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Abstract 

Background A variety of methods exist for the analysis of longitudinal data, many of which are characterized 
with the assumption of fixed visit time points for study individuals. This, however is not always a tenable assumption. 
Phenomenon that alter subject visit patterns such as adverse events due to investigative treatment administered, 
travel or any other emergencies may result in unbalanced data and varying individual visit time points. Visit times can 
be considered informative, because subsequent or current subject outcomes can change or be adapted due to previ-
ous subject outcomes.

Methods In this paper, a Bayesian Bernoulli-Exponential model for analyzing joint binary outcomes and exponen-
tially distributed informative visit times is developed. Via statistical simulations, the influence of controlled varia-
tions in visit patterns, prior and sample size schemes on model performance is assessed. As an application example, 
the proposed model is applied to a Bladder Cancer Recurrence data.

Results and conclusions Results from the simulation analysis indicated that the Bayesian Bernoulli-Exponential 
joint model converged in stationarity, and performed relatively better for small to medium sample size scenarios 
with less varying time sequences regardless of the choice of prior. In larger samples, the model performed better 
for less varying time sequences. This model’s application to the bladder cancer data showed a statistically significant 
effect of prior tumor recurrence on the probability of subsequent recurrences.

Keywords Joint modelling, Irregular time, Recurrence, Visit profiles, Longitudinal, Cancer

Introduction
Longitudinal data entail observations collected repeat-
edly on subjects over time. In medical research, the col-
lection of correlated, longitudinal data is a common 

phenomenon. Ranging from the assessment of response 
changes and trends over time to understanding disease 
progression, the benefits longitudinal approaches are 
enormous [1, 2]. A defining feature of longitudinal data is 
the dependency that characterizes observations extend-
ing over time, the type of outcome measured and some-
times, the assumption of fixed time measurements for 
subjects [3–5]. The broad assumption of fixed time meas-
urements, predetermined by study design, however is 
not always a tenable assumption. For instance, in a clini-
cal trial, there is the potential for different visit mecha-
nisms. Study subjects are likely to miss scheduled visits, 
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and a proportion of them are prone to adverse events 
from investigative treatments. Also, due to poor health 
conditions, individuals may self elect to visit the inves-
tigative site or hospital more intensely than their study 
counterparts. These occurrences may result not just in 
unbalanced data for subjects, but also varying visit pro-
files. Thus, the time structure adopted for the study can 
be considered informative. In a broad sense, this indi-
cates that outcomes measured at subsequent time points 
are influenced or can be adapted based on outcomes 
measured in current time. This necessitates the use of 
advanced methods that address the informative time 
structure rather than standard, traditional approaches, 
which are limited by the assumption of fixed time. To 
handle such scenarios, Bronsert [6] developed a classi-
cal joint model, involving Gaussian outcomes and expo-
nentially distributed informative time. Later, Alomair [7] 
extended Bronsert’s model to include time dependent 
covariates. Classical informative time joint models have 
also been developed by Seo [8], involving longitudinal 
outcomes from the exponential families and exponen-
tially distributed informative time. These joint models 
used the maximum likelihood estimation approach for 
estimating model parameters, and the authors broadly 
discussed associated computational complexities.

A Bayesian technique for modeling joint longitudinal 
outcomes and informative time points has been devel-
oped by Zaagan [9] but only for Gaussian distributed 
outcomes. The objectives of this research paper are two-
fold. First, we develop a Bayesian joint model for analyz-
ing binary longitudinal outcomes and informative times. 
Then, via statistical simulations, we examine the influ-
ence of controlled variations in subject visit patterns, 
different prior specifications and sample size schemes 
on the proposed model. This proceeds with model con-
vergence assessment and model evaluation. The pro-
posed Bayesian-Exponential joint model is applied to a 
Bladder cancer recurrence data resulting from a clinical 
trial involving patients with bladder cancer conducted 
by the Veterans Administration Co-operative Urological 
Research Group (VACURG) [10, 11].

Data and methods
The Bayesian Bernoulli‑Exponential joint model 
formulation and likelihood specification
The exponential family of distributions covers a broad 
range of response distributions including Gaussian and 
Non-Gaussian distributions [12, 13]. For example, the 
Normal, Gamma, Poisson, Bernoulli, and Beta distri-
butions are a part of the parametric set of distributions 

included in the family. Suppose the observations 
y1, y2, y3, · · · , yn are independent observations of a 
response variable, the exponential family of distributions 
from which the independent observations are sampled, 
can be specified as

Where,

• θi represents the canonical parameter.
• φ is a scale parameter and mi(·), s(·) , and r(·) are 

known functions which relates to the variances of 
distributions in the exponential family.

• mi(φ) can be specified as mi(φ) =
φ
ui

 , and ui ’s are 
predetermined weights.

The canonical or location parameter characterizes a so 
called canonical link function, and relates to the means of 
the distributions in the exponential family.

Assume we have a set of n participants enrolled in a 
clinical trial, have to visit an investigative site over time 
and are followed over an interval from (0, τ ] . A response 
observation for the ith participant measured at the kth 
visit time point can be specified as yik . We can further 
specify vectors of individual responses and their associ-
ated visit time points as

Here, the subscript ni allows for varying participant 
visit times. We can thus specify the joint distribution of 
recorded responses and time points as

where � is a vector of unknown parameters to be esti-
mated. Using these ideas, and in line with Seo [8] we can 
further specify a model that incorporates the joint dis-
tribution of responses and time points yik and t in with 
the underlying assumption that the current response 
depends on the one-step prior response yik−1  , and cur-
rent visit time point (tik) . It is important to note, how-
ever, that subsequent responses, yik will not be solely 
conditioned on observation time, tik but also on the most 
recent prior response, yik−1 and observation time. This 
distribution can be specified as;

(1)
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This formulation forms the premise for specifying the 
joint model with response observations sampled from 
the Bernoulli distribution. Time is considered informa-
tive and assumed to be exponentially distributed. The 
joint distribution for binary longitudinal outcomes and 
informative time given the underlying assumption of a 
one step dependency can be specified as;

Note that, µik = E(Yik) = P(Yik = 1).
More specifically for the Bernoulli distribution the link 

function can be specified as a logit link

which in the context of this study can be expressed as;

Furthermore, the specified mean function for the initial 
value for the ith participant and that after the initial value 
can be expressed as

respectively. Hence, our final model specification for the 
parametric joint Bernoulli-Exponential model can be 
expressed as;

(3)f�
(

yi, t i
)

= f�
(

yi1 | ti1
)

× f�(ti1)×

ni
∏

k=2

f�
(
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)

× f�
(

tik | yik−1

)

.

(4)
f�
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= f
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)

=µ
yik
ik (1− µik)
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= exp
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yik log
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(5)θik = log

(

µik
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)

= logit(µik).

(6)log

(

µij
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)

= X ′
iα + ϑtik + ψyik−1.

µi1 =
exp

(
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)

1+ exp
(
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.

(7)
f�
(

yi, t i
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= f
(
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)

= exp

{

yi1 ln

(

µi1

1− µi1

)

+ ln(1− µi1)

}

×

ni
∏

k=2

{

exp

(

yik ln

(

µik
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)

+ ln(1− µik)

)

× exp
(

ξ + γ yik−1

)

× exp
(

− exp
(

ξ + γ yik−1

)

tik
)

}

, tik ∈ (0, τ ].

Where,

• α is a vector of regression parameters denoting the 
effect of covariates on observed responses.

• ψ represents the effect of the prior responses on aver-
age current responses.

• ϑ represents the effect of current response time on 

the mean responses,
• ξ is a constant parameter associated with time
• γ characterizes the effect of previous response on 

mean time and X is the design matrix.

