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Abstract
Background Several strategies for identifying biologically implausible values in longitudinal anthropometric data 
have recently been proposed, but the suitability of these strategies for large population datasets needs to be better 
understood. This study evaluated the impact of removing population outliers and the additional value of identifying 
and removing longitudinal outliers on the trajectories of length/height and weight and on the prevalence of child 
growth indicators in a large longitudinal dataset of child growth data.

Methods Length/height and weight measurements of children aged 0 to 59 months from the Brazilian Food and 
Nutrition Surveillance System were analyzed. Population outliers were identified using z-scores from the World Health 
Organization (WHO) growth charts. After identifying and removing population outliers, residuals from linear mixed-
effects models were used to flag longitudinal outliers. The following cutoffs for residuals were tested to flag those: 
-3/+3, -4/+4, -5/+5, -6/+6. The selected child growth indicators included length/height-for-age z-scores and weight-
for-age z-scores, classified according to the WHO charts.

Results The dataset included 50,154,738 records from 10,775,496 children. Boys and girls had 5.74% and 5.31% of 
length/height and 5.19% and 4.74% of weight values flagged as population outliers, respectively. After removing 
those, the percentage of longitudinal outliers varied from 0.02% (<-6/>+6) to 1.47% (<-3/>+3) for length/height 
and from 0.07 to 1.44% for weight in boys. In girls, the percentage of longitudinal outliers varied from 0.01 to 1.50% 
for length/height and from 0.08 to 1.45% for weight. The initial removal of population outliers played the most 
substantial role in the growth trajectories as it was the first step in the cleaning process, while the additional removal 
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Background
Nutrition and food surveillance systems are essential 
resources for monitoring child growth indicators. These 
indicators can help planning public policies and actions 
toward children’s health [1, 2]. The most common child 
growth indicators (e.g., stunting, wasting, underweight, 
and overweight) are based on length/height and weight 
measurements according to age. They are commonly col-
lected in healthcare services and used in public health-
care systems [3].

However, it is important to evaluate the quality of the 
anthropometric measurements available in these sys-
tems. Errors during data collection, documentation, and 
data entry into electronic systems can happen. In addi-
tion, measuring length in children under two years of age 
can be another challenge for many healthcare profession-
als [4, 5]. Identifying records with biologically implausi-
ble values (BIVs) is particularly important when working 
with routine electronic record data, as those may impact 
child growth indicators [6].

The methodological process of identifying BIVs has 
been investigated recently, but studies with large longi-
tudinal datasets are scarce [7–9]. In cross-sectional stud-
ies, methods to detect BIVs are usually based on cutoffs 
defined according to a reference population. For example, 
the World Health Organization (WHO) recommends 
identifying biologically implausible child growth values 
based on the child growth standards [13].

In longitudinal studies, each child may have multiple 
anthropometric measurements collected at different time 
points or ages. Those sequences of measurements can 
be used as another source of information to evaluate the 
plausibility of the anthropometric measurements. Thus, 
it is possible to identify BIVs both cross-sectionally and 
longitudinally [11]. In general, BIVs flagged based on the 
sample’s distribution or according to external references 
are considered population outliers (POs), and measure-
ments flagged based on an individual’s trajectory can be 
referred to as longitudinal outliers (LOs) [8].

Some studies have argued that identifying and remov-
ing POs alone may not be enough to clean longitudinal 
anthropometric data, and that identifying and consider-
ing LOs can be needed as well [7–9, 11, 12]. However, 

this statement is often based on data from studies with 
small sample sizes. Thus, our study aims to evaluate the 
impact of identifying and removing POs and the addi-
tional value of identifying and removing LOs in a large 
longitudinal dataset of child anthropometric measure-
ments from the Brazilian Food and Nutrition Surveil-
lance System (SISVAN). We also aim to compare the role 
of removing flagged BIVs on the child growth trajectories 
and on the prevalence of child growth indicators.

Methods
Data source
We analyzed individual-level data of children under five 
years old who were followed up in the Unified Health 
System’s (SUS) primary healthcare services between 
2008 and 2017 and registered in the SISVAN. Monitoring 
nutritional status is part of the SISVAN, which consists 
of continuously evaluating the food and nutritional sta-
tus of the Brazilian population. Healthcare professionals 
routinely carry out the data collection, entry, and initial 
analysis of anthropometric data of subjects using public 
services throughout the life course [13].

