution is symmetric and 
bell-shaped, centered around the target recruitment time 
of 365 days, with the interquartile range (IQR) from 356 
to 375 days, and the range 302–428 days.

Figure 2 (left plot) shows the simulated average number 
of centers that have recruited exactly j = 0, 1, . . . patients. 
One can see that, on average, ~ 12 centers would recruit 
exactly 5 (or 6) patients, ~ 10 centers would recruit 
exactly 4 patients, etc. Also, less than one center, on aver-
age, would recruit exactly 13, 14 (or more) patients. This 
means that treatment imbalances at the center level are 
likely to occur—even if center-stratified randomization is 
used, some sites will recruit an odd number of patients, 
in which case the imbalance will be non-zero.

Figure 3 shows the boxplots of the distributions of loss 
at the trial, region, and center level for 16 randomiza-
tion designs under Scenario 1. The following important 
observations can be made:

• The four unstratified restricted randomization 
procedures—U-PBD(2), U-BUD(2), U-EUD(2), and 
U-BSD(2)—result in the lowest loss at the trial level 
but they fail to control imbalance at the region and 
center levels.

• The four region-stratified randomization procedures—
R-PBD(2), R-BUD(2), R-EUD(2), and R-BSD(2)—do a 
very good job keeping the loss low at both the region 
and the trial levels, but they are almost equivalent to 
CRD at the center level.

• The four center-stratified randomization procedures—
C-PBD(2), C-BUD(2), C-EUD(2), and C-BSD(2)—have 
a pretty good control of loss at all three levels. They 
tend to have the lowest lost among all considered 
designs at the center level, and they maintain reason-
ably small values of loss (way below those of CRD) at 
both the region and the trial levels. Among the four 
center-stratified designs, the loss tends to be lowest for 
C-PBD(2) and highest for C-BSD.

• The three dynamic balancing randomization proce-
dures—DBR(2, 2, 2), DBR(2, 4, 4), and DBR(2, 4, 8)— 
tend to have very low loss at both the trial and the 
region levels, and they are similar to C-BSD(2) at the 
center level. There seems to be no added value due 
to using lower imbalance tolerance thresholds at the 
region and trial levels—the configurations (2,  2, 2), 
(2, 4, 4), and (2, 4, 8) led to almost the same distribu-
tions of loss for the DBR procedures.

• CRD tends to have highest values of loss at any 
level; however, the randomization procedures 
that do not stratify by center have similar loss to 
CRD at the center level; the unstratified randomi-
zation procedures have similar loss to CRD at the 
region level.
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Fig. 1 Simulated distribution of time to complete recruitment under Scenario 1 (left plot), under Scenarios 2 and 4 (middle plot), 
and under Scenario 3 (right plot)

Fig. 2 Simulated average number of centers that recruited exactly j = 0, 1, . . . patients under Scenario 1 (left plot), Scenarios 2 and 4 (middle plot), 
and Scenario 3 (right plot)
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Figure  4 corroborates the findings in Fig.  3. What 
is important to notice is the magnitude of loss in effi-
ciency due to imbalance induced by different randomi-
zation procedures. If responses follow a normal linear 
model with no covariates other than the treatment 
group (Fig. 4, top plot), all procedures except for com-
plete randomization are guaranteed to be at least 99% 
as efficient as the perfectly balanced design (250:250 
allocation). For the CRD, the minimum efficiency falls 
short below 96%.

If both treatment and region are important covariates 
(Fig. 4, middle plot), then the four region-stratified ran-
domization designs and the three DBR procedures have 
the same efficiency as the “idealized” balanced design 
(IBD), while the four center-stratified randomization 
designs are at least 98% as efficient as IBD. By contrast, 
for the four unstratified designs and the CRD the effi-
ciency can be as low as ~ 95%.

Finally, if both treatment and center are important 
covariates (Fig.  4, bottom plot), then the four center-
stratified randomization designs as the three DBR proce-
dures have median (minimum) efficiency ≥ 95% ( ≥ 92%). 
By contrast, the four unstratified randomization designs, 
the four region-stratified randomization designs, and 

the CRD in this case have median (minimum) efficiency 
of ~ 85% (~ 75%).