The resulting likelihood function, a product of the den-
sity functions for s subjects, can be specified as,

It is further important to clarify, that one key under-
lying assumption of this model, following Lin and Ying 
[14],Lin, Scharfstein, and Rosenheck [15], Liang, Wenbin 

(8)

L
(

�, y1, y2, y3 · · · , ys
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and Zhiliang [16] and Sun, Sun, and Liu [17], is that cen-
soring time, Zi in this study is noninformative in the 
sense that given covariates (Xi),Zi is independent of the 
observation times {tik , k ≥ 1} and longitudinal outcomes 
Yi(·) . This basically means that given the covariate history 
up to time k, the distribution of the future covariate path 
up to any time t > k is independent of whether or not 
there is an observation on Xi at time k.

Specification of priors
After the likelihood function of the Bernoulli-Expo-
nential joint model distribution has been specified, 
the next step in the Bayesian model specification is the 
identification of a suitable prior. In this study, informa-
tive and non-informative priors are considered. Both 
priors serve important roles in Bayesian analysis, and 
the choice between them depends on the specific goals 

and available information in a given analysis [18]. Non-
informative priors, also known as weak,vague or diffuse 
priors, are designed to have minimal influence on the 
posterior distribution. They can make Bayesian analysis 
robust to situations where there is little prior informa-
tion or when prior beliefs are uncertain. They prevent 
strong prior assumptions from biasing results when there 
is limited prior knowledge [19]. One of the primary ben-
efits of informative priors, on the other hand, is that they 
allow to incorporate expert domain knowledge and prior 
information into the analysis [20, 21]. This is invaluable 
when experts have insights that can improve parameter 
estimation, and, in situations with limited or noisy data, 
informative priors can lead to more stable and accurate 
parameter estimates. Finally, informative priors explicitly 
quantify prior beliefs and uncertainty, which allows to 
integrate these beliefs with observed data. In this study, 
for both informative and non-informative prior scenar-
ios, we consider the vector of mean parameters (α) as 
having a multivariate normal distribution [19, 22–24]. 
This is specified as;

Furthermore, we consider the parameters associ-
ated with time or visit to similarly follow a Gaussian 
distribution;

Note that the prior distributions of our joint model 
parameters are considered independent and thus,

For the informative prior setting, fixed values for the 
prior means, (µα ,µϑ ,µψ ,µξ ,µω) and their correspond-
ing variances (�α , νϑ , νψ , νξ , νω) are adopted, since we do 
not have expert or historical estimates yet for these kind 
of studies. More specifically, we can denote the mean 
vector of α , µα with a prior mean vector and correspond-
ing covariance matrix as;

where Is represents an identity matrix whose dimension 
depends on s individuals and φ . More broadly, we set pre-
determined prior mean values for the visit parameters as;

and their corresponding prior variances as

Regarding the non-informative prior setting, two 
approaches are considered. First, Gaussian non-informa-
tive priors are adopted for all mean and variance param-
eters of both the response and time parameters. More 
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p(α | φ) ∼ N (0.6Is, 5Is).

(µϑ ,µψ ,µξ ,µω) = (0.2, 0.3, 0.3, 1),

(ν2ϑ , ν
2
ψ , ν

2
ξ , ν

2
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broadly, to express prior ignorance, the prior means 
(µα ,µϑ ,µψ ,µξ ,µω) are set to zero and the variance-
covariance for φ�α can be set as a diagonal matrix with 
large variance. Similarly the corresponding prior variances 
for the other parameters are set very large to express prior 
ignorance. Thus, the non-informative priors are set up as,

For the second case of non-informative prior, we con-
sider the Jeffreys prior [25] an appealing reference prior 
widely used in Bayesian inference. This prior is considered 
for the response/outcome parameters and Gaussian non-
informative priors are still considered in this study for 
visit parameters. The Jeffreys prior is obtained by apply-
ing the Jeffreys rule which defines the prior density to be 
directly proportional to the square root of the determi-
nant of the Fisher information matrix. That is, for a set of 
parameters θ = (θ1, . . . , θn) , the Jeffreys prior is given by,

The Fisher information matrix is defined by,

and L is the likelihood function that specifies the prob-
ability for data y given the parameters θ . It is appropri-
ate so far as I(θ) is positive definite. Aside its geometric 
interpretation, one of the appealing reasons for its usage 
is the concept of parameterization invariance [26]. This 
means that the prior is invariant with regards to one-to-
one transformations. The principle can be extended for 
multidimensional parameters. To establish ideas for the 
Jeffreys prior for response parameters, which result from 
the exponential family of distributions, the likelihood 
functions of the distributions and associated score vec-
tors need to be specified.

Let φi ’s be known and X ′ assume a rank q. Also let, 
θi = z

(

x′iα
)

 and m−1(φi) = φ−1w . The likelihood func-
tion for Generalized linear models with responses from 
the exponential family of distributions can generally be 
specified as;

p(α) ∼ N
(

0s, 10
8Is

)

p(γ ) ∼ N
(

0, 108
)

p(ϑ) ∼ N
(

0, 108
)

p(ψ) ∼ N
(

0, 108
)

p(ξ) ∼ N
(

0, 108
)

p(ω) ∼ N
(

0, 108
)

.

p(θ) ∝

(

det(I(θ))

)
1
2

.

(11)I(θ) = −E

[

∂2 ln L

∂θi∂θk

]

.

The score vector is represented by;

The resulting Fisher information matrix is specified as;

Here,

• P = Diag
(

m−1(φi), · · · ,m
−1(φn)

)

 which is an n× n 
diagonal matrix of the weights wi.

• V (α) = Diag
(

s′′
((

x′1α
))

, · · · , s′′
((

x′nα
)))

 which 
reflects an n× n diagonal matrix of vi = ∂

2s(θi)

∂θ2i
.

• �(α) = Diag
(

s′
(

xT1 α
)

, · · · , s′
(

xTn α
))

 is an a n× n 
diagonal matrix of δi = ∂s(θi)

∂ηi
 and is an adjustment for 

the link function.

The Jeffreys prior thus for α assuming φ is known, is 
specified as

Based on this derivation, Jeffreys non-informative prior 
considered for response parameters and Gaussian non-
informative priors maintained for the visit parameters 
can be specified as;

Posterior distribution specification and Bayesian joint 
parameter estimation
The next step in the Bayesian model development is the 
specification of the posterior distribution, which has a 
directly proportional relationship with the model likeli-
hood and the priors specified. For the scenario where 
Gaussian priors are considered for both the response and 
visit parameters and also for both informative and non 
informative settings, the resulting Bayesian Bernoulli-
Exponential joint model posterior specification can be 
obtained as;

(12)
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n
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∣
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Also for the scenario where Jeffreys priors are consid-
ered for the parameters of the Bernoulli response and 
Gaussian priors for the visit parameters (non informative 
settings), the resulting Bayesian Bernoulli-Exponential 
joint model can be parameterized as;

Here, V (α) = diag(v1, v2 . . . , vn) and vi = µik(1− µik) . 
Note that,

The next goal is to obtain posterior summary esti-
mates for inference. Analytical calculations of the pos-
terior distributions are possible, but often untenable due 
to laborious calculations involving the integration con-
stant. Integral approximation methods can be adopted 
but only if few parameters are involved [19, 24]. In situa-
tions such as this study involving many parameters to be 
estimated, one can resort to Markov Chain Monte Carlo 
Methods (MCMC) [27]. The MCMC methods are viable 

(17)
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)
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µik =
exp

(

α′X i + ϑtik + ψyik−1

)

1+ exp
(

α′X i + ϑtik + ψyik−1

) .

simulation approaches for sampling from posterior dis-
tributions and computing posterior summary measures. 
They are premised on a Markov Chain construction that 
subsequently converges to a so-called target distribution. 