The SISVAN data were obtained from the Ministry 
of Health and accessed, processed, and analyzed in the 
Centre for Data and Knowledge Integration for Health 
(CIDACS, Oswaldo Cruz Foundation) [14]. For this 
study, authorized researchers accessed and analyzed only 
de-identified data.

Study variables
Length/height (cm) and weight (kg) data were collected 
according to technical standards established by the Bra-
zilian Ministry of Health for data collection in public 
health services [15]. Then, these data were retrieved from 
the SISVAN records for children under 59 months old. 
Length/height-for-age (HAZ) and weight-for-age (WAZ) 
z-scores were calculated based on the WHO child growth 
standards [16]. Age (in months) was calculated consider-
ing the difference between the date of visit to the primary 
care unit and the birth date. Sex was registered in the first 
visit.

The child growth indicators comprised length/height-
for-age z-scores (L/HAZ) and weight-for-age z-scores 

of longitudinal outliers had lower influence on those, regardless of the cutoff adopted. The prevalence of the selected 
indicators were also affected by both population and longitudinal (to a lesser extent) outliers.

Conclusions Although both population and longitudinal outliers can detect biologically implausible values in child 
growth data, removing population outliers seemed more relevant in this large administrative dataset, especially in 
calculating summary statistics. However, both types of outliers need to be identified and removed for the proper 
evaluation of trajectories.
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Child’s growth, Big data
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(WAZ). L/HAZ was classified as severe stunting (L/HAZ 
< -3), moderate stunting (L/HAZ ≥ -3 and < -2), and 
adequate (L/HAZ > -2). WAZ classifications were severe 
underweight (WAZ < -3), moderate underweight (WAZ 
≥ -3 and < -2), adequate (WAZ ≥ -2 and ≤ + 2), and over-
weight (WAZ > + 2) [16].

Data cleaning and statistical analysis
The data were processed and analyzed using Stata ver-
sion 15.1 and R version 3.6.0. We first removed dupli-
cate records (defined in this study as those with the same 
identification number, birth date, date of visit, length/
height, and weight). Duplicate records are common in 
the SISVAN because the data can be registered in three 
separate systems (the e-SUS, the Bolsa Familia system, 
and the SISVAN itself ) and then consolidated into a 
unique dataset. After removing duplicates, we split the 
dataset into four sub-datasets to analyze length/height 
and weight by sex separately. We removed all observa-
tions with missing and/or negative values in the variables 
of interest (age, sex, length/height, and/or weight), and 
individuals with only one measurement of length/height 
or weight. This decision was made because those individ-
uals were not eligible for the approach to flag LOs.

To identify POs, we adopted the WHO cutoffs for BIVs 
and flagged values based on the four child growth indica-
tors: body-mass-index-for-age (BMIZ) < -5 and > + 5, L/
HAZ < -6 and > + 6, WAZ < -6 and > + 5, and weight-for-
length/height-for-age (WHZ) < -5 and > + 5 [10]. Since 
analysis for length/height and weight were performed 
separately, L/HAZ was used only for length/height data 
and, analogously, WAZ only for the weight dataset. The 
flagged values were then removed for the next step. 
Before flagging LOs, we performed another cleaning in 
the dataset to remove individuals who remained with 
only one measurement after removing POs. This addi-
tional cleaning was necessary because, although these 
individuals could contribute to the general mean with 
only one measurement, they increase the sample size 
contributing to an even smaller variance. However, they 
do not bring essential information. We were interested in 
the additional impact of the identification and removal of 
LOs in longitudinal data.

To flag LOs observations, the approach proposed by 
Boone-Heinonen et al. [8] was adopted with modifica-
tions. Mixed-effects models with random intercept were 
fitted considering restricted cubic splines for the time 
(age) variable. In the current study, models were fitted 
separately for length/height and weight, and also by sex, 
to accommodate sex-specific growth patterns. The model 
equation was given by

 

Yij = β0 + b0i +

K∑

k=1

γk(agej − εk)
3 + eij, for i

= 1, 2, . . . n and j = 1, 2, . . . , Ji, where

  • Yij  is the value of the response variable for the i-th 
subject and the j-th measurement, n is the number of 
subjects, Ji  is the number of measurements for the 
i-th subject and N =

∑n
i=1Ji  is the total number of 

measurements;
  • β0 is the intercept, representing an overall length or 

weight at birth;
  • b0i  is the i-th subject-specific random effect, 

representing the length or weight at birth;
  • γ = (γ1, γ2, . . . , γK) is the vector of coefficients 

associated with the cubic splines;
  • ε = (ε1, ε2, . . . , εK)  is the vector of knots;
  • K  is the number of knots;
  • eij  is the normally distributed random error with 

mean zero and unknown variance σ2 .

