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Abstract 

Background Surveys have been used worldwide to provide information on the COVID‑19 pandemic impact so as to 
prepare and deliver an effective Public Health response. Overlapping panel surveys allow longitudinal estimates 
and more accurate cross‑sectional estimates to be obtained thanks to the larger sample size. However, the problem 
of non‑response is particularly aggravated in the case of panel surveys due to population fatigue with repeated 
surveys.

Objective To develop a new reweighting method for overlapping panel surveys affected by non‑response.

Methods We chose the Healthcare and Social Survey which has an overlapping panel survey design with measure‑
ments throughout 2020 and 2021, and random samplings stratified by province and degree of urbanization. Each 
measurement comprises two samples: a longitudinal sample taken from previous measurements and a new sample 
taken at each measurement.

Results Our reweighting methodological approach is the result of a two‑step process: the original sampling design 
weights are corrected by modelling non‑response with respect to the longitudinal sample obtained in a previous 
measurement using machine learning techniques, followed by calibration using the auxiliary information available 
at the population level. It is applied to the estimation of totals, proportions, ratios, and differences between measure‑
ments, and to gender gaps in the variable of self‑perceived general health.

Conclusion The proposed method produces suitable estimators for both cross‑sectional and longitudinal samples. 
For addressing future health crises such as COVID‑19, it is therefore necessary to reduce potential coverage and non‑
response biases in surveys by means of utilizing reweighting techniques as proposed in this study.
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Background
Healthcare statistical services worldwide have used prob-
ability surveys to provide information on the social, 
economic and health impact of the disease, or on its sero-
prevalence [1] and evolution, or on the characteristics 
of the infected population, in particular members most 
vulnerable to the virus due to their age, risk of exclusion, 
health conditions or dependency [2]. These surveys allow 
valid inferences to be made about the population without 
having to incorporate hypotheses into the models, which 
is of great practical benefit [3]. Regarding the COVID-
19 pandemic, most of the surveys created were based 
on non-probability sampling to provide a quick and effi-
cient assessment of the situation based on predicting and 
quantifying the main parameters involved in this phe-
nomenon [4].

The Healthcare and Social Survey (ESSA, Encuesta San-
itaria y Social de Andalucía) research project arises from 
the need to provide data on the evolution of the COVID-
19 impact which can be considered when making deci-
sions to prepare and deliver an effective Public Health 
response in the different populations concerned, particu-
larly in the most vulnerable ones, including, for example, 
the elderly, the chronically ill, or persons at risk of exclu-
sion [5]. The objective of this survey is to determine the 
magnitude, characteristics, and evolution of the impact 
of COVID-19 on overall health and its socioeconomic, 
psychosocial, behavioral, occupational, environmental, 
and clinical determinants in the general population and 
in the population at higher risk for socioeconomic dep-
rivation. The study is based on a Real-World Data design 
integrating observational data extracted from multiple 
sources including information obtained from different 
surveys and clinical, population, and environmental reg-
istries. The ESSA has an overlapping panel design [6]. It 
consists of a series of measurements broken down into a 
new sample and a longitudinal sample for each measure-
ment, except for the first measurement where the entire 
sample is new. Compared to rotating panel surveys [7], 
the ESSA sampling design is therefore non-rotational, i.e. 
the units included in each measurement remain in the 
following measurements until the final one.

This type of overlapping panel design is often used 
when the main objectives are to obtain cross-sectional 
estimates at time t and short-term longitudinal estimates 
of net and gross change between t and t + 1 , as is the case 
for ESSA. This way, the use of new samples at each meas-
urement t permits whole population representativeness 
at time t + 1 , and therefore also permits cross-sectional 
estimation at this time. This feature means that one of 
the key aspects of overlapping panel surveys lies in cross-
sectional estimation, i.e. how to combine the different 
samples selected at the same time. Another key aspect of 

panel surveys is the response obtained in each measure-
ment of the longitudinal samples. The lack of response 
thus grows with the number of occasions or measure-
ments, due, amongst other reasons, to the panelist 
fatigue with repeated interview. For this reason, partial 
replacement of units is common to guarantee a minimum 
number of units in the final sample. Estimation from 
data obtained with this structure is not easy, especially 
if the desire is to take into account the biases produced 
both by lack of response and lack of sample coverage and 
representativeness.