The two most popular MCMC methods are the Gibbs 
sampling and the Metropolis-Hastings algorithm [27–
29]. In this study, we adopt the Gibbs sampling proce-
dure for generating samples from the joint posterior 
distributions of the unknown parameters in our model. 
It is important to clarify, however, that the Gibbs sam-
pler, performs iterative draws from posterior conditional 
distributions instead of directly sampling from the joint 
posterior distribution. This approach enhances the utility 
of the Gibbs Sampler, especially when dealing with com-
plex joint posteriors that can be challenging to handle 
directly. Then, posterior summaries can be computed. In 
each step of the algorithm, random values are generated 
from unidimensional distributions [30]. A brief summary 
of the Gibbs sampling algorithm is as follows; 
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(a) Predetermined initial values θ (0) need to be specified.
(b) For t = 1, . . . ,T  iterations, 

 (i) Set θ = θ (t−1).
 (ii) For k = 1, . . . , r , we can update θk from 

θk ∼ p
(

θk | θ1, . . . , θk−1, θk+1, . . . , θr
)

.

Now, if the current state of the chain θ is 
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are known as the full, complete or conditional distribu-
tions. Summarily, the Gibbs sampling algorithm helps to 
iteratively generate samples from our posterior distribu-
tion based on prespecified starting values. Initial portions 
of the Markov chains are discarded in an attempt to mask 
the influence of initial values. This is called the burn-in 
part. Resulting posterior summary measures such as the 
posterior mean, posterior standard deviation and Bayes-
ian credible intervals are obtained from the MCMC out-
put. Furthermore, we assess convergence of the Markov 
chains via the diagnosis of ergodic mean plots of esti-
mated parameters and the Heidelberger and Welch diag-
nostic test which is a more formal convergence diagnostic 
method [31].

Model evaluation
To assess the Bayesian Bernoulli-Exponential joint 
model, the Bayesian model evaluation criteria called the 
Deviance Information Criterion (DIC) is used [32]. The 
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DIC measure comprises a “goodness of fit” and “complex-
ity” term and is obtained as;

where D̂(θ) is the deviance calculated at the posterior 
mean of the parameters and pD characterizes the “effec-
tive” number of parameters relating the complexity of the 
models. pD is the difference between the posterior mean 
deviance, D(θ) and deviance calculated at the posterior 
mean of the parameters, D̂(θ) . Smaller values of DIC jus-
tify a better fit of the model. In line with this derivation, 
the DIC measure for the Bayesian Bernoulli-Exponential 
model is specified as;

Results
Simulation study
In order to assess the Bayesian Bernoulli-Exponential 
model in terms of how it can be influenced by controlled 
variations in sample size, visit schema and types of prior 
distributions on the parameter estimates we present in 
this subsection, a simulation study. More precisely, the 
simulation study helps establish the validity of the joint 
model in random scenarios via data generation and 
parameter estimation. It is important to clarify, however, 
that this present study is an extension of the studies of 
Bronsert [6], Lin [33], Seo [8] and Zaagan [9] and thus for 
computational convenience, an abundant level of consist-
ency is maintained in terms of simulation conditions. All 
simulations are performed in R software via the R2Open-
Bugs package. This package provides a means to program 
Bayesian models in R via an OpenBugs software [34, 35]. 
To develop the Bayesian joint model, the structure of the 
data to be simulated is clearly defined. We simulate data 
involving two categorical variables, each having three 

DIC = −2 ln L[y | E(θ | y)] + 2pD,

= D̂(θ)+ 2pD.
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levels, and two continuous variables. The longitudinal 
responses are simulated from a Bernoulli distribution. 
The first response is simulated from the distribution, and 
then the subsequent response is computed based on the 
relationship between the prior outcome and the prior 
time for predicting the average response based on start-
ing parameter values in Table 1. It is important to clarify, 
however that during the simulation exercise, only “plau-
sible” starting values from the range of starting values 
in Table  1 are utilized. It is not the intent of this study 
to analyze the impact of all four range of starting values. 
The visit times for each of the corresponding responses 
are simulated from an exponential distribution.

Furthermore, we simulate design structures that con-
sider varying visit schemes and sample sizes to effec-
tively study trends or patterns associated with the 
model. In this study, three varying sample sizes with 
four sub design visit structures entailing both balanced 
and unbalanced visit structures are considered and 
shown in Table  2. Also, three prior schemes are con-
sidered, that is Gaussian informative, Gaussian non-
informative and Jeffreys non-informative priors.

Thus, the simulation matrix involves three varying 
sample size designs, three varying prior schemes and 
three visit design structures. To further clarify the visit 
structure, as an example to signal an unbalanced visit 
pattern, when the sample size is 180 and the number 
of observations is 20 & 6 , this exemplifies 90 partici-
pants having 20 recorded observations and another 90 

subjects have 6 measured outcomes each. This simula-
tion design scheme results in 27 differing designs for 
the simulation analysis of the Bayesian Bernoulli-Expo-
nential joint model.

After data generation, the simulation analysis involves 
estimating the joint model parameters via the package 
R2Openbugs in R software. It commences by first “sink-
ing” in generated parameter values which that serve as 
initial values for the MCMC estimation process. Then, 
the likelihood of the Bayesian joint model is calcu-
lated based on the design structures and priors speci-
fied. Parameter estimation proceeds with the Gibbs 
Sampling approach, which has earlier been discussed. 
This generates dependent Markov chains for our model 
parameters by drawing samples from the posterior 
distribution using initial parameter values that were 
embedded in the simulation design. Markov chains 
are run iteratively 30,000 times, and the first 10,000 
iterations are discarded to serve as burn-in, effectively 
mitigating the influence of the initial values. Thinning 
intervals of three iterations are considered to monitor 
autocorrelations of the generated values. Subsequently, 
to monitor convergence of Markov chains and their 
associated posterior parameters, the Heidelberger and 
Welch convergence tests are computed. Then, posterior 
summaries such as the mean, standard deviation, and 
credible interval limits are presented. It is instructive to 
note that the simulations were replicated a 1000 times 
and inferences were premised on the averaged esti-
mates and associated credible intervals. Finally, infer-
ences via comparisons for different specification of the 
prior distribution and their sample size and visit design 
schemes for the model are made along with Deviance 
Information Criterion measures.

Simulation results: model convergence assessment 
of the Bayesian Bernoulli‑Exponential joint model
To evaluate convergence of the Markov chains of the 
model parameters, a formal diagnostic test, called the 
Heidelberger and Welch test [31] is used. It is expected 
that after the burn-in period, the Gibbs Sampling algo-
rithm produces samples from the posterior distribution 
that attains a stationary distribution. The Heidelberger 
and Welch test constitutes a stationary and half-width 

Table 1 Parameter initial value scheme for simulations

α1 α2 α3 α4 α5 α6 α7 ψ ϑ ξ γ

0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.8 0.1 2 0.01

0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.8 0.1 1 0.02

0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.8 0.1 2 0.01

0.4 0.2 0.3 0.1 0.3 0.4 0.9 0 0.1 1 0.02

Table 2 Simulation design scheme

Scheme Sample Size Observations Design 
Structure

Observation 
Totals

1 18 10 Balanced 180

2 5 & 3 Unbalanced 72

3 20 & 6 Unbalanced 234

4 54 10 Balanced 540

5 5 & 3 Unbalanced 216

6 20 & 6 Unbalanced 702

7 180 10 Balanced 1800

8 5 & 3 Unbalanced 720

9 20 & 6 Unbalanced 2340
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test and calculates a test statistic to accept or reject the 
null hypothesis that the Markov chains are from a sta-
tionary distribution. The half-width test is based on a 
computed 95% confidence interval for the mean, using 
the chain that earlier passed the stationarity test. The 
resulting ratio of the interval half-width and the mean 
compared with a threshold ( ε = 0.1 ) determines whether 
the half-width test is passed or not. More precisely, the 
test passes if the ratio between the half-width and the 
mean is lesser than ε . Selected convergence results based 
on the Heidelberger and Welch test are presented for 
the Bayesian Bernoulli-Exponential joint model across 
select scenarios and shown in the Tables  3, 4  and 5. 
These results cut across all prior scenarios (informative, 

non-informative, Jeffreys non-informative Prior), sample 
sizes (18, 54, 180) and visit patterns (10, balanced), (5 &3, 
Unbalanced), (20 & 6 ,Unbalanced). Inferring from the 
Heidelberger and Welch tests conducted across the broad 
range of scenarios selected, no issues were observed with 
the convergence of the MCMC chains for the Bayesian 
Bernoulli-Exponential Joint model. More precisely, the 
p-values resulting from the stationarity test for all esti-
mated model parameters, regardless of prior, sample size 
or visit schemes were statistically insignificant. This sug-
gests that the sampled values for parameters are from a 
stationary process. A further indication is that our model 
parameter estimation can be implemented with precision 
because MCMC chains are in a stationary distribution.