Table 2 shows the simulated standard deviation (SD) of 
absolute overall imbalance for 16 randomization designs. 
Under Scenario 1, the four unstratified designs have the 
SD of at most 1.0, the four region-stratified designs have 
SD in the range 1.4–1.8, and the four center-stratified 
designs have SD in the range 5.0–6.8. For the DBR proce-
dures, SD depends on the choice of the MTI thresholds—
SD can be as low as 1.1 for DBR(2, 2, 2)—which is similar 
to U-BSD(2), and SD = 2.3 for DBR(2, 4, 8). The CRD is 
most variable with SD = 13.4.

Table 3 displays the simulated Pskewed for 16 randomi-
zation designs. Under Scenario 1, approximately one-
third (33–35%) of the centers result in an allocation more 
skewed than 2:1 or 1:2 following the four unstratified 
designs, four region-stratified designs, and CRD. The 
corresponding numbers are much lower—from 1.5% to 
8.5%—for the four center-stratified designs and DBR.

Figure  5 shows the plots of Pr(
∣∣Imbalance

∣∣ ≥ d) at the 
trial, region, and center level for 16 considered randomiza-
tion designs under Scenario 1. The numerical values of these 
probabilities are available in Supplemental Appendix 1. The 
following important observations can be made:

Fig. 3 Boxplots of loss at the trial, region, and center level for 16 randomization designs under Scenario 1
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Fig. 4 Boxplots of efficiency (relative to the idealized balanced design) in estimating the treatment effect assuming a linear model 
without covariates (Trial level, RE1 ), a linear model with region as a covariate (Region level, RE2 ), and a linear model with center as a covariate (center 
level, RE3 ) for 16 randomization designs under Scenario 1

Table 2 Simulated standard deviation of absolute overall 
imbalance SD|D(n)| for 16 randomization designs under Scenarios 
1–4

Randomization 
design

Scenario 1 Scenario 2 Scenario 3 Scenario 4

U-PBD (b) 0.00 0.00 0.00 1.10

U-BUD (b) 0.95 0.94 0.94 1.14

U-EUD (b) 0.86 0.85 0.86 1.05

U-BSD (b) 1.00 1.00 1.00 1.40

R-PBD (b) 1.40 1.39 1.38 1.80

R-BUD (b) 1.57 1.58 1.58 2.30

R-EUD (b) 1.49 1.48 1.49 2.00

R-BSD (b) 1.76 1.76 1.72 3.19

C-PBD (b) 4.97 4.83 6.56 6.41

C-BUD (b) 5.93 5.46 7.29 7.58

C-EUD (b) 5.41 5.13 6.62 6.62

C-BSD (b) 6.76 6.16 8.09 10.06

DBR(b, b, b) 1.07 1.06 1.06 1.42

DBR(b, 2b, 2b) 1.45 1.43 1.45 2.41

DBR(b, 2b, 4b) 2.32 2.29 2.35 4.34

CRD 13.43 13.37 13.54 13.47

Table 3 Simulated average proportion of centers (among all 
centers that recruited at least 2 patients) that resulted in the 
allocation ratio more skewed that 1:2 or 2:1 under Scenarios 1–4

Randomization 
design

Scenario 1 Scenario 2 Scenario 3 Scenario 4

U-PBD (b) 0.347 0.322 0.382 0.323

U-BUD (b) 0.347 0.323 0.382 0.323

U-EUD (b) 0.347 0.323 0.383 0.323

U-BSD (b) 0.347 0.322 0.381 0.324

R-PBD (b) 0.334 0.308 0.370 0.308

R-BUD (b) 0.333 0.308 0.371 0.308

R-EUD (b) 0.334 0.308 0.371 0.307

R-BSD (b) 0.335 0.308 0.371 0.310

C-PBD (b) 0.015 0.045 0.083 0.139

C-BUD (b) 0.057 0.080 0.130 0.167

C-EUD (b) 0.043 0.060 0.097 0.129

C-BSD (b) 0.085 0.119 0.195 0.265

DBR ( b, b, b) 0.083 0.116 0.191 0.255

DBR ( b, 2b, 2b) 0.083 0.117 0.191 0.259

DBR ( b, 2b, 4b) 0.084 0.117 0.192 0.259

CRD 0.349 0.326 0.385 0.328
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• The four unstratified randomization procedures 
ensure that imbalance at the trial level (green pat-
tern) does not exceed the MTI value (which is 
set to 2 in our case). However, at the region (red 
pattern) and the center (purple pattern) levels 
larger imbalances are likely—e.g., at these levels 
Pr
(∣∣Imbalance

∣∣ ≥ 6
)
≈ 0.96 for all 4 unstratified 

randomization procedures, which is similar to CRD.
• The four region-stratified randomization procedures 

ensure that 
∣∣Imbalance

∣∣ ≤ 2 at the region level. These 
procedures also provide a very good control of imbal-
ance at the trial level—e.g., Pr

(∣∣Imbalance
∣∣ ≥ 6

)
 is 

between 1% (for R-PBD(2)) and 6% (for R-BSD(2)). 
However, at the center level larger imbalances are 
likely—e. g., Pr

(∣∣Imbalance
∣∣ ≥ 6

)
≈ 0.94 for all 4 

region-stratified randomization procedures, which is 
similar to CRD.