Some methods of handling wave non-response in pan-
els are provided in [8–10]. Thus, the two main methods 
used to handle it in panels are based on weighting the 
effective sample according to the theoretical sample in 
the strata used, and reweighting by calibration in terms of 
population totals for sociodemographic stratification var-
iables such as sex, age or territory (e.g. region, province 
or habitat level) [11]. Another set of studies focuses on 
modelling different types of response patterns in panels. 
Kern et al. [12] compares the usage of different Machine 
Learning (ML) methods for modeling non-response in 
the German Socio-Economic Panel Study (GSOEP) and 
recent study [13] proposes a general framework for build-
ing and evaluating non-response prediction models with 
panel data, although this study focuses on model building 
and evaluation without utilizing the predictions obtained 
to correct bias in the estimations.

Non-response in panel studies has traditionally been 
tackled by using non-response weights. Although 
reweighting methods do exist for addressing these types 
of biases, they have been proposed fundamentally for 
cross-sectional surveys and there are few studies that 
provide a formal methodology for their treatment in 
this type of panel survey. In [14], the authors discuss 
adjustments for non-response and how calibration 
can be carried out in panel studies in general and what 
effects it creates. They consider three possible calibra-
tion approaches: initial calibration (at the beginning of 
the panel, the weights of the units in the panel are cali-
brated), final calibration (at measurement t the weights of 
the individuals in the sample are adjusted by calibration) 
and initial and subsequent final calibration (both initial 
and final calibration are carried out). Several approaches 
are tested in [15] to produce calibration estimators which 
are suitable for survey data affected by non response 
where auxiliary information exists at both the panel and 
population level.

Longitudinal and cross-sectional weighting are con-
sidered in [7] for rotating samples in the context of the 
SILC survey in France. The sampling each year in this 
survey is formed by combining nine panel subsamples, 
and the longitudinal weights are allocated as an average 
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of the weights in each time during which a unit belongs 
to the sample, using the weight-share method [16]. This 
method is also used in [17] for obtaining cross-sectional 
indicators for the SILC survey in Switzerland based on 
a four-panel rotation scheme. Verma et al. [18] develops 
longitudinal and cross-sectional weighting procedures in 
a rotational household panel with reference to the EU-
SILC design (4-year rotational design) using a step-by-
step procedure starting with design weights, followed by 
adjustments for non-response and calibration to external 
controls, and finally trimming and scaling as required to 
obtain the initial weights.

However, these authors do not consider the application 
of these adjustment methods in designs such as the study 
described herein, i.e. overlapping panel surveys where 
the units included in each measurement remain in the 
following measurements until the final one, and in which 
each measurement is completed with a new sample 
(except for the first one since the whole sample is new). 
This is the research gap addressed by this paper.

In this work, we therefore propose an empirical study 
of the associations between choice of research meth-
odology and study outcomes. Accordingly, we com-
bine suitable reweighting methods such as Propensity 
Score Adjustment (PSA), XGBoost and calibration to 
address the biases associated with dropout from over-
lapping panel survey data for estimating totals, propor-
tions, ratios and differences in a study outcome. Other 
ML methods than XGBoost technique (such as logistic 
regression, decision trees, random forests and so on) 
could be used, but several papers [13, 19, 20] show that 
the set of predictor variables used in general mattered 
more than the type of ML technique. With regard to neu-
ral networks, they have been hugely successful for image, 
text or audio data due to the use of structures far more 
advanced than deep feedforward networks. However, for 
tabular data as in our case, the inefficacy and unreliability 
of neural networks is widely known. Arik and Pfister [21] 
further explains this issue in its introduction. Thus, those 
statistical techniques (PSA, XGBoost and calibration) are 
formulated on the outcome self-perceived general health 
from the ESSA survey and can be applied to any other 
variable and epidemiological research based on overlap-
ping panel design.

Methods
The ESSA study framework
The Healthcare and Social Survey (ESSA, Encuesta Sani-
taria y Social de Andalucía) provides a follow-up over 
time of the impact of the pandemic and its resulting lock-
down on the population of Andalusia over the age of 16. 
Andalusia is a southern region of Spain with 8.4 million 
inhabitants. It is also the fifth most populated region in 

Europe, with a population similar in size to that of other 
European countries such as Austria or Switzerland.