The main changes between the approach used by Boone-
Heinonen et al. [8] and the present one concern the deci-
sion regarding (i) the number and position of the knots 
used in the restricted cubic splines to model the variation 
of length/height and weight according to age and the type 
of residual used to flag LOs, and (ii) the residual used to 
flag LOs. Five knots (K = 5) located at 2, 6, 12, 24, and 58 
months were used to model length/height. Four knots 
placed at 3, 6, 12, and 58 months were used to model 
weight. These knots were selected based on the WHO 
child growth curves inflection points [16].

After fitting the model, scaled residuals were obtained 
via the following equation:

 

Rij =
eij√
̂V ar (Yij)

where eij = yij − ŷij , that is, the difference between the 
observed value of length/height or weight for the i-th 
subject at the j-th time point (age), and their respective 
fitted value. These residuals are simple, easily obtained, 
and able to account for the fitted values’ variance. After 
calculating the scaled residuals, we flagged LOs consider-
ing the following cutoffs: -3/+3, -4/+4, -5/+5, and − 6/+6.

Scaled residuals were selected due to the computa-
tional difficulty of extracting studentized residuals in 
a large dataset, as performed by Boone-Heinonen et al. 
[8]. The functions available in R and Stata for the extrac-
tion of studentized residuals did not work in the SIS-
VAN large sample. A sensitivity analysis was performed 
with a random sample of 1,000 boys to compare the 
scaled, internally studentized, and externally studentized 
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residuals from the same model. The results indicated that 
the number of observations flagged by each type of resid-
ual was similar (Table S1), which allowed us to keep the 
decision to work with scaled residuals.

The impact of removing BIVs flagged from several 
approaches, including POs and LOs, on the trajectories 
and prevalence of child growth indicators (HAZ and 
WAZ) was evaluated. We estimated the trajectories of 
length/height and weight using the mixed-effects models 
previously fitted. The prevalence of child growth indica-
tors was calculated in the initial dataset, after removing 
POs, after removing children with only one measure-
ment, and after removing both POs and LOs according to 
the different cutoffs.

In the initial exploration of the dataset, it was observed 
that a child’s series of length/height measurements pre-
sented decreasing value(s) in relation to the previous 
one(s) – a characteristic called “decreasing heights”. 
Decreasing linear growth is not biologically plausible 
in children aged until 59 months; however, small nega-
tive differences in heights between visits can arise due 
to measurements taken by different workers and/or 
by using different measurement devices. Thus, to con-
sider these special cases, the difference between adja-
cent length/height measurements was calculated, and 

the observations were considered inaccurate if such a 
difference was lower than − 2  cm. A secondary analysis 
was conducted after removing POs by identifying and 
removing these “decreasing height” values. In this case, 
our strategy assumed that the first measurement was cor-
rectly performed/registered.

Results
The initial SISVAN dataset comprised 15,885,550 chil-
dren and 55,264,792 measurements. After remov-
ing duplicates, missing data, and individuals with only 
one length/height or weight measurement, 24,636,299 
length/height and 24,647,274 weight measurements for 
boys and 25,390,698 length/height and 25,401,701 weight 
measurements for girls were available for the analyses. 
Following the removal of POs and children with only 
one measurement, the dataset used for assessing LOs 
comprised 5,018,413 boys and 5,259,198 girls for length/
height and 5,045,083 boys and 5,286,764 girls for weight 
(Fig. 1).

Boys and girls had 5.74% and 5.31% of the length/
height and 5.19% and 4.74% of the weight measurements 
flagged as POs, respectively. Considering BMIZ, HAZ, 
and WAZ, there were more POs on the positive side 
(extreme) of the curve (WAZ > + 5 and L/HAZ > + 6) than 

Fig. 1 Flowchart for the construction of the datasets used for the assessment of the population and longitudinal outliers. Notes: ‘SISVAN initial database’ 
refers to the extracted database after removing duplicates and children with a single measurement. SISVAN: Brazilian Food and Nutrition Surveillance 
System, L/HAZ: length/height-for-age z-score, WAZ: weight-for-age z-score, n: number of children, N: number of measurements
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in the negative part of the interval (WAZ and L/HAZ < 
-6). On the other hand, WHZ presented more POs on 
the negative side. Descriptive statistics show consider-
able changes in length/height, L/HAZ, weight, and WAZ 
for both sexes after the removing POs, especially in the 
means, minimum and maximum values (Table 1). Mean 
L/HAZ decreased from 15.40 to -0.36 for boys and from 
11.50 to -0.29 for girls.