• The four center-stratified randomization proce-
dures ensure that 

∣∣Imbalance
∣∣ ≤ 2 at the center 

level. At two other levels, larger imbalances are 
likely; however, probability of such imbalances 
is smaller than for CRD. For instance, at the trial 
level, Pr

(∣∣Imbalance
∣∣ ≥ 6

)
 is in the range 54% to 

64% for center-stratified randomization proce-

dures whereas it is 82% for CRD. At the region level, 
Pr
(∣∣Imbalance

∣∣ ≥ 6
)
 is in the range 50% to 78% for 

center-stratified randomization procedures whereas 
it is 99% for CRD.

• The three dynamic balancing randomization pro-
cedures ensure best overall control of imbalance at 
all three levels. By design, these procedures main-
tain 

∣∣Imbalance
∣∣ ≤ 2 at the center level. At the trial 

level, Pr
(∣∣Imbalance

∣∣ ≥ 6
)
 is less than 1% for DBR(2, 

2, 2) and DBR(2, 4, 4), and it is ~ 25% for DBR(2, 4, 
8). At the region level, the corresponding values of 
Pr
(∣∣Imbalance

∣∣ ≥ 6
)
 are all below 1%.

Figure  6 shows the lack of randomness measures for 
16 considered randomization designs under Scenario 
1. One can see that the expected proportion of deter-
ministic assignments ( PD ) (Fig.  6, top plot) is highest 
for DBR(2, 2, 2) ( PD = 0.56 ), followed by DBR(2, 4, 4) 
(0.36), two  permuted block randomization procedures: 
U-PBD(2) (0.33) and R-PBD(2) (0.33), and DBR(2, 4, 
8) (0.29). The lowest PD is for three procedures involv-
ing Ehrenfest urn design—U-EUD(2), R-EUD(2), and 
C-EUD(2)—their values of PD are equal to 0.12, 0.12, and 
0.10, respectively. For CRD, PD = 0.

Fig. 5 Pr(|Imbalance| ≥ d) at the trial, region, and center level for 16 randomization designs under Scenario 1
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The expected proportion of correct guesses under 
convergence guessing strategy ( PCGc ) (Fig.  6, mid-
dle plot) is largest for C-PBD(2) ( PCGc = 0.68 ). By 
replacing permuted blocks within strata with some 
less restrictive MTI procedure one can lower the prob-
ability of correct guesses: for C-EUD(2), C-BUD(2), 
and C-BSD(2) the values of PCGc are 0.66, 0.64, and 
0.60, respectively. The three DBR procedures have 
PCGc = 0.60 . The four unstratified and the four region-
stratified randomization procedures are similar to CRD 
for which PCGc = 0.50.

The expected proportion of correct guesses under 
deterministic guessing strategy ( PCGd ) (Fig.  6, bottom 
plot) is, in general, not the same as PCGc . The PCGd is 
largest for C-PBD(2) ( PCGd = 0.63 ). For C-BUD(2), 
C-EUD(2), and C-BSD(2) the values of PCGd are 0.56, 
0.55, and 0.59, respectively. For the three DBR procedures 
we have PCGd = 0.59 . For all other designs (unstratified, 
region-stratified, and CRD), PCGd = 0.50.

Scenario 2
Under Scenario 2, we have increased variability in the 
center recruitment rates while keeping all other param-
eters the same as in Scenario 1. From Fig. 1 (middle plot), 
the time to complete recruitment has a symmetric, bell-
shaped distribution around 365 days, but it is more dis-
persed compared to Scenario 1—the IQR if from 344 to 
391 days, and the range is 259–573 days.

Figure  2 (middle plot) shows the average number of 
centers that recruited exactly j = 0, 1, . . . patients under 
Scenario 2. This plot exhibits a right-skewed distribu-
tion. On average, 9 centers would not recruit a single 
patient, ~ 9 centers would recruit exactly 1 patient, etc. 
Also, less than one site, on average, would recruit exactly 
17, 18 (or more) patients.