Table 3 Heidelberger and welch test for the Bayesian Bernoulli-Exponential model and for the Gaussian informative prior

Sample Size and Design 
Structure

Parameter Stationarity Test P‑value Halfwidth Test Halfwidth

18(10) α1 passed 0.5613 passed 0.0131

α2 passed 0.2289 passed 0.0085

α3 passed 0.0831 passed 0.0082

α4 passed 0.0821 passed 0.0083

α5 passed 0.7699 passed 0.0083

α6 passed 0.0632 passed 0.0075

α7 passed 0.4511 passed 0.0052

γ passed 0.2434 passed 0.0135

ψ passed 0.0944 passed 0.0138

ϑ passed 0.7248 passed 0.0024

ξ passed 0.2900 passed 0.0122

54(5 &3) α1 passed 0.3399 passed 0.0107

α2 passed 0.1035 passed 0.0077

α3 passed 0.0690 passed 0.0079

α4 passed 0.5958 passed 0.0078

α5 passed 0.9991 passed 0.0086

α6 passed 0.0837 passed 0.0038

α7 passed 0.9054 passed 0.0033

γ passed 0.3158 passed 0.0094

ψ passed 0.2489 passed 0.0114

ϑ passed 0.5081 passed 0.0025

ξ passed 0.4021 passed 0.0080

180(20 &6) α1 passed 0.8574 passed 0.0093

α2 passed 0.0874 passed 0.0047

α3 passed 0.6287 passed 0.0048

α4 passed 0.7431 passed 0.0047

α5 passed 0.5685 passed 0.0051

α6 passed 0.2030 passed 0.0014

α7 passed 0.4465 passed 0.0017

γ passed 0.3473 passed 0.0032

ψ passed 0.4006 passed 0.0045

ϑ passed 0.6792 passed 0.0008

ξ passed 0.3890 passed 0.0028
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Simulation results: parameter estimation and evaluation 
of the Bayesian Bernoulli‑Exponential model
In this section, the influence of controlled variations in 
sample size, visit sequences and type of prior distribu-
tions on the estimated parameters of the Bayesian Ber-
noulli-Exponential model are examined. Consistency 
in the direction of these estimates and their associated 
credible intervals are checked. For ease of reporting, we 
present a select number of results from the various simu-
lation scenarios. Posterior means, standard deviations 
and credible intervals of select scenarios are presented in 
Tables 6, 7, 8, 9 and 10.

Fixing sample sizes and priors across scenarios and 
examining the effect of varying sequences on parameter 
estimates, a consistent trend in magnitude and direc-
tion of the estimates and their log-transformation were 
observed across all scenarios. For example, the parameter 
estimates of results obtained from the model when sam-
ple size and time sequence 54(10) and 54(20&6) , 18(10) 
and 18(5&3) , 180(10) and 180(5&3) under informative 
prior scheme were not markedly different in terms of their 
magnitude and direction. As an example, the posterior 
means and standard deviations obtained for the model 
scenario, sample size and visit scheme  180(10) under 

Table 4 Heidelberger and welch test for the bayesian bernoulli-exponential model and for the gaussian non-informative prior

Sample Size and Design 
Structure

Parameter Stationarity Test P‑value Halfwidth Test Halfwidth

18(5 &3) α1 passed 0.4006 passed 0.1123

α2 passed 0.0614 passed 0.0455

α3 passed 0.4879 passed 0.0637

α4 passed 0.3864 passed 0.0608

α5 passed 0.4574 passed 0.0581

α6 passed 0.5380 passed 0.0352

α7 passed 0.5282 passed 0.0186

γ passed 0.7625 passed 0.0174

ψ passed 0.0907 passed 0.0293

ϑ passed 0.1241 passed 0.0088

ξ passed 0.7724 passed 0.0145

54(10) α1 passed 0.0848 passed 0.0273

α2 passed 0.1003 passed 0.0143

α3 passed 0.1271 passed 0.0161

α4 passed 0.1238 passed 0.0154

α5 passed 0.0608 passed 0.0166

α6 passed 0.1927 passed 0.0046

α7 passed 0.0774 passed 0.0036

γ passed 0.4427 passed 0.0072

ψ passed 0.4846 passed 0.0108

ϑ passed 0.9191 passed 0.0017

ξ passed 0.5784 passed 0.0068

180(20 &6) α1 passed 0.6816 passed 0.0126

α2 passed 0.1511 passed 0.0059

α3 passed 0.3521 passed 0.0057

α4 passed 0.7916 passed 0.0061

α5 passed 0.3541 passed 0.0065

α6 passed 0.2298 passed 0.0012

α7 passed 0.6382 passed 0.0019

γ passed 0.2806 passed 0.0035

ψ passed 0.0817 passed 0.0055

ϑ passed 0.1450 passed 0.0008

ξ passed 0.3527 passed 0.0031
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informative prior scheme from were α1 : 0.100(0.183) , 
α2 : 0.065(0.194) , α3 : 0.106(0.069) , α4 : −0.036(0.137) , 
α5 : 0.226(0.138) , α6 : 0.348(0.0.058) , α7 : 0.724(0.068) , 
γ : −0.023(0.0560) , ψ : −0.916(0.120) , ϑ : −0.116(0.026) , 
ξ : −0.972(0.0.048) . These estimates are not mark-
edly different in magnitude and direction from when 
the time sequence changed to 20&6 under the same 
scenario where the resulting estimates obtained were 
α1 : 0.200(0.133),α2 : 0.122(0.124),α3 : 0.335(0.125),α4 :

(0.063), γ : −0.058(0.050),ψ : −1.052(0.114),ϑ : −0.105

0.156(0.128),α5 : 0.149(0.128),α6 : 0.302(0.055),α7 : 0.779

(0.024), ξ : −0.957(0.044) . This pattern was similarly 
observed across the other scenarios, fixing sample sizes, 
priors and varying the time-sequences and broadly 
demonstrates a consistency in estimation performance. 