In boys, the percentage of LOs varied from 0.02% (<-6 / 
>+6) to 1.47% (<-3 / >+3) for length/height and from 0.07 
to 1.44% for weight, respectively. In girls, the percentage 
of LOs varied from 0.01 to 1.50% for length/height and 
from 0.08 to 1.45% for weight. There were more posi-
tive LOs for length/height and weight measurements, 
except for length/height with the cutoff value of −6/ + 6 
(Fig.  1). After removing LOs, descriptive statistics were 
similar across the different cutoffs used to flag the LOs 
and to the previous statistics obtained after the removal 
of POs only (Table 2).

The trajectories of length/height and weight of 1,000 
randomly selected boys and 1,000 randomly selected girls 
in the initial dataset showed mean curves with peaks in 
both sexes (Figs. 2A and D and 3A and D). Most substan-
tial changes in the trajectories of those randomly selected 
boys and girls occurred with the removal of POs, where 
the peaks were absent in the mean observed curves 
(Figs. 2B and E and 3B and E). Only a few changes were 
observed in both sexes’ trajectories and mean curves 

when the LOs were removed, regardless of the cutoff 
value (Figs. 2C and F and 3C and F, S1, S2, S3, and S4).

The prevalence of child growth indicators presented 
changes when POs were removed. Among the extreme 
categories of HAZ and WAZ, the prevalence of severe 
stunting (HAZ<-3), severe underweight (WAZ < -3) 
and overweight (WAZ > 2) were the most affected by the 
removal of POs. Concerning the initial dataset, the prev-
alence of severe stunting decreased from 4.75 to 4.36% 
for boys (-0.39%) and from 3.91 to 3.56% for girls (-0.35%) 
after removing POs only. The prevalence of overweight 
for age (WAZ > 2) decreased from 6.94 to 6.15% for boys 
(-0.79%) and from 6.34 to 5.62% for girls (-0.72%). To a 
lesser extent, these categories were also affected by the 
removal of LOs, especially for the most restrictive cutoff 
(<-3/ >+3) (Tables 3 and 4).

After removing the POs, there were 1,514,066 (6.58%) 
“decreasing heights” observations for boys and 1,579,379 
(6.63%) for girls (data not shown). Unlike the model-
based residual approach used to flag and remove LOs, 
removing “decreasing heights” seemed to change the L/
HAZ means and prevalence estimates (Table S2). Regard-
ing the dataset after removing POs (and removing chil-
dren with a single measurement), the L/HAZ mean 
increased from − 0.36 to -0.29 for boys (+ 0.07) and − 0.29 
to -0.21 for girls (+ 0.08), while the prevalence of severe 
stunting decreased from 4.32 to 3.39% in boys (-0.93%) 
and 3.53–2.62% in girls (-0.91%) after removing “decreas-
ing heights” (see Tables S3 and S4). Additional results 

Table 1 Descriptive statistics for anthropometric variables before and after removing population outliers. Brazilian Food and Nutrition 
Surveillance System (SISVAN), 2008–2017. Notes: POs: population outliers, SD: standard deviation, L/HAZ: length/height-for-age z-score, 
WAZ: weight-for-age z-score