The full report of operating characteristics of 16 rand-
omization designs under Scenario 2 is available in Sup-
plemental Appendix 2. Here we focus on estimation 
efficiency relative to the “idealized” balanced design 

Fig. 6 Measures of lack of randomness – expected proportion of deterministic assignments ( PD ) (upper plot), expected proportion of correct 
guesses under the convergence strategy ( PCGc ) (middle plot), and expected proportion of correct guesses under the deterministic strategy ( PCGd ) 
(bottom plot) for 16 randomization designs under Scenario 1
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Fig. 7 Boxplots of estimation efficiency (relative to the idealized balanced design) for 16 randomization designs under Scenario 1 (green boxplots), 
Scenario 2 (orange boxplots), Scenario 3 (purple boxplots), and Scenario 4 (pink boxplots)

Fig. 8 Measures of lack of randomness for 16 randomization designs under Scenario 1 (green bar plots), Scenario 2 (orange bar plots), 
Scenario 3 (purple bar plots), and Scenario 4 (pink bar plots). Upper plot – expected proportion of deterministic assignments ( PD ); middle 
plot – expected proportion of correct guesses under the convergence strategy ( PCGc ); bottom plot – expected proportion of correct guesses 
under the deterministic strategy ( PCGd)
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(Fig.  7, orange-colored boxplots) and the measures of 
lack of randomness (Fig. 8, orange-colored bar plots).

As regards estimation efficiency:

• Under the normal linear model with no covariates 
other than the treatment group (Fig.  7, top plot, 
orange-colored boxplots), or if both treatment and 
region are important covariates (Fig. 7, middle plot, 
orange-colored boxplots), all 16 randomization 
designs have very similar efficiency compared to 
Scenario 1.

• Under the normal linear model with both treatment 
and center as important covariates (Fig.  7, bottom 
plot, orange-colored boxplots), the four unstrati-
fied designs, the four region-stratified designs, and 
the CRD have, overall, slightly higher efficiency in 
Scenario 2 than in Scenario 1. By contrast, the four 
center-stratified designs and the three DBR proce-
dures have, overall, slightly lower efficiency in Sce-
nario 2 than in Scenario 1. This may be due to that 
in Scenario 2 we have increased number of centers 
that recruited very few (1–3) patients compared to 
Scenario 1.

As regards allocation randomness, the values of PD , 
PCGc , and PCGd of 16 randomization designs under 
Scenario 2 (Fig.  8, orange-colored bar plots) are the 
same as the corresponding values under Scenario 1 
(Fig. 8, green-colored bar plots).

From Table 2, the values of SD|D(n)| of most randomi-
zation designs under Scenario 2 are about the same as in 
Scenario 1. From Table 3, the values of Pskewed of the four 
unstratified randomization designs, four region-stratified 
designs, and CRD under Scenario 2 are about the same as 
the corresponding values in Scenario 1; however, for the 
four center-stratified designs and the three DBR designs, 
Pskewed is increased by ~ 2–4 percentage points in Sce-
nario 2 compared to Scenario 1.

Overall, increased variability of the center recruitment 
rates affects the operational aspects of the study (time 
to complete recruitment, numbers of patients recruited 
per center), but it seems to have little impact on balanc-
ing properties/estimation efficiency of randomization 
designs and no impact on the measures of randomness/
predictability of randomization designs.

Scenario 3
Under Scenario 3, the number of centers is increased 
from N = 80 to N = 160 and the variability of center 
recruitment rates is increased compared to Scenario 1 
(it is kept the same as in Scenario 2). From Fig. 1 (right 
plot), the time to complete recruitment has a symmetric, 

bell-shaped distribution, shifted to the left from 365 days 
(median = 215  days; IQR is 206–224  days; and range is 
172–272 days). Therefore, the recruitment is accelerated 
due to additional centers.

From Fig. 2 (right plot), the average number of centers 
that recruited exactly j = 0, 1, . . . patients has a right-
skewed distribution, similar to that in Scenario 2; how-
ever, now we have, on average, more centers (~ 35) that 
recruited no patients, ~ 30 centers that recruited exactly 
1 patient, etc. Fewer than one center, on average, has 
recruited exactly 13, 14 (or more) patients.