As shown in Fig. 1, the ESSA study includes four meas-
urements. The first one, M1 , coincided with the beginning 
of the Spanish State of Alarm in April 2020 (coinciding 
with the lockdown), while the second measurement M2 
was taken in June and July (a month after the first inter-
view, coinciding with the de-escalation); the third meas-
urement M3 was taken in November and December (6 
months after the first interview and coinciding with the 
second wave of the pandemic), and the fourth measure-
ment M4 in April and May 2021 (12 months after the 
first interview, coinciding with the relaxation of mobil-
ity restrictions and the end of the state of alarm). All 
the measurements had an effective size of around 3000 
people, except for the second one which was 2500. They 
were obtained using an overlapping panel design, so the 
individuals from the previous measurement are sam-
pled again. Each measurement thus had its own panel 
of people who were interviewed again in the following 
measurements ( P1, ...,P4 ). Non-response was offset in 
each measurement with another sample which included 
new individuals. The details of this non-response and the 
effective sample size for each measurement and panel 
can be consulted in Fig. 1. It also provides a description 
of the evolution of the SARS-COV-2 pandemic in Anda-
lusia during 2020 and 2021 in terms of active infection 
diagnostic tests and deaths.

With respect to the sampling method, the new sample 
in each measurement was selected by stratified simple 
random sampling according to province and degree of 
urbanization: urban, semi-urban and rural, based on the 
methodology described by EUROSTAT for the alloca-
tion of territorial typologies in statistical grids of 1 km2 
where population resides; more information in [22]. This 
implies that within each stratum any person has the same 
probability of being selected, i.e. self-weighted samples 
are obtained in each stratum. The new sample was thus 
distributed across the 8 Andalusian provinces in propor-
tion to province population size. Within each province, 
sample allocation was proportional to the population size 
of each degree of urbanization. Regarding for the longi-
tudinal sample of a given measurement, this comprised 
the samples in the previous measurements, i.e. of the 
panel created in each measurement ( P1, ...,P4 ), with the 
exception of the first measurement, which did not have 
a longitudinal sample given that it was the first one. The 
population framework used for the extraction of popula-
tion samples aged 16 years old and over residing in fam-
ily dwellings in Andalucía, came from the Longitudinal 
Population Database of Andalusia (BDLPA) as of 1 Janu-
ary 2019. The BDLPA originates from integrating data 
obtained from the Civil Registries with respect to births, 
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deaths, and marriages (i.e., vital statistics), as well as that 
reported in the population and housing censuses, give 
rise to an integrated longitudinal frame for population 
and territorial statistics in Andalusia [23]. The Andalu-
sian Institute of Statistics and Cartography (IECA, Span-
ish acronym) was responsible for population framework 
and extraction of the samples. A detailed description of 
the protocol followed for this survey can be seen in [5].

Sampling setup in overlapping panels
Let U denote a finite population of size N, 
U =

{
1, . . . , k , . . . ,N

}
 . We want to estimate a population 

parameter of a variable of interest, y.
On the first measurement (M1) a theoretical sample s(1) 

of size n(1) is selected from the population U by stratified 
simple random sampling. Let h be the stratum to which 
unit i belongs, (h = 1, ...L) and s(1)h  be the sample corre-
sponding to stratum h on measurement 1 as well as the 
first panel of the survey (P1).

There is a total lack of response in the sample s(1) which 
is divided into

Let n(1)rh  denote the number of the observations obtained 
from the n(1)h  sampled units, that is h n

(1)
rh = n

(1)
r  is the 

s
(1)
rh = {k ∈ s(1)/respond in stratum h}

s
(1)
fh = {k ∈ s(1)/missing in stratum h}.

effective size of s(1)r  as well as of P1 . Thus, s(1)r  will be the 
theoretical sample of the second measurement M2 , s(1,2)r  
the effective sample of M2 (respondents in M1 and M2 of 
P1 ), and n(1,2)r  the effective size of P1 in M2.