Initial dataset Dataset after
removing POs 

Dataset after removing
children with only
one measurement

Mean (SD) Min; Max Mean (SD) Min; Max Mean (SD) Min; Max
Boys
Age (months) 31.41 (16.55) 0.00; 59.00 31.47 (16.54) 0.00; 59.00 31.45 (16.53) 0.00; 59.00
Length/height (cm) 136.40 (5914.07) 0.00; 993,900.00 90.04 (14.54) 45.00; 120.00 90.02 (14.53) 45.00; 120.00
L/HAZ 15.40 (2034.79) -32.10; 433,915.30 -0.36 (1.54) -6.00; 6.00 -0.36 (1.53) -6.00; 6.00
Number of measurements 4.68 (4.08) 2;145 4.43 (3.99) 1; 113 4.58 (4.01) 2; 113
Age (months) 31.41 (16.55) 0.00; 59.00 31.41 (16.54) 0.00; 59.00 31.38 (16.54) 0.00; 59.00
Weight (kg) 15.50 (141.90) 0.00; 147,000.00 13.60 (4.03) 1.70; 34.80 13.59 (4.02) 1.70; 34.70
WAZ 1.03 (65.04) -11.50; 55,404.92 0.08 (1.25) -6.00; 5.00 0.08 (1.24) -6.00; 5.00
Number of measurements 4.68 (4.08) 2; 145 4.46 (4.00) 1; 113 4.59 (4.02) 2; 113
Girls
Age (months) 31.76 (16.51) 0.00; 59.00 31.86 (16.50) 0.00; 59.00 31.84 (16.50) 0.00; 59.00
Length/height (cm) 126.70 (5325.19) 0.00; 990,000.00 89.40 (14.66) 45.00; 120.00 89.38 (14.66) 45.00; 120.00
L/HAZ 11.50 (1681.45) -29.10; 381,301.70 -0.29 (1.49) -6.00; 6.00 -0.29 (1.49) -6.00; 6.00
Number of measurements 4.63 (3.98) 2; 88 4.39 (3.90) 1; 88 4.53 (3.92) 2; 88
Age (months) 31.76 (16.51) 0.00; 59.00 31.80 (16.50) 0.00; 59.00 31.77 (16.50) 0.00; 59.00
Weight (kg) 15.07 (143.34) 0.00; 263,642.00 13.24 (4.09) 1.70; 36.80 13.23 (4.08) 1.70; 36.80
WAZ 0.89 (53.86) -11.32; 65,928.75 0.09 (1.20) -6.00; 5.00 0.09 (1.20) -6.00; 5.00
Number of measurements 4.63 (3.98) 2; 88 4.42 (3.91) 1; 88 4.54 (3.92) 2; 88
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enable comparison of prevalences of child growth indi-
cators based on HAZ and WAZ, for boys and girls, at 
each data cleaning process. These results are separate for 
length/height (with and without the presence of “decreas-
ing heights”) and weight (see Tables S3, S4, and S5).

The proportion of POs and LOs (based on the cutoff 
value of -3/+3) removed at each age was calculated. There 
were more observations classified as POs in younger ages 
in comparison to those classified as LOs (Figure S5).

Discussion
In this study, we adapted and tested methods to iden-
tify BIVs in a large administrative dataset with longitu-
dinal anthropometric measurements of children from 0 
to 59 years old. Using WHO cutoffs for BIVs, we iden-
tified POs in 5.74% and 5.31% of the length/height and 
5.19% and 4.74% of the weight measurements, in boys 
and girls respectively. After removing POs, different cut-
offs were used to flag LOs based on the residuals of linear 
ME models. The maximum percentage of LOs was 1.50% 
considering both sexes, even when a more restricted cut-
off (<-3/>+3) was applied. In general, the removal of POs 
played the largest role in the child growth trajectories 
and in the estimates of the prevalence of child growth 
indicators. In contrast, the subsequent removal of LOs 
had lower impact on subjects’ trajectories, regardless of 

the cutoff used to flag those measurements. This can be 
expected since POs are removed first and therefore LOs 
account for an additional cleaning in the dataset. In addi-
tion, POs and LOs are unequally distributed according 
to age. This behavior may be a reflection of using only a 
random intercept in the mixed-effects model. Alterna-
tively, measurements are also unequally distributed along 
the age, often with a lower quantity at the beginning and 
end of the follow-up period. Another point to consider 
is that the proportion of LOs tends to increase mainly in 
the months when POs were less prevalent, considering 
both length/height and weight. Removing the “decreasing 
heights” substantially influenced child growth outcomes 
using L/HAZ measurements. As an example, prevalence 
of severe stunting decreased 21.53% (from 4.32 to 3.39%) 
in boys and 25.78% (from 3.53 to 2.62%) in girls.

Reference charts and the sample’s distributions are still 
widely used methods to flag and clean BIVs in anthropo-
metric data, especially in cross-sectional studies [6]. The 
percentage of POs in our dataset exceeded 1% for both 
L/HAZ and WAZ, suggesting poor data quality accord-
ing to the WHO implausibility system [10]. Even child 
growth data collected primarily for research purposes 
often fail to meet these quality criteria, mainly due to 
the difficulty of performing anthropometric assessment 
in young children and inadequate facility conditions in 

Table 2 Descriptive statistics for anthropometric variables after removing longitudinal outliers according to different cutoffs. Brazilian 
Food and Nutrition Surveillance System (SISVAN), 2008–2017