The full report of operating characteristics of 16 rand-
omization designs under Scenario 3 is available in Sup-
plemental Appendix 2. Here we focus on estimation 
efficiency relative to the “idealized” balanced design 
(Fig. 7, purple-colored boxplots) and the measures of lack 
of randomness (Fig. 8, purple-colored bar plots).

As regards estimation efficiency:

• Under the normal linear model with no covariates 
other than the treatment group (Fig.  7, top plot, 
purple-colored boxplots), all 16 randomization 
designs have very similar efficiency compared to 
Scenario 1.

• If both treatment and region are important covariates 
(Fig. 7, middle plot, purple-colored boxplots), for 12 
randomization designs (4 unstratified, 4 region-strat-
ified, 3 DBR, and CRD) the findings are very similar 
to those in Scenarios 1 and 2. For the 4 center-strati-
fied designs there is a slight drop in efficiency (~ 1%) 
compared to the results in Scenarios 1 and 2.

• If both treatment and center are important covariates 
(Fig.  7, middle plot, purple-colored boxplots), all 16 
randomization designs exhibit a substantial drop in 
estimation efficiency compared to Scenarios 1 and 2. 
With the 4 center-stratified and 3 DBR procedures, 
the median (minimum) efficiency is now ~ 85–87% 
(80%). For the 4 unstratified procedures, 4 region-
stratified procedures, and the CRD the correspond-
ing values of median (minimum) efficiency are ~ 75% 
(65%). This represents an absolute decrease in effi-
ciency of ~ 10% compared to Scenarios 1 and 2.

As regards allocation randomness:

• From Fig. 8 (upper plot, purple-colored bar plots), the 
4 unstratified designs, 4 region-stratified designs, and 
CRD have the same values of PD in Scenario 3 as in 
Scenarios 1 and 2. For the 4 center-stratified designs 
and the 3 DBR designs, there is an absolute decrease 
of 2–5% in PD in Scenario 3 compared to Scenarios 1  
and 2. For instance, C-PBD(2) has PD = 22% in 
Scenario 3 vs. 27% in Scenarios 1 and 2.
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• From Fig. 8 (middle and bottom plots, purple-colored 
bar plots), the 4 unstratified designs, 4 region-strati-
fied designs, and CRD have the same values of PCGc 
and PCGd across Scenarios 1, 2, and 3. The 4 center-
stratified designs and the 3 DBR designs exhibit 1–2% 
absolute decrease in PCGc and PCGd in Scenario 3 
compared to Scenarios 1 and 2.

From Table 2, the values of SD|D(n)| of 12 randomiza-
tion designs (4 unstratified, 4 region-stratified, 3 DBR, 
and CRD) are about the same across Scenarios 1, 2, and 
3; however, in the majority of cases for the four center-
stratified designs, there is ~ 33–34% relative increase in 
SD|D(n)| in Scenario 3 compared to Scenarios 1 and 2. 
From Table 3, the values of Pskewed of the four unstratified 
randomization designs, four region-stratified designs, 
and CRD increased by ~ 3–4 percentage points in Sce-
nario 3 compared to Scenario 1; and for the four center-
stratified designs and the three DBR designs, Pskewed is 
increased by 5–11 percentage points in Scenario 3 com-
pared to Scenario 1.

Overall, doubling the number of centers from N = 80 
to N = 160 helps expedite the completion of recruitment 
to some extent; however, it also increases the number 
of sites that recruited no patients or very few patients. 
Under Scenario  3, treatment imbalance at the trial and 
region level is likely to be similar to Scenarios  1 and 2 
for all 16 considered randomization designs. However, 
at the center level, the imbalance is likely to increase for 
all designs, which can lead to ~ 10% absolute loss in effi-
ciency of treatment effect estimation under a normal lin-
ear model with both treatment and center as important 
covariates. This makes sense because under Scenario  3 
one expects many centers with very few patients that may 
result in unbalanced allocation. The measures of ran-
domness/predictability of randomization designs under 
Scenario 3 are either the same (for unstratified, region-
stratified, or CRD) or slightly lower (for center-stratified 
or DBR designs) compared to Scenarios 1 and 2.

Scenario 4
Under Scenario 4, the MTI threshold is increased for 
all considered randomization designs, while all other 
parameters are kept as in Scenario 2. Neither the time to 
complete recruitment nor the average number of cent-
ers that recruited a given number of patients are affected 
by the choice of MTI; therefore, these characteristics are 
identical in Scenario 4 and Scenario 2 (see Fig. 1, middle 
plot and Fig. 2, middle plot).