This further indicates that varying time sequences do 
not considerably affect the resulting estimates. Exam-
ining the credible interval(CI) widths under the differ-
ent schemes reveal an interesting trend. As the sample 
sizes across all scenarios increased, albeit keeping pri-
ors and time sequences constant, the CI widths were 
increasingly narrow, implying that when our proposed 
model is applied to datasets of increasing sample sizes, 
the resulting estimates are obtained with higher preci-
sion. For instance, as an example, we compare parameter 
estimates and their CI widths under a select Gaussian 
non-informative prior scenario for these model scenar-
ios 18(10), 54(10) and 180(10) (see Table 11). The trend 
observed from the presented estimates are quite obvious; 
increasing sample sizes applied to the proposed Bayesian 

Table 5 Heidelberger and welch test for the Bayesian Bernoulli-Exponential model and for the Jeffreys non-informative prior

Sample Size and Design 
Structure

Parameter Stationarity Test P‑value Halfwidth Test Halfwidth

18(20 &6) α1 passed 0.1046 passed 0.0473

α2 passed 0.0901 passed 0.0231

α3 passed 0.0878 passed 0.0273

α4 passed 0.0555 passed 0.0273

α5 passed 0.3411 passed 0.0238

α6 passed 0.0693 passed 0.0197

α7 passed 0.3220 passed 0.0096

γ passed 0.4874 passed 0.0120

ψ passed 0.3489 passed 0.0179

ϑ passed 0.2100 passed 0.0030

ξ passed 0.4830 passed 0.0111

54(10) α1 passed 0.0582 passed 0.0225

α2 passed 0.3334 passed 0.0129

α3 passed 0.1332 passed 0.0133

α4 passed 0.0617 passed 0.0133

α5 passed 0.1518 passed 0.0165

α6 passed 0.0552 passed 0.0041

α7 passed 0.0681 passed 0.0030

γ passed 0.2791 passed 0.0075

ψ passed 0.3487 passed 0.0096

ϑ passed 0.8298 passed 0.0015

ξ passed 0.3672 passed 0.0068

180 (5 &3) α1 passed 0.4216 passed 0.0115

α2 passed 0.1339 passed 0.0053

α3 passed 0.0623 passed 0.0055

α4 passed 0.6780 passed 0.0060

α5 passed 0.5003 passed 0.0063

α6 passed 0.5941 passed 0.0016

α7 passed 0.1024 passed 0.0016

γ passed 0.6136 passed 0.0032

ψ passed 0.0126 passed 0.0120

ϑ passed 0.2572 passed 0.0009

ξ passed 0.5216 passed 0.0029
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Bernoulli-Exponential model increases precision of the 
model estimates. This broadly cuts across all scenarios.

Simulation results: evaluation of the Bayesian 
Bernoulli‑Exponential model
Finally, model performance is evaluated under the vari-
ous simulation scenarios via the Deviance Information 
Criterion (DIC). Since there are a lot of DIC values 
computed for varying scenarios, they are presented 
graphically for ease of evaluation and clarity. The DIC 
plots of the selected simulation scenarios applied to 
the model are presented in Figs. 1, 2, 3, 4, 5, 6, 7 and 8. 

First, we fix sample sizes and compare how the model 
performs across the type of prior and visit sequence. 
Regardless of the kind of prior chosen for the model 
parameters, it is observed in Fig. 1 that in the smallest 
sample considered, 18, the model performs better for 
the time sequence 5&3 , reflected by lower DIC values 
across all prior scenarios. This is followed by the bal-
anced time sequence, 10. In fact, there’s no marked dif-
ference between the DIC value of the time sequence 
5&3(599.8) and 10(628.4) when considering the Jeffreys 
prior and fixing the sample size at 18. This trend is con-
sistently observed, even when the sample sizes are fixed 

Table 6 Table of parameter estimates for the Bayesian Bernoulli-Exponential joint model and for the Gaussian informative prior 
scheme

Sample Size and Design 
Structure

Table of Parameter Estimates

Parameter Mean SD Lower(2.50%) Upper(97.50%)

18(10) α1 0.0612 0.3124 -0.6635 0.5512

α2 0.3842 0.3373 -0.2775 1.0430

α3 0.2442 0.3164 -0.3719 0.8610

α4 0.5997 0.3387 -0.0470 1.2690

α5 0.5423 0.3214 -0.0880 1.1660

α6 0.4866 0.2678 -0.0207 1.0200

α7 0.6965 0.2201 0.2654 1.1330

γ -1.1970 0.4424 -2.0670 0.3595

ψ 0.0821 0.1880 -0.2705 0.4692

ϑ -0.0424 0.0945 -0.2403 0.1355

ξ -1.0138 0.1675 -1.3610 -0.7008

54(5 &3) α1 -0.1757 0.2720 -0.7142 0.3419

α2 0.1808 0.2991 -0.4001 0.7733

α3 0.3036 0.2979 -0.2831 0.8919

α4 0.1360 0.3060 -0.4670 0.7350

α5 0.2789 0.3015 -0.3050 0.8738

α6 0.3109 0.1828 -0.0454 0.6655

α7 0.8236 0.1811 0.4837 1.1830

γ -0.1481 0.1699 -0.4760 0.1882

ψ -0.3989 0.3829 -1.1540 0.3522

ϑ -0.1782 0.0481 -0.2800 -0.0907

ξ -2.0490 0.1452 -2.3330 -1.7800

180(20 &6) α1 0.8981 0.5843 -0.1935 2.0410

α2 -0.1049 0.6234 -1.3520 1.0780

α3 -0.4832 0.5375 -1.5330 0.5700

α4 -0.4959 0.5042 -1.4250 0.4862

α5 -0.0917 0.5033 -1.0750 0.8553

α6 -0.0368 0.3831 -0.7801 0.7299

α7 1.0100 0.3290 0.4111 1.6750

γ -0.2809 0.1697 -0.6027 0.0597

ψ -1.3460 0.3874 -2.0940 -0.6185

ϑ -0.1198 0.0926 -0.3091 0.0491

ξ -0.6537 0.1535 -0.9614 -0.3621
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at 54 and 180 (see Figs.  2 and  3). The model still per-
forms better for the time sequence 5&3 followed by 10. 
The next step in the model evaluation process involved 
fixing priors and comparing the models across com-
peting sample sizes and sequences. For both Gauss-
ian informative and non-informative priors, the DIC’s 
are very large for the time sequence 20&6 and sample 
size 180 signaling that the model may not be robust for 
scenarios where visit sequences of individuals vary sig-
nificantly. When Jeffreys prior is considered, yet again 
DIC’s obtained for the model in small sample size 18 
and sequence type 5&3 are very low indicating better 
performance followed closely by sample size 54, time 

sequence 5&3 . This model scenario performs better 
across all samples and sequences than the considered 
Informative and Non-Informative Prior Scenario. The 
DIC values were at par in samples 54 and 180 for time 
sequence 10 and 5&3 when the Jeffreys prior was con-
sidered. Finally, an observation of model performance 
across sample size and prior schemes while keeping 
the time sequence fixed is made. Across time sequence 
5&3 , the model performs better overall for sample size 
18 and 54 regardless of prior chosen. No marked differ-
ences are observed however when the Jeffreys prior is 
used for sample size 18 and 54 as evidenced by Fig. 5. 
Furthermore, model performance does not broadly 

Table 7 Table of parameter estimates for the Bayesian Bernoulli-Exponential joint model and for the Gaussian non-informative prior 
scheme

Sample Size and Design 
Structure

Table of Parameter Estimates

Parameter Mean SD Lower(2.50%) Upper(97.50%)