In each of the following measurements until t, M2, ...,Mt , 
we denote by s(1,t)r  the effective sample in Mt of P1 , i.e. 
respondents in M1 , M2,...,Mt of the first sample obtained 
s(1) as well as of the first panel created P1 ; and by n(1,t)r  its 
effective size. In a similar way, we denote by s(i,j)r  , where 
i = 1, ..., j − 1 , j = 2, ..., t , and i < j , the effective sample in 
Mj of Pi , i.e. respondents in Mi , Mi+1,...,Mj of the theoreti-
cal sample obtained in Mi , s(i) , as well as of the i panel cre-
ated, Pi ; and by n(i,j)r  its effective size. By contrast, we denote 
by s(i,j)f  the missing sample in Mj of Pi , i.e. non-respondents 
in any Mi , Mi+1,...,Mj of the i theoretical sample obtained in 
Mi , s(i) , which created the i panel, Pi . Thus, due to this non-
response sample and in order to achieve the required sam-
ple size, we complete the sample of Mj with a new 
theoretical sample s(j) from the same population U by the 
same sampling design but independently of the new sam-
ples extracted in previous measurements. Therefore, for the 
extraction of the new theoretical samples, s(1), ..., s(t) , in 
each new measurement Mj , IECA verified that Mj and 
Mj−1 had an empty intersection. Therefore, the theoretical 
sample of Mj comprises by the effective samples of Mj−1 
and the new theoretical sample of Mj , i.e. sMj = s

Mj−1
r ∪ s(j) ; 

while the effective sample of Mj comprises the effective 

Fig. 1 Temporal scope, response rates (RR) and effective sample size for each measurement in ESSA
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samples of the panels created until Mj−1 , P1, ...,Pj−1 , and 
the new effective sample of Mj , i.e. sMj

r = ∪
j−1

i=1
s
(i,j)
r ∪ s

(j)
r .

With respect to sample size, let n(j) be the theoretical 
size of the new theoretical sample s(j) in measurement j, 
and denote by n(j)r  the effective size of s(j)r  , i.e. the respond-
ents of the new sample in that measurement. Thus, the 
theoretical size of Mj comprises the effective sizes of Mj−1 
and the new theoretical size of Mj , i.e. nMj = n

Mj−1
r + n(j) ; 

while the effective size of Mj is composed by the effective 
sizes of the panels created until Mj−1 , P1, ...,Pj−1 , and by 
the new effective size of Mj , i.e. nMj

r =
∑j−1

i=1 n
(i,j)
r + n

(j)
r .

Let y(1)i  be the value of the target variable associated to 
the i-th unit in M1 , and let di be the design weight associ-
ated to the i-th unit equal to the inverse of the inclusion 
probability in the theoretical sample, an estimation of the 
total of Y in the first measurement is given by [24]:

This estimator is a naive estimator. In the case of sim-
ple random sampling design for unit i is di = N

n(1)
.

Design weights should be adjusted to consider non-
response in order to reduce the possible bias of resulting 
estimates, which may arise when there is a different propen-
sity in answering for different groups. In the first measure-
ment a response rate is determined in each class and a new 
weight is defined as the product of the design weight and the 
inverse of the response rate. The response rate is evaluated 
as r(1) = n

(1)
r

n(1)
 . Then the initial weight of unit i is replaced 

with the new weight d(1)i = di
r(1)

 and the estimator is given by

For the following measurements until t, different estima-
tors can be obtained from the different effective samples 
of measurements and panels. Thus, to fix the notation, 
we will term cross-sectional estimator of a parameter θ at 
time j as being those estimators that are obtained from the 
effective sample of Mj , i.e. sMj

r  , where j = 1, ..., t ; while we 
will call longitudinal estimators of a parameter θ at times 
j and j − 1 , to those obtained from the effective samples 
of those panels which belong to two consecutive meas-
urements Mj and Mj−1 , i.e. s(Mj ,Mj−1)

r = ∪
j−1
i=1s

(i,j)
r  , where 

j = 2, ..., t ; being the same sample as s(j)cross but without 
the new effective sample of Mj . The process for obtaining 
them is shown in the following sections.

Cross‑sectional estimation
The objective of most cross-sectional surveys is to pro-
duce unbiased estimates of totals or means at a given 
point in time, and, in the case of repeated surveys, to 

(1)
Ŷs(1) =

∑

i∈s
(1)
r

diy
(1)
i .

(2)
Ŷ
s
(1)
r

=
∑

i∈s
(1)
r

d
(1)
i y

(1)
i .

produce estimates of the net change that occurred in the 
population between two time points [25].