The full report of operating characteristics of 16 rand-
omization designs under Scenario 4 is available in Sup-
plemental Appendix 2. Here we focus on estimation 
efficiency relative to the “idealized” balanced design 

(Fig. 7, pink-colored boxplots) and the measures of lack 
of randomness (Fig. 8, pink-colored bar plots).

As regards estimation efficiency:

• The 4 unrestricted randomization designs, 4 
region-stratified randomization designs, and the 
CRD in Scenario 4 have about the same efficiency 
as in Scenario 2.

• For the 4 center-stratified designs, efficiency is some-
what degraded in Scenario 4 compared to Scenario 2. 
Among these designs, C-BSD(b ) exhibits the highest 
loss in efficiency (Fig. 7, pink-colored boxplots).

• For the 3 DBR procedures, there is also some degra-
dation in efficiency in Scenario 4 compared to Sce-
nario 2. For example, median (minimum) efficiency 
under a linear model with additive treatment and 
center effects (Fig. 7, bottom plot, pink colored box-
plots) of the 3 DBR procedures is ~ 90% (~ 83%) in 
Scenario 4 vs. ~ 94% (~ 90%) in Scenario 2.

As regards allocation randomness, there is a substantial 
reduction in PD for all considered randomization designs 
(except for CRD which already has PD ≡ 0 ) (Fig.  8, top 
plot, pink-colored bar plots). For instance, randomization 
designs based on Ehrenfest urn or block urn have PD of 
at most 2% under Scenario 4). For the 3 DBR procedures, 
a 2.3–2.9-fold decrease in PD is observed under Scenario 
4 compared to Scenario 2. Likewise, PCGc and PCGd of 
the 4 center-stratified randomization designs and the 3 
DBR procedures is decreased by 5–7 percentage points 
compared to Scenario 2.

Conclusions
Summary and discussion
Multi-center randomized clinical trials are increasingly 
common in clinical research. The choice of a fit-for-pur-
pose randomization method for a multi-center RCT is 
not straightforward. Many factors should be considered 
at the study planning stage, such as the sample size, the 
number of centers and their geographic location, the sto-
chastic recruitment of patients, amongst others. There 
are plenty of methods to sequentially randomize patients 
in a multi-center RCT, with or without considering strati-
fication factors. These methods vary in the degree of 
treatment balance and allocation randomness, as well as 
the type of randomization mechanism—for some proce-
dures the randomization sequence can be pre-generated, 
whereas for others it can only be generated dynami-
cally, depending on the covariates of the new trial par-
ticipant and the covariates of already randomized trials 
participants.

In this work, we investigated four different types of rand-
omization—unstratified, region-stratified, center-stratified, 
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and dynamic balancing randomization. Within each type, 
we explored different possibilities for the choice of a ran-
domization procedure (e.g., conventional permuted block 
design vs. a less restrictive MTI procedure), and for a given 
procedure we explored the choice of the block size(s) and 
MTI threshold(s). Furthermore, we investigated different 
metrics of treatment balance and allocation randomness. 
Balance in treatment assignments is frequently required 
at different levels—e.g., overall in the trial, across different 
geographic regions, across study centers, etc. A randomi-
zation design that achieves balance at a given level (e.g., 
trial) may be suboptimal in terms of balance at other levels 
(e.g., region or center). Moreover, a randomization design 
that forces excessive balance may result in a high number of 
deterministic assignments and/or assignments that could 
be easily predictable using some intelligent guessing strat-
egy, which can invite selection bias in open-label studies.

We investigated one “base case” experimental scenario 
and three additional scenarios by varying the input param-
eters of the Poisson-gamma recruitment model or the ran-
domization parameters (block size and MTI threshold). 
Our major findings can be summarized as follows:

1. Maximum tolerated imbalance (MTI) randomiza-
tion procedures provide a very good alternative to 
the conventional permuted block design (PBD). The 
former procedures ensure the same amount of treat-
ment balance at trial, region, and center level, while 
being more random and less predictable than PBD.

2. Unstratified randomization methods ensure treat-
ment balance at the trial level, but they behave like 
complete randomization at the region or center lev-
els. Region-stratified randomization methods (in 
our simulations we assumed 5 geographic regions) 
ensure balance at the region level and the trial level, 
but they behave like complete randomization at the 
center level. Center-stratified randomization meth-
ods control imbalance at the center level and pro-
vide a reasonable (but not ideal) control of imbal-
ance at both the region and the trial levels. Dynamic 
balancing randomization (DBR) methods do a very 
good job simultaneously controlling imbalance at all 
3 levels (trial, region, and center). A well-balanced 
experiment translates into accurate (unbiased, low 
variance) estimates of the treatment effect under a 
normal linear model for the response (and possibly 
other models, not explored in the current work), and 
is very appealing from the drug supply perspective.