18(5 &3) α1 1.0670 1.0670 -1.8300 2.4030

α2 1.0380 1.0380 -1.9600 2.0430

α3 0.9729 0.9729 -1.8480 2.0490

α4 1.0700 1.0700 -2.5220 1.6180

α5 0.9262 0.9262 -3.1460 0.5070

α6 0.7034 0.7034 -0.4158 2.3020

α7 0.5457 0.5457 -0.0391 2.0600

γ 0.3015 0.3015 -0.5464 0.6282

ψ 0.8522 0.8522 -3.4690 -0.0715

ϑ 0.0763 0.0763 -0.2946 0.0040

ξ 0.2487 0.2487 -2.6140 -1.6530

54(10) α1 0.4482 0.3309 -0.2180 1.0450

α2 -0.1806 0.2985 -0.7503 0.3909

α3 0.0118 0.3006 -0.5744 0.5926

α4 0.1175 0.2906 -0.4452 0.6903

α5 0.4809 0.3315 -0.1621 1.1480

α6 0.0819 0.1293 -0.1749 0.3317

α7 0.9209 0.1375 0.6562 1.1900

γ -0.0814 0.1127 -0.2949 0.1383

ψ -0.6282 0.2572 -1.1400 -0.1231

ϑ -0.2123 0.0614 -0.3351 -0.0954

ξ -0.9536 0.1007 -1.1520 -0.7671

180(20 &6) α1 0.8981 0.5843 -0.1935 2.0410

α2 -0.1049 0.6234 -1.3520 1.0780

α3 -0.4832 0.5375 -1.5330 0.5700

α4 -0.4959 0.5042 -1.4250 0.4862

α5 -0.0917 0.5033 -1.0750 0.8553

α6 -0.0368 0.3831 -0.7801 0.7299

α7 1.0100 0.3290 0.4111 1.6750

γ -0.2809 0.1697 -0.6027 0.0597

ψ -1.3460 0.3874 -2.0940 -0.6185

ϑ -0.1198 0.0926 -0.3091 0.0491

ξ -0.6537 0.1535 -0.9614 -0.3621
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vary for the sample size 180, regardless of the prior 
chosen for sequence 5&3 and 20&6 . The results for the 
visit sequence 10 are quite consistent with 5&3 when 
compared. Models perform better in small sample size 
18 scenarios as reflected by their lower DIC values, fol-
lowed by 54.

The DIC values for sample size 54 and 180, however 
are close when the Jeffreys prior is considered for time 

sequence 10. Overall, model evaluation of the Bayes-
ian Bernoulli-Exponential Model suggest a relatively 
better fit for small and medium sample size scenarios 
(18 and 54) with less varying time sequences (5 &3) 
and (10), regardless of prior choice. For larger samples 
(180), the models performs fairly well for less varying 
time sequences (5 &3) but not significantly so for time 
sequences (20& 6) regardless of the choice of prior.

Table 8 Table of parameter estimates for the Bayesian Bernoulli-Exponential joint model and for the Jeffreys non-informative prior 
scheme

Sample Size and Design 
Structure

Table of Parameter Estimates

Parameter Mean SD Lower(2.50%) Upper(97.50%)

18(20 &6) α1 -0.3553 0.5372 -1.3870 0.6201

α2 0.4144 0.5797 -0.7269 1.5560

α3 0.0363 0.5138 -0.9527 1.0400

α4 0.9047 0.5448 -0.1325 2.0140

α5 0.7546 0.5100 -0.2522 1.7900

α6 -0.2815 0.3920 -1.0060 0.5173

α7 0.4952 0.2707 -0.0085 1.0270

γ -0.1025 0.1734 -0.4249 0.2390

ψ -1.7320 0.4147 -2.5520 -0.9451

ϑ -0.2822 0.1176 -0.5226 -0.0653

ξ -0.8246 0.1587 -1.1450 -0.5167

54(10) α1 0.1051 0.2939 -0.4522 0.6736

α2 -0.1363 0.2784 -0.6854 0.4119

α3 0.2195 0.2881 -0.3424 0.7763

α4 0.1937 0.2873 -0.3593 0.7665

α5 0.1010 0.2921 -0.4732 0.6801

α6 0.4376 0.1256 0.1903 0.6834

α7 0.5031 0.1121 0.2888 0.7236

γ -0.1627 0.1068 -0.3688 0.0468

ψ -1.1910 0.2371 -1.6420 -0.7255

ϑ -0.0887 0.0470 -0.1835 0.0018

ξ -0.9061 0.0937 -1.0930 -0.7318

180(5 &3) α1 -0.0121 0.2217 -0.4340 0.4203

α2 -0.0042 0.2247 -0.4505 0.4319

α3 0.3473 0.2343 -0.1066 0.8064

α4 0.4331 0.2350 -0.0284 0.8947

α5 0.3283 0.2293 -0.1188 0.7739

α6 0.1849 0.0936 0.0023 0.3670

α7 0.5730 0.1032 0.3746 0.7754

γ -0.0852 0.0941 -0.2701 0.0956

ψ -0.7435 0.2031 -1.1410 -0.3454

ϑ -0.1052 0.0211 -0.1486 -0.0645

ξ -1.9430 0.0792 -2.0980 -1.7920
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A model application to bladder cancer recurrence data
In this section, the proposed Bayesian Joint Bernoulli-
Exponential model is applied to a real-world dataset, 
called the Bladder Cancer Data. This data is openly avail-
able in R software, specifically in the “Survival” pack-
age [36] and results from a clinical trial on patients with 
bladder cancer conducted by the Veterans Administra-
tion Co-operative Urological Research Group (VACURG) 
[10, 11]. The bladder cancer dataset in R software com-
prises information on 85 subjects, measured four times, 
with randomly assigned treatments of only thiotepa or 
a placebo. 38 patients are assigned to the placebo group 
and 47 to the treatment(thiotepa) group. Data on patient 
experienced number of recurrences are collected includ-
ing the number of initial tumours present pre-trial rand-
omization. Other variables include “stop”, which measures 
the time interval in months since the last visit. The next 
scheduled visit is dependent on bladder tumor recurrence 
at the time of measurement, indicating that time can be 
considered informative, and that subsequent visits are 
likely be influenced by previous visits. Also, the inten-
sity of visits depend on tumor recurrences. Furthermore, 
there is an “event” variable, which is a binary variable rep-
resenting the recurrence of tumor(1) or (0) for non-recur-
rence attributable to reasons like death. The variables 
along with their description are given in Table 12 below.

This data is analyzed with the following objec-
tives in mind. Is there an effect of treatment type, 

size in centimeters(cm) of the largest initial tumor, 
initial number of tumors on the likelihood of tumor 
recurrence? Furthermore, is there an effect of prior 
recurrences(outcomes) on the likelihood of cur-
rent recurrence? To answer these research questions, 
our proposed Bayesian Bernoulli-Exponential Joint 
model is fitted to the data. The binary “event” variable 
is used as the response and the predictors included in 
the model are treatment type, size in cm of the largest 
initial tumor, initial number of tumors and other time 
variables. Just as previously discussed in the Data and 
methods section, the Bayesian model involves the spec-
ification of a joint likelihood, priors and then the poste-
rior distribution.

Here, three types of priors are considered and com-
pared across the models. In this regard, the non-informa-
tive Gaussian priors considered for this model is,

The Gaussian Informative priors considered for this 
model is,

Furthermore, we consider Jeffreys non-informative pri-
ors for the α parameters and Gaussian non-informative 
priors for the visit parameters. The resulting posterior 
distribution of the Bayesian Bernoulli-Exponential Joint 
model for the bladder cancer data, for the instance where 
the Jeffreys prior considered for the parameters of the Ber-
noulli response process and Gaussian priors for the visit 
parameters in non informative settings is considered is;

p(α) ∼ N
(

0s, 10
8Is

)

p(γ ) ∼ N
(

0, 108
)

p(ϑ) ∼ N
(

0, 108
)

p(ψ) ∼ N
(

0, 108
)

p(ξ) ∼ N
(

0, 108
)

p(α) ∼ N (0.4s, 4.0Is)

p(γ ) ∼ N (0.2, 0.1)

p(ϑ) ∼ N (0.5, 0.5)

p(ψ) ∼ N (0.2, 0.2)

p(ξ) ∼ N (2.0, 0.2)

(19)

p(α,ϑ ,ψ , ξ ,φ|Y i, t i,X) = L
(

�, y1, y2, y3 · · · , ys
)

× p(α|φ)

× p(ϑ)× p(ψ)× p(ξ)

Table 9 Credible interval widths for selected scenarios for the 
Bernoulli-Exponential model