Cross-sectional estimates can be derived from longi-
tudinal survey data to improve the cost-effectiveness of 
surveys, assuming that the survey design takes this pos-
sibility into account, and that estimation procedures are 
developed to satisfy cross-sectional as well as longitudi-
nal requirements [26]. For this we will use both the lon-
gitudinal samples from the panels and the fresh or new 
samples obtained in each measurement. This way, the 
sample we work with always has the maximum sample 
size possible and we reduce the final estimator variance.

Point estimation of parameters of the cross-sectional 
population based on data from longitudinal surveys has 
been studied by [27] among others and the problem 
of formal comparison of the estimates from two years, 
which requires variance estimation for the difference 
of the estimates, is considered in [28]. We will follow 
community-agreed standards appropriate for the survey 
methodology used in those works, but implementing 
a new approach to achieve more suitable estimators in 
overlapping panel surveys. We will thus devise a cross-
sectional weighting scheme that includes a non-response 
adjustment, optimal combination of the samples from 
the panels involved, and calibration for completing the 
representativeness of the population at a given measure-
ment. This proposal is described below.

Weight adjustment based on propensities
A simple adjusted estimator accounting for initial non-
response and attrition can be obtained by adjusting the 
basic weights of the Horvitz-Thompson estimator by 
the fraction of non-response. This adjustment based on 
weighting within classes assumes that unit non-response 
may be modelled by response homogeneity groups, and 
that these response homogeneity groups are given by the 
strata. This may be a reasonable assumption at baseline but 
it seems unlikely that non-response at any point in time 
will be suitably explained by the strata defined at baseline.

Therefore, although weighting within classes is a com-
monly used procedure for non-response cross-sectional 
and longitudinal weighting in panels, a more pragmatic 
alternative is to use a regression-based approach, all the 
more so when numerous auxiliary variables are available 
[18]. For this we are going to use the popular Propensity 
Score Adjustment (PSA) method [20, 29, 30] to model 
the probability that a unit k of the new theoretical sam-
ple s(j) responds to Mj , where j = 1, ..., t , or that another 
unit k of the effective sample s(i)r  responds to Mj , where 
i = 1, ..., j − 1 , j = 2, ..., t , and i < j.

For each sample unit k in s(j) let be δ(j)k = 1 if k ∈ s
(j)
r  

and δ(j)k = 0 if k ∈ s(j) − s
(j)
r  , and regarding each sample 
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unit k in s(i)r  let be δ(i,j)k = 1 if k ∈ s
(i,j)
r  and δ(i,j)k = 0 if 

k ∈ s
(i)
r − s

(i,j)
r  . We assume that the selection mechanism 

of response is ignorable, this is:

where j = 1, ..., t , and for δ(i,j)k :

where i = 1, ..., j − 1 , j = 2, ..., t , and i < j.
We also assume that the mechanism follows a paramet-

ric model:

and

for some known functions m(j)(·) and m(i,j)(·) with second 
continuous derivatives with respect to unknown parame-
ters �(j) and �(i,j) , respectively. A commonly adopted para-
metric model is the logistic regression model [31, 32].

We use a state-of-the-art machine learning method: 
XGBoost [33] for estimating π(j)

k  and π(i,j)
k  . This technique 

builds decision trees ensembles which optimize an objective 
function via Gradient Tree Boosting [34]. More details can 
be found in Annex 2. Kern et al. [12] has shown the effec-
tiveness of this technique when studying non-response in 
the GSOEP panel. Ferri-García and Rueda [20] showed that 
Gradient Tree Boosting can lead to selection bias reductions 

in situations of high dimensionality or where the selection 
mechanism is Missing at Random (MAR). Lee et  al. [35], 
Lee et al. [36], McCaffrey et al. [37], McCaffrey et al. [38], 
Tu [39], Zhu et al. [40], and Rueda et al. [41] have applied 
boosting algorithms in propensity score weighting showing 
better results than conventional parametric models.

In order to obtain the estimated propensities π̂ (j)
k  , we 

train a model with s(j) where xk includes every available 
variable observed in the BDLPA population framework, 
while to obtain the estimated propensities π̂ (i,j)

k  , we train 
a model with s(i)r  where xk includes every available vari-
able observed in s(i,j)r  . This model minimizes the weighted 
logistic loss for δ(j)k ; k ∈ s(j) and for δ(i,j)k ; k ∈ s

(i)
r .