3. The correct guess probability (CGP) under the Black-
well-Hodges model using the convergence strategy 
or using the deterministic guessing strategy applied 
by investigators at the study site level can be consid-

erable for center-stratified randomization and DBR 
methods in an open-label trial. Stratified permuted 
block design has highest CGP among the considered 
methods. For region-stratified or unstratified rand-
omization, the strategy of guessing treatment assign-
ments in a sequence at the center level is futile, and 
so for these methods CGP is close to that of a ran-
dom guess and should not be a concern.

4. An increased heterogeneity in center recruitment 
rates may increase uncertainty in recruitment char-
acteristics (time to complete recruitment and num-
bers of patients recruited per center) but it does not 
affect the properties of the randomization proce-
dures. (Note that changing the center recruitment 
rates may or may not be under the sponsor’s control.)

5. Adding more centers into the study (e.g., doubling 
the number of centers from 80 to 160 ) helps accel-
erate the recruitment process but at the expense 
of increasing the number of centers that recruited 
very few (or no) patients. This does not impact bal-
ancing or randomness properties of unstratified or 
region-stratified randomization designs; however, it 
increases the chance of imbalance at the trial level for 
center-stratified and DBR procedures. Therefore, if 
both treatment and center are important covariates, 
the efficiency of estimating the treatment effect can 
be decreased for these randomization methods.

6. Increasing the value of the block size or the MTI 
threshold(s) helps substantially improve the random-
ness properties of the procedures (e.g., lower the 
proportion of deterministic assignments and/or the 
proportion of correct guesses in the treatment allo-
cation sequence), but at the expense of some extra 
imbalance, which may—for some procedures—trans-
late into some loss in estimation efficiency, especially 
under a linear model with additive treatment and 
center effects. Overall, increasing the block size or 
the MTI threshold(s) may help obtain designs with 
improved randomness–balance tradeoff.

7. It is difficult to recommend any particular randomi-
zation method as the “winner”. In practice, a care-
ful investigation of different randomization design 
options under standard to worst-case scenarios 
would be helpful. Finding an “optimal” value of MTI 
threshold(s) for selected design(s) can be done using 
Monte Carlo simulations.

In summary, our simulation evidence suggests that 
the choice of a randomization method impacts statisti-
cal properties of a multi-center RCT with a stochastic 
recruitment process, and a careful assessment of differ-
ent options is warranted at the study planning stage.
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Limitations and Future Work
While our study has provided many useful insights, it has 
some limitations. Our considered criteria of balance were 
directly related to the differences in treatment assignments 
between the groups—overall in the trial, within-region, 
and within-center. It is well established that for a homosce-
dastic linear model with fixed additive effects of treatment 
and selected covariates (study center or geographic region 
in our examples), the most efficient design for estimating 
the treatment effect is one that balances treatment assign-
ments over the distribution of the covariates [46]. Hence, 
center-stratified, region-stratified, and dynamic balancing 
randomization procedures considered in our paper were 
legitimate choices as they pursued statistically most effi-
cient allocations under the fixed-effects homoscedastic 
linear model framework with the specified covariate struc-
tures. While we did not investigate the issue of statistical 
inference following the randomization designs, a proper 
analysis approach based on the fixed-effects linear model 
would adjust for all stratification variables. This is also 
consistent with the 2015 EMA guideline [11]:

“…In multicentre trials randomisation might be 
stratified by centre, country and/or region. The strat-
ification variables used for randomisation should be 
adjusted for in the primary analysis.”

However, what if the treatment effect differed across study 
centers? What if many centers enrolled only a few par-
ticipants? What if some centers randomized their enrolled 
participant(s) to only one treatment? Some additional impor-
tant methodological challenges in this context are related to: 
1) whether a statistical model should allow for the treatment-
by-center interaction; and 2) whether the center should be 
regarded as a fixed or random effect. In this regard, the 1998 
ICH E9 guideline [2] has the following paragraphs:

“The statistical model to be adopted for the estimation 
and testing of treatment effects should be described 
in the protocol. The main treatment effect may be 
investigated first using a model which allows for cen-
tre differences, but does not include a term for treat-
ment-by-centre interaction. If the treatment effect is 
homogeneous across centres, the routine inclusion of 
interaction terms in the model reduces the efficiency 
of the test for the main effects. In the presence of true 
heterogeneity of treatment effects, the interpretation 
of the main treatment effect is controversial...”
“...Up to this point the discussion of multicentre trials 
has been based on the use of fixed effect models. Mixed 
models may also be used to explore the heterogeneity 
of the treatment effect. These models consider centre 
and treatment-by-centre effects to be random, and are 
especially relevant when the number of sites is large.”