Prior Scenario Confidence Interval Widths for Scenarios

Parameter 18(10) 54(10) 180(10)

Non-informative prior α1 2.5230 1.2630 0.5893

α2 2.5233 1.1412 0.5893

α3 2.2581 1.1670 0.5789

α4 2.2239 1.1355 0.5818

α5 2.0500 1.3101 0.6033

α6 1.6099 0.5066 0.2313

α7 1.1259 0.5338 0.2711

γ 0.7179 0.4332 0.2168

ψ 1.6386 1.0169 0.9782

ϑ 0.3937 0.2397 0.1097

ξ 0.6261 0.3849 0.1878
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=

s
∏

i=1

{

exp

{

yi1 ln

(

µi1

1− µi1

)

+ ln(1− µi1)

}

×

ni
∏

k=2

exp
{

yik ln

(

µik

1− µik

)

+ ln(1− µik)× exp
(

ξ + γ yik−1

)

× exp
(

− exp
(

ξ + γ yik−1

)

tik
)

}

}

×

∣

∣

∣X
′
PV (α)�2(α)X

∣

∣

∣

1
2
×

1
√

2πν2ϑ

exp

(

−
1

2
(ϑ − µϑ)

2

)

×
1

√

2πν2ψ

exp

(

−
1

2

(

ψ − µψ

)2
)

×
1

√

2πν2ξ

exp

(

−
1

2

(

ξ − µξ

)2
)

Table 10 Table of parameter estimates for the Bayesian Bernoulli-Exponential joint model and for the Jeffreys non-informative prior 
scheme

Sample Size and Design 
Structure

Table of Parameter Estimates

Parameter Mean SD Lower(2.50%) Upper(97.50%)

18(20 &6) α1 -0.3553 0.5372 -1.3870 0.6201

α2 0.4144 0.5797 -0.7269 1.5560

α3 0.0363 0.5138 -0.9527 1.0400

α4 0.9047 0.5448 -0.1325 2.0140

α5 0.7546 0.5100 -0.2522 1.7900

α6 -0.2815 0.3920 -1.0060 0.5173

α7 0.4952 0.2707 -0.0085 1.0270

γ -0.1025 0.1734 -0.4249 0.2390

ψ -1.7320 0.4147 -2.5520 -0.9451

ϑ -0.2822 0.1176 -0.5226 -0.0653

ξ -0.8246 0.1587 -1.1450 -0.5167

54(10) α1 0.1051 0.2939 -0.4522 0.6736

α2 -0.1363 0.2784 -0.6854 0.4119

α3 0.2195 0.2881 -0.3424 0.7763

α4 0.1937 0.2873 -0.3593 0.7665

α5 0.1010 0.2921 -0.4732 0.6801

α6 0.4376 0.1256 0.1903 0.6834

α7 0.5031 0.1121 0.2888 0.7236

γ -0.1627 0.1068 -0.3688 0.0468

ψ -1.1910 0.2371 -1.6420 -0.7255

ϑ -0.0887 0.0470 -0.1835 0.0018

ξ -0.9061 0.0937 -1.0930 -0.7318

180(5 &3) α1 -0.0121 0.2217 -0.4340 0.4203

α2 -0.0042 0.2247 -0.4505 0.4319

α3 0.3473 0.2343 -0.1066 0.8064

α4 0.4331 0.2350 -0.0284 0.8947

α5 0.3283 0.2293 -0.1188 0.7739

α6 0.1849 0.0936 0.0023 0.3670

α7 0.5730 0.1032 0.3746 0.7754

γ -0.0852 0.0941 -0.2701 0.0956

ψ -0.7435 0.2031 -1.1410 -0.3454

ϑ -0.1052 0.0211 -0.1486 -0.0645

ξ -1.9430 0.0792 -2.0980 -1.7920
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Here, V (α) = diag(v1, v2 . . . , vn) and vi = µik(1− µik) . 
and,

• αs are regression parameters representing the effect 
of the predictors; treatment type(x2 ), initial number 
of tumors, ( x3 ) and size in (cm)(x4 ) of the largest 
initial tumor on the likelihood of tumor recurrence.

• ψ represents the effect of the prior recurrence on 
the mean response of the current recurrence and ϑ 
characterizes the effect of current recurrence time 
on the mean recurrence,

• ξ is a constant parameter associated with time and 
γ is the effect of the previous recurrence on the 
mean time.

Other components are already explained thoroughly 
in the Data and methods section. Note that the poste-
rior distribution changes when the priors change in the 
Gaussian and non-Gaussian settings considered for all 
parameters. Then, after the posterior specification, we 
proceed with the joint parameter estimation with the 
Gibbs sampling approach in R software. For each of the 
three prior scenarios considered, the Markov chains are 
run iteratively 30,000 times, and the first 10,000 itera-
tions are discarded to serve as burn-in. Convergence 
of the markov chains and associated posterior param-
eters are monitored via the Heidelberger and Welch 
tests. Then, posterior summaries are computed. Param-
eter significance is inferred via credible intervals and 
the models are compared with the Deviance Informa-
tion Criteria Measure. Results of the Heidelberg and 
Welch convergence tests from the application to the 
bladder cancer data with the different prior scenarios 

Table 11 Credible interval widths for selected scenarios for the 
Bernoulli-Exponential model

Prior Scenario Confidence Interval Widths for Scenarios

Parameter 18(10) 54(10) 180(10)

Non-informative prior α1 2.5230 1.2630 0.5893

α2 2.5233 1.1412 0.5893

α3 2.2581 1.1670 0.5789

α4 2.2239 1.1355 0.5818

α5 2.0500 1.3101 0.6033

α6 1.6099 0.5066 0.2313

α7 1.1259 0.5338 0.2711

γ 0.7179 0.4332 0.2168

ψ 1.6386 1.0169 0.9782

ϑ 0.3937 0.2397 0.1097

ξ 0.6261 0.3849 0.1878

Fig. 1 Deviance information criterion plot for keeping sample sizes fixed at 18 and examining influence across priors and design schemes
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Fig. 2 Deviance information criterion plot for keeping sample sizes fixed at 54 and examining influence across priors and design schemes

Fig. 3 Deviance information criterion plot for keeping sample sizes fixed at 180 and examining influence across priors and design schemes
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Fig. 4 DIC plot for keeping prior fixed at gaussian non-informative and examining influence across sample size and design schemes

Fig. 5 Deviance information criterion plot for keeping visit sequence fixed at 5&3 and examining influence across sample size and prior schemes
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Fig. 6 DIC plot for keeping visit sequence fixed at 10 and examining influence across sample size and prior schemes

Fig. 7 Deviance information criterion plot for keeping prior fixed at gaussian informative and examining influence across sample size and design 
schemes
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are presented in Table 13. Inferring from the tests con-
ducted, no issues were observed with the convergence 
of the MCMC chains. Overall, we can proceed with 
posterior summary inference with precision since the 
MCMC chains are in a stationary distribution.

After convergence assessment of the model, infer-
ence based on the posterior summary measures is the 
next step. Posterior means, standard deviations and 
associated credible intervals of the prior scenarios are 
presented in Table  14 along with their corresponding 

DIC’s. The best model is chosen based on the least 
DIC value. Observing the results, the model under the 
Jeffreys non-informative prior, yielded the least DIC 
(1108) value. Ergo, parameter inference is based on 
the Bayesian Bernoulli-Exponential model with Jef-
freys prior specified. The results demonstrate that the 
effect of treatment type is statistically significant on 
the likelihood of cancer recurrence inferring from its 
credible interval α2 = 0.216 (0.232,  0.411). The initial 
number of tumors have a significant effect α3 = 0.036 
(0.001,  0.108) on the likelihood of cancer recurrence 
and hence a significant prognostic factor. Furthermore, 
the size in cm of the largest tumor has a significant 
marker on the likelihood of cancer recurrence. After-
wards, the time parameters are observed. The effect of 
prior tumor recurrence on the mean response of cur-
rent tumor recurrence, represented by ψ is statistically 
significant −0.408(−1.009,−0.135) , indicating that pre-
vious tumor recurrences influence the probability of 
subsequent recurrences. Additionally, the effect of cur-
rent recurrence time(ϑ ) is significant on average recur-
rence, reflected by the estimated probability (0.157)
(0.018, 0.337).