Since the values we are interested in, π̂ (j)
k  and π̂ (i,j)

k  for 
k ∈ s(j) and k ∈ s

(i,j)
r  , respectively, are a subset of the val-

ues used for training, δ(j)k  and δ(i,j)k  for k ∈ s(j) and k ∈ s
(i)
r  , 

(3)
π
(j)
k = P(δ

(j)
k = 1|yk , xk) = P(δ

(j)
k = 1|xk); k ∈ s

(j)
r

(4)π
(i,j)
k = P(δ

(i,j)
k = 1|yk , xk ) = P(δ

(i,j)
k = 1|xk ); k ∈ s

(i,j)
r .

(5)P(δ
(j)
k = 1|yk , xk) = m(j)(xk , �(j))

(6)P(δ
(i,j)
k = 1|yk , xk) = m(i,j)(xk , �(i,j)) .

respectively, overfitting is likely to happen. This means 
that we will obtain values extremely close to 1 instead 
of real propensities. Hyperparameter optimization is 
essential in order to avoid this problem. This optimi-
zation can be applied as described in the Results sec-
tion. Another important technique to consider is class 
balancing [42]. Classification models learn best when 
every class is equally represented in the training data-
set. In practice, response rates are rarely close to 0.5 and 
therefore our model would often be biased. Class bal-
ancing ensures valid estimates, even when the response 
rate is high or low, by assigning (1− p)δk + p(1− δk) 
as instance weight for training, where p represents the 
observed response rate. However, this method also dis-
torts output probabilities. Consequently, they should 
be corrected as described by [43]:

Then we applied this correction to the inverse of the 
estimated response propensity π̂ (j)

k  , which is ultimatley 
used as weight for constructing the estimator based on 
the new effective sample in Mj , s

(j)
r :

where j = 1, ..., t ; and we use the inverse of π̂ (i,j)
k  as weight 

for constructing the estimator based on each effective 
sample of its corresponding panel Pi created in the previ-
ous measurements until Mj , s

(i,j)
r

where i = 1, ..., j − 1 , j = 2, ..., t , and i < j.
Combining these estimators, we can consider the fol-

lowing cross-sectional estimator for the total:

where j = 1, ..., t and αi are nonnegative constants such 
that α1 + α2 + ...+ αj = 1.

There are several ways to assign these constants. 
A simple solution is to weight each estimator by the 
weight that sample has in the total effective sample 
available at the time j. This permits the procedure not 
to depend on the variable to be estimated and also to 
calculate only a few α values, making the process of 

π̂corrected =
π̂p

π̂p+ (1− π̂)(1− p) .

(7)

Ŷ PSA

s
(j)
r

=
∑

k∈s
(j)
r

N

n(j)
n(j)

n
(j)
r

1

π̂
(j)
k

y
(j)
k =

∑

k∈s
(j)
r

d
(j)
k

1

π̂
(j)
k

y
(j)
k =

∑

k∈s
(j)
r

d
(j)PSA
k y

(j)
k ,

(8)

Ŷ PSA

s
(i,j)
r

=
∑

k∈s
(i,j)
r

N
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estimating the variables simpler and more systematic. 
This is the procedure we followed.

Calibration on population totals
In addition to modification of weights for handling non-
response, it may also be carried out to take auxiliary infor-
mation into account. Calibration [11] is the technique most 
used for weights adjustment and can aim to ensure consist-
ency among estimates of different sample surveys, reduce 
biases in the sample due to non-response, non-coverage 
and other distortions, and also reduce variances [44–47].

Let x∗(j) be a set of auxiliary variables related to y such 
that their population totals at the stratum level are known 
at measurement j, X∗(j)

h =
∑

Uh
x
∗(j)
kh .

We denote by

any of the cross-sectional estimators obtained using the 
previous adjustment method, where sMj

r = ∪
j−1
i=1s

(i,j)
r ∪ s

(j)
r  , 

as we defined in the Sampling setup in overlapping panels 
section.

The calibration total estimator is obtained as:

where the weights w(j)
k  , are as close as possible, with 

respect to a given distance G, to the weights D(j)
k  obtained 

in the phase of reweighting and combination of samples:

fulfilling the calibration condition

for all stratum h given by the calibration variables 
considered.