Dataset after removing LOs according to different cutoffs

< -3 / > +3 < -4 / > +4 < -5 / > +5 < -6 / > +6

Mean (SD) Min; Max Mean (SD) Min; Max Mean (SD) Min; Max Mean (SD) Min; Max
Boys
Age (months) 31.37 (16.57) 0.00; 59;00 31.42 (16.55) 0.00; 59.00 31.44 (16.54) 0.00; 59.00 31.45 (16.53) 0.00; 59.00
Length/height (cm) 89.90 (14.48) 45.00; 120.00 89.98 (14.51) 45.00; 120.00 90.01 (14.53) 45.00; 120.00 90.02 (14.53) 45.00; 120.00
L/HAZ -0.38 (1.45) -6.00; 6.00 -0.37 (1.51) -6.00; 6.00 -0.37 (1.53) -6.00; 6.00 -0.36 (1.53) -6.00; 6.00
Number of 
measurements

4.52 (3.99) 1; 113 4.57 (4.00) 1; 113 4.58 (4.01) 1; 113 4.58 (4.01) 1; 113

Age (months) 31.24 (16.53) 0.00; 59.00 31.32 (16.53) 0.00; 59.00 31.36 (16.53) 0.00; 59.00 31.37 (16.53) 0.00; 59.00
Weight (kg) 13.52 (3.93) 1.70; 34.60 13.56 (3.97) 1.70; 34.60 13.58 (4.00) 1.70; 34.60 13.58 (4.01) 1.70; 34.60
WAZ 0.06 (1.20) -6.00; 5.00 0.07 (1.22) -6.00; 5.00 0.08 (1.23) -6.00; 5.00 0.08 (1.24) -6.00; 5.00
Number of 
measurements

4.54 (3.99) 1; 113 4.57 (4.00) 1; 113 4.58 (4.01) 1; 113 4.59 (4.02) 1; 113

Girls
Age (months) 31.76 (16.54) 0.00; 59.00 31.81 (16.51) 0.00; 59.00 31.83 (16.50) 0.00; 59.00 31.83 (16.50) 0.00; 59.00
Length/height (cm) 89.26 (14.60) 45.00; 120.00 89.34 (14.64) 45.00; 120.00 89.37 (14.65) 45.00; 120.00 89.38 (14.66) 45.00; 120.00
L/HAZ -0.31 (1.40) -6.00; 6.00 -0.30 (1.46) -6.00; 6.00 -0.29 (1.56) -6.00; 6.00 -0.29 (1.49) -6.00; 6.00
Number of 
measurements

4.47 (3.89) 1; 88 4.52 (3.91) 1; 88 4.53 (3.91) 1; 88 4.53 (3.92) 1; 88

Age (months) 31.63 (16.49) 0.00; 59.00 31.71 (16.49) 0.00; 59.00 31.75 (16.50) 0.00; 59.00 31.76 (16.50) 0.00; 59.00
Weight (kg) 13.14 (3.97) 1.70; 35.80 13.19 (4.02) 1.70; 36.80 13.21 (4.05) 1.70; 36.80 13.22 (4.07) 1.70; 36.80
WAZ 0.06 (1.16) -6.00; 5.00 0.08 (1.18) -6.00; 5.00 0.08 (1.19) -6.00; 5.00 0.09 (1.20) -6.00; 5.00
Number of 
measurements

4.49 (3.89) 1; 88 4.59 (3.95) 1; 88 4.53 (3.92) 1; 88 4.54 (3.92) 1; 88

Notes: LOs: longitudinal outliers, SD: standard deviation, L/HAZ: length/height-for-age z-score, WAZ: weight-for-age z-score
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low-resource areas [4, 5]. This situation underscores the 
importance of correctly identifying BIVs in the datasets 
from those locations.

Recent studies have proposed different methods to 
identify LOs based on growth trajectories of length/
height and weight in children, including model-based 
approaches using conditional growth percentiles [7], 
jackknife residuals from linear regression [9], studen-
tized residuals from mixed-effects models [8], Cook’s 
distance, DFFITS and DFBETAS [17]. To the best of our 
knowledge, the method based on studentized residuals 
from ME models [8] is the most feasible and appropri-
ate, since it is not computationally expensive and accom-
modates the nonlinearity in child growth patterns and 

the substantial variability in the number and spacing 
of anthropometric measures and age. However, it may 
present limitations in a large data base such as SISVAN. 
Therefore, we used ME approach and scaled residuals - 
and tested four cutoffs from more conservative (-3/+3) to 
more flexible (-6/+6) ranges to flag LOs. The percentages 
of LOs varied across the cutoffs as expected, and always 
comprised at most 1.5% of the measurements, even using 
the more conservative cutoff. Thus, removing LOs based 
on this approach, after the removal of POs, presented 
lower impact on the child growth trajectories and the 
prevalence of indicators, regardless of the cutoff adopted.