Fig. 8 DIC plot for keeping prior fixed at jeffreys non-informative and examining influence across sample size and design schemes

Table 12 The bladder cancer data (called bladder) in R software

Variable Description

ID Patient id

Treatment Type(rx): 1=Placebo 2=Thiotepa

Number: Initial number of tumours (8=8 or more)

Tumor size: Size in (cm) of largest initial tumour

Stop: Recurrence or censoring time

Enum: Which recurrence (up to 4)

Event Status: 1=Recurrence 0= Other Status(Can 
include death for any reason)
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Discussions and conclusions
Broad assumptions underlie the usage of longitudinal 
analysis approaches, ranging from univariate designs 
to the even the most complex conditional and marginal 
modeling approaches. One of the common assump-
tions, albeit implausible in certain scenarios, is the sup-
position that time is always fixed and predetermined 
by statistical design. Phenomenons may alter the time 
trajectory of study subjects, like sickness or adverse 
events in clinical trials, which may result in not only 
irregular time points for subjects, but also imbalanced 
data and differing visit intensities. This implies cur-
rent visit outcomes being informative to subsequent 
ones. It is also important to emphasize that the issue 

of informative censoring may be less problematic in 
the context of an informative time/schedule designs, 
given the assumed observation schedule protocols. In 
simpler terms, individuals with more severe conditions 
requiring early interventions or treatments, which could 
lead to informative censoring, would also have shorter 
observation schedules and, consequently, more “fre-
quent” measurements. This assumption underlies the 
simulation design for this study. In this article, we have 
developed a Bayesian joint model for longitudinal out-
comes from the exponential family of distributions with 
particular emphasis on Bernoulli distributed longitu-
dinal outcomes and exponentially distributed informa-
tive time points. An assessment of the influence of 
controlled sample size scenarios, visit and prior specifi-
cation schemes on the estimated parameters of the pro-
posed Bayesian Bernoulli-Exponential joint model was 
performed via simulations and was evaluated based on 
Deviance Information Criteria.

The methods commenced with specifying likelihoods 
for the joint outcome and time distributions, specifi-
cation of priors, and then a discussion on the Markov 
Chain Monte Carlo Approach for estimating poste-
rior parameters. The priors considered were Gaussian 
informative priors, Gaussian non-informative priors 
and Jeffreys non-informative priors. Convergence analy-
sis was performed with the Heilderberg and Welch Test. 
Once the models converged, posterior inference fol-
lowed and models were evaluated based on Deviance 
Information Criteria. Inference from the Heidelberger 
and Welch Tests conducted across selected simula-
tion scenarios for the Bayesian Bernoulli-Exponential 
broadly suggested no pertinent issues with the conver-
gence or stationarity of MCMC chains for estimated 
parameters irrespective of prior specified, sample size 
or visit schemes. Fixing sample sizes and priors across 
selected scenarios of the model and examining effect of 
varying sequences on parameter estimates, a consistent 
trend in magnitude and direction of the estimates and 
their transformations were observed.

As sample sizes increased, albeit keeping priors and 
time sequences constant, credible interval widths were 
increasingly narrow, indicating that when the pro-
posed model is applied to datasets of increasing sam-
ple sizes, resulting estimates are obtained with higher 
precision. Overall, evaluation made for the Bayesian 
Bernoulli-Exponential model indicated better perfor-
mance for the less intense visit sequence 5&3 scenario, 
reflected by lower DIC values, followed by the balanced 
visit sequence 10 regardless of sample size or prior type. 

Table 13 Heidelberger and welch test for the Bayesian Bernoulli-
Exponential model for the bladder cancer data including three 
prior scenarios

Parameter Stationarity 
Test

P‑value Halfwidth 
Test

Mean Halfwidth

Informative Prior Scenario
     α1 passed 0.499 passed 0.222 0.019

     α2 passed 0.195 passed 0.402 0.010

     α3 passed 0.794 passed 0.006 0.003

     α4 passed 0.462 passed -0.049 0.006

     γ passed 0.503 passed -0.118 0.006

     ψ passed 0.666 passed -0.008 0.007

     ϑ passed 0.207 passed 0.000 0.003

     ξ passed 0.618 passed -0.127 0.004

Non‑ Informative Prior Scenario
     α1 passed 0.104 passed -0.339 0.054

     α2 passed 0.089 passed 0.466 0.666

     α3 passed 0.555 passed 0.107 0.010

     α4 passed 0.077 passed 0.189 0.020

     γ passed 0.542 passed -0.021 0.013

     ψ passed 0.322 passed 0.106 0.011

     ϑ passed 0.718 passed 0.095 0.008

     ξ passed 0.509 passed -0.182 0.009

Jeffreys Non‑Informative Prior Scenario
     α1 passed 0.134 passed 0.138 0.002

     α2 passed 0.433 passed 2.005 0.016

     α3 passed 0.083 passed 0.160 0.001

     α4 passed 0.053 passed 0.061 0.001

     γ passed 0.613 passed -0.012 0.008

     ψ passed 0.168 passed 0.416 0.011

     ϑ passed 0.270 passed 0.080 0.008

     ξ passed 0.224 passed -0.156 0.005
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Sample sizes across various simulation scenarios per-
formed similarly well, only that the difference in per-
formance was largely attributable to the sequence of 
individual visits. Finally, the proposed model has been 
applied to a bladder cancer recurrence data to serve as 
an application example.
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Table 14 Results of the Bayesian Bernoulli-Exponential model applied to the bladder cancer data with different prior scenarios 
considered

Gaussian Informative Prior Estimates Deviance Information of Model
Parameter Mean SD 2.50% 97.50% Dbar Dhat DIC pD

α1 0.621 0.263 0.113 1.136 1119 1113 1126 6.652

α2 0.404 0.496 -0.566 1.374

α3 -0.021 0.061 -0.140 0.100

α4 -0.115 0.095 -0.300 0.068

γ 0.165 0.126 -0.078 0.415

ψ -0.318 0.231 -1.229 -0.132

ϑ 0.070 0.090 -0.109 0.248

ξ -0.366 0.094 -0.550 -0.187

Gaussian Non‑Informative Prior Estimates Deviance Information of Model
Parameter Mean SD 0.025 0.975 Dbar Dhat DIC pD

α1 0.256 0.312 -0.321 0.867 1114 1107 1121 6.953

α2 0.228 0.127 0.235 0.412

α3 0.008 0.065 -0.118 0.135

α4 -0.006 0.107 -0.206 0.198

γ -0.100 0.128 -0.352 0.150

ψ - 0.608 0.240 -1.079 -0.137

ϑ -0.099 0.094 -0.287 0.081

ξ -0.216 0.095 -0.407 -0.036

Jeffreys Non‑Informative Prior Estimates Deviance Information of Model
Parameter Mean SD 0.025 0.975 Dbar Dhat DIC pD

α1 0.174 0.123 0.007 0.457 1103 1098 1108 4.972

α2 0.216 0.125 0.232 0.411

α3 0.036 0.029 0.001 0.108

α4 0.048 0.039 0.001 0.145

γ 0.055 0.129 -0.199 0.305

ψ -0.408 0.241 -1.009 -0.135

ϑ 0.157 0.091 0.018 0.337

ξ -0.287 0.096 -0.476 -0.101
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