In the literature, several papers investigated both 
fixed-effects and random-effects models of analysis of 
multi-center RCT data [47–51]. The conclusions and rec-
ommendations from these papers are not uniform. For 
instance, the authors of [49] provide some insightful simula-
tion evidence showing that “where centre effects are small 
and recruitment in many centres is low, the approaches of 
ignoring centres or incorporating them as random effects 
have better performance than fixed effects analysis.” The lat-
ter findings on advantages of a random-effects model were 
further corroborated in the papers [50, 51]. These works 
suggest that it may be useful to consider the measures of 
imbalance and corresponding loss in statistical efficiency for 
a class of models that regard the center as a random effect. 
In this case, the variance of the treatment effect estimator is 
generally different from that under the fixed-effects model 
[29], and one may expect that the benefits of various rand-
omization methods may be different from the ones obtained 
in the current paper. These issues merit further investigation 
and we defer it to the future work.

Our investigation considered only study center or 
geographic region as stratification factors. However, 
stratification can be also applied on selected patients’ 
prognostic factors observed at baseline that may be 
strongly related to the primary outcome. Investigating 
stratified randomization schemes that use a combina-
tion of administrative factors (e.g., center or region) and 
prognostic factors (e.g., age, sex, disease severity, etc.) 
may be an interesting and important research problem.

In the present paper we focused on 1:1 RCTs; however, 
in practice many trials use unequal target allocation ratios, 
e.g., 2:1, and/or may involve more than two arms, e.g., dose–
response studies, platform trials, etc. The choice of a rand-
omization method in a multi-center multi-arm RCT with 
possibly unequal allocation ratios in an important problem 
worthy investigating. Some relevant work was done in [19]; 
however, these authors mainly focused on permuted block 
randomization, whereas many other randomization meth-
ods could provide potentially better alternatives [52, 53].

In our present work we considered the Poisson-gamma 
model for patient recruitment [29, 30], which is well-
established and widely used in multi-center clinical tri-
als. Other models for recruitment could be considered 
[54]. It may be interesting to explore the robustness of our 
findings under recruitment models with additional level 
of sophistication, such as a hierarchical Poisson-gamma 
model [55], a Poisson–Pareto model [56], amongst others.

In our study we considered only one dynamic randomi-
zation procedure, the DBR method [23]. However, there 
are other randomization methods that could be useful in 
this context. For example, Zelen [27] proposed a randomi-
zation procedure for a multi-center 1:1 RCT based on a 
pre-generated central randomization schedule that allows 
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skipping treatment assignments if center-level imbalance 
exceeds a pre-specified threshold. McEntegart [28] modi-
fied Zelen’s approach by introducing a mechanism to fill 
the gaps in the allocation schedule to ensure good balance 
in treatment assignments even in a small study. As demon-
strated in [57], equal allocation modified Zelen’s approach 
provides a good within-center balance in treatment assign-
ments, operates within a limited drug stock, and provides a 
good across-study balance in treatment assignments even 
in a moderate size study. It would be interesting to explore 
the performance of the “modified Zelen’s approach” and 
DBR in a head-to-head comparison.

Finally, in our current work we focused on balance and 
randomness (and their tradeoff ) but did not investigate 
the statistical inference criteria such as power and type 
I error. The latter problem necessitates the formulation 
of a statistical model for the primary outcome, which 
can be continuous, binary, count, or time-to-event. Fur-
thermore, one would have to specify a statistical proce-
dure, e.g., a two-sample t-test or analysis of covariance 
(ANCOVA) for continuous outcomes; Fisher’s exact test 
or logistic regression for binary outcomes, etc. The defi-
nition of “loss” in statistical efficiency would have to be 
specified accordingly. Finally, the choice of the analysis 
method—population model-based or randomization-
based inference—could be another important consid-
eration, as the two methods may not be equivalent if the 
population model assumptions are violated [7].

We hope to address the aforementioned problems in 
the future work.
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