A previous study using a similar method to flag LOs 
found a negligible impact of removing LOs (-6/+6) on the 

Fig. 2 Trajectories of length/height (A, B, C) and weight (D, E, F) of 1,000 randomly selected boys in the initial dataset (A and D) and after removing POs 
(B and E) and LOs (C and F). Notes: Longitudinal outliers (LOs) were based on the most conservative cutoff (<-3 / >+3). The black dashed line represents 
the observed mean curve based on all observations. To maintain scale and comparability there were observations that were not shown in panels A and 
D (available upon request)
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estimated prevalence of child BMI categories [8]. Unlike 
our study, POs and LOs represented less than 0.3% of 
their dataset. However, the authors also observed that the 
exclusion of POs resulted in smaller changes in the mean 
weight, height, and BMI over time compared with the 
exclusion of LOs. In our study, the prevalence of severe 
stunting and overweight for age dropped approximately 
0.39% and 0.79% for boys and 0.35% and 0.72% for girls, 
after removing POs, respectively. These values repre-
sented a relative difference in the removal of POs in rela-
tion to the initial step of the cleaning process of 13.62% 
and 13.99% for severe stunting, and of 16.09% and 15.80% 
for overweight, for boys and girls respectively.

We studied the influence of biologically implausible 
decreases in height measurements (“decreasing heights”). 
This feature represented 6.63% of the observations, and 
removing those measurements substantially changed 
child growth outcomes compared to LOs. After exclud-
ing POs and children with a single measurement, the 
prevalence of severe stunting decreased by 0.93% and 
0.91% for boys and girls, respectively, due to the removal 
of “decreasing heights”. A recent study developed an auto-
mated protocol for cleaning pediatric height and weight 
from longitudinal electronic health records [17]. In this 
study, inflated error rates for height measurements were 
also detected due to small but physiologically implau-
sible decreases in height exceeding − 2 cm. It is essential 

Fig. 3 Trajectories of length/height (A, B, C) and weight (D, E, F) of 1,000 randomly selected girls in the initial dataset (A and D) and after removing POs 
(B and E) and LOs (C and F). Notes: Longitudinal outliers (LOs) were based on the most conservative cutoff (<-3 / >+3). The black dashed line represents 
the observed mean curve based on all observations. To maintain scale and comparability there were observations that were not shown in panels A and 
D (available upon request)
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to highlight that to detect the “decreasing heights”, the 
first measurement is assumed to be correct. Thus, this 
method can fail to detect outliers if the first measure-
ment is implausible.

Although removing BIVs is important, especially in 
datasets in which data collection is not standardized, 
such as the SISVAN, caution must be taken. The removal 
of extremely high values from the tails of the distribu-
tion may introduce unknown biases and limit the accu-
rate estimation of prevalence and growth trajectories of 
children at increased risk of malnutrition [18, 19]. In the 
current study, the higher proportion of POs in the posi-
tive part of the interval, especially for weight (WAZ > + 5), 
could suggest that these are, in fact, values from children 
who are heavier and exceed 5 standard deviations of the 
WHO reference charts.

In addition, the lack of a standard cutoff to define LOs 
based on regression residuals remains a concern. The 

decision of the best cutoff should be study-based and 
consider that some inaccurate values that may not belong 
to a child series of observations will be kept in the dataset 
if we use cutoffs with larger ranges. On the other hand, 
extreme but true values can be unnecessarily removed if 
we use more restrictive cutoffs with lower ranges. These 
are important reflections to be made when flagging and 
removing BIVs.

Our study is the first to use real-world ‘big data’ of lon-
gitudinal anthropometric measurements to detect and 
evaluate the impact of different types of outliers. The SIS-
VAN dataset, although not representative of the Brazilian 
population, is an important data source for the Ministry 
of Health to monitor nutritional indicators throughout 
the life course and includes data collected in the larg-
est public healthcare system worldwide. Thus, correctly 
identifying and removing BIVs in this dataset can change 
the estimates of the prevalence of child growth indicators 

Table 3 Prevalence of child growth indicators in the initial dataset and after removing population and longitudinal outliers according 
to different cutoffs - boys. Brazilian Food and Nutrition Surveillance System (SISVAN), 2008–2017

Initial
dataset

Dataset after
removing POs

Dataset after removing
children with only
one measurement

Dataset after removing LOs according to different 
cutoffs
< -3/ > +3 < -4/ > +4 < -5/ > +5 < -6/ > +6

Severe stunting 4.75 4.36 4.32 3.87 4.19 4.29 4.32
Moderate stunting 7.70 7.93 7.92 7.98 7.95 7.93 7.93
Adequate 84.60 87.71 87.75 88.15 87.85 87.78 87.76
BIV 2.89 - - - - - -
Missing 0.06 - - - - - -
Severe underweight 1.17 0.99 0.98 0.82 0.91 0.95 0.97
Moderate underweight 3.19 3.19 3.19 3.11 3.17 3.18 3.19
Adequate 86.91 89.66 84.79 90.73 90.16 89.90 89.90
Overweight 6.94 6.15 6.09 5.34 5.76 5.96 6.04
BIV 1.63 - - - - - -
Missing 0.16 - - - - - -
Notes: POs: population outliers, LOs: longitudinal outliers, L/HAZ: length/height-for-age z-score, WAZ: weight-for-age z-score

Table 4 Prevalence of child growth indicators in the initial dataset and after removing population and longitudinal outliers according 
to different cutoffs – girls. Brazilian Food and Nutrition Surveillance System (SISVAN), 2008–2017

Initial
dataset

Dataset after
removing POs

Dataset after removing
children with only
one measurement

Dataset after removing LOs according to different 
cutoffs
< -3/ > +3 < -4/ > +4 < -5/ > +5 < -6/ > 

+6
Severe stunting 3.91 3.56 3.53 3.04 3.39 3.50 3.52
Moderate stunting 6.68 6.87 6.86 6.91 6.89 6.87 6.86
Adequate 85.51 89.57 89.61 90.05 89.72 89.63 89.61
BIV 2.83 - - - - - -
Missing 0.07 - - - - - -
Severe underweight 0.97 0.83 0.82 0.70 0.77 0.81 0.82
Moderate underweight 2.90 2.91 2.90 2.84 2.89 2.90 2.90
Adequate 88.06 90.64 90.70 91.70 91.15 90.89 90.78
Overweight 6.34 5.62 5.57 4.76 5.19 5.40 5.50
BIV 1.52 - - - - - -
Missing 0.21 - - - - - -
Notes: POs: population outliers, LOs: longitudinal outliers, L/HAZ: length/height-for-age z-score, WAZ: weight-for-age z-score
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extracted from the SISVAN. Besides, it can also affect the 
current public healthcare policies that are often made 
based on these results. We observed a lack of informa-
tion in some studies in the field regarding the residuals 
used to flag LOs. Our study presented the formula used 
to calculate the scaled residuals and confirmed that the 
statistical software calculated them using the same for-
mula. Since there are different types of regression residu-
als, future studies should describe this step in more detail 
for clarity and research reproducibility.

A major limitation for our study and others in the field 
is the lack of a gold standard of what are the ‘true’ BIVs. 
This means we could only compare the number of obser-
vations flagged as POs and LOs by different methods 
but could not determine whether both were accurate. 
Future studies using data collected through standard-
ized approaches and simulation techniques could help 
in comparing methods. More recently, machine learning 
has been proposed as a promising technique for improv-
ing outlier detection in small sample [20]. Thus, future 
studies using big datasets could also consider artificial 
intelligence methods. In addition, mixed-effect models 
used to detect LOs included only random intercept due 
to the sample size. It is suggested that, if possible, to fit 
the model with both random intercept and slope.

Conclusions
The approach used in this study can be a tool to identify 
systematically implausible length/height and weight mea-
surements from routinely collected data of children in 
primary healthcare services. This tool examines POs and 
LOs. Although both methods were able to detect BIVs in 
our dataset, the initial removal of POs played the larg-
est role in the child growth trajectories and in the prev-
alence estimates of child growth, as this is the first step 
in the data cleaning process. In contrast, the subsequent 
removal of LOs had lower impact on subjects’ trajecto-
ries, regardless of the cutoff used to flag those measure-
ments. Nonetheless, this latter approach was simple and 
computationally reasonable, and it can be particularly 
useful when integrated with an approach to flag POs, to 
detect and remove outliers in big longitudinal datasets 
before estimating growth trajectories.

It is also important to mention that the sequence pre-
sented here is a proposal to deal with outliers with large 
administrative longitudinal data. The decision regarding 
the appropriate approach is data-dependent and should 
be discussed by the team of researchers. Factors such as 
the average number of measurements per individual, the 
percentage of individuals with many repeated measure-
ments, and the amount of data flagged by each criterion 
should be considered in this decision.
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