Estimating changes compared to the first measurement
A parameter of interest is the absolute change of a variable 
between one measurement and the first measurement. We 
denote by θABSMj

= YMj − YM1 this parameter, where 
j = 1, ..., t . Variations over time are measured more accu-
rately with overlapping samples with respect to the case 
where samples on different occasions do not overlap (see 
[48]). An estimator of this parameter for measurement j 
based on the previous calibration total estimators can be 
obtained as follows:
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Another parameter of interest in panel surveys is the rel-
ative change θRELMj =

YMj
−YM1

YM1
 between measurement 1 and 

measurement j, which is estimated as:

The estimator is a quotient of two estimators of the total 
based on two different samples, meaning that its properties 
are not equivalent to those of the ratio estimator commonly 
used in survey sampling, but its theoretical properties can 
be derived by using Taylor linear approximation.

Estimating gender gaps in each measurement
The impact of COVID-19 on the social determinants of 
health may have differed significantly between women and 
men as shown in recent studies [49]. It is therefore of great 
interest to define the estimators of the gender gap observed 
in each measurement, and also in absolute and relative 
terms, in order to observe their evolution.

Let Gen = {M,W } be the variable measured in 
s(j), j = 1, ..., t which reflects whether a respondent is a 
man (M) or a woman (W). We define the two indicator 
variables: IMkh = 1 if the unit k in stratum h is a man and 0 
elsewhere, and IWkh  in a similar way.

We start by defining the absolute gender gap estimator as 
follows:

This estimator is defined as the linear combination of two 
estimators in certain domains, hence its theoretical proper-
ties can be easily derived [48]. This estimator is the most 
simple one that can be built on the gender gap and can 
differentiate between men and women in measurement j. 
However, this estimator is subject to the base rate of each 
variable. For this reason, we define the relative gender gap 
estimator as follows:

This estimator allows us to observe the gender gap in 
measurement j taking into account the base rate of the 
given target variable.

Thus, to obtain the cross-sectional estimator for the 
study variables of each ESSA measurement, we start 
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from the H-T estimator (1) adjusted for non-response 
(7), combined from the panel and new samples (9) and 
finally calibrate to increase the representativeness of 
the sample (10). This estimator serves as the basis for 
calculating the absolute (13) and relative (14) change 
estimators between measurement j and 1, and for 
obtaining the different estimators to measure the abso-
lute and relative gender gap in a given measurement (15 
and 16).

Longitudinal estimation
The primary objective of panel surveys is the produc-
tion of longitudinal data series which are appropri-
ate for studying the gross change in the population 
between collection dates, and for research on causal 
relationships among variables. To study these changes 
and understand their relationships, it is more conveni-
ent to use longitudinal samples than cross-sectional 
ones, since they reflect the variations of the variable in 
each individual and enable additional parameters to be 
estimated, such as the number of population individu-
als whose value of y increases, decreases or remains the 
same between a measurement and the previous one. 
The drawback of working with the longitudinal sample 
is that its size is smaller at each time and therefore the 
variance of the estimates can be large.

In this section, the previous estimated propensities 
for each unit k of sample s(i,j)r  , π̂ (i,j)

k  , are used to reweight 
for non-response when estimating the absolute differ-
ence from Mj to Mj−1 as:

where s(Mj ,Mj−1)
r = ∪

j−1
i=1s

(i,j)r , and j = 2, ..., t . In this situ-
ation, the estimator is calculated by modelling the non-
response of each panel Pi created until Mj−1 , that is, we 
estimate the propensities given by 6.

Thus, the estimated propensities for each unit k of the 
samples s(i,j)r  , π̂ (i,j)

k  , are used in the first stage to reweight 
for adjusting non-response, obtaining the total estima-
tor given by 17; and, in the second stage, calibration is 
applied to reweight these weights and obtain new ones, 
v
(j,j−1)
k  , so as to obtain better population representative-

ness. The longitudinal estimator of the absolute differ-
ence can be defined as follows:

The longitudinal nature of the estimator allows us 
to define new estimators on the number of population 
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individuals whose value of y increases, decreases or 
remains the same between Mj and Mj − 1 . Let A be a 
subset of interest ( R+ , R− or 0 if we are interested in the 
units whose value of y increases, decreases or remains 
the same, respectively); the estimator of the number of 
population individuals for which y(j) − y(j−1) ∈ A can be 
estimated as follows:

We can also obtain the estimator of the rate of people 
whose value in y has decreased between t − 1 and t, in 
reference to the people whose value in y has increased 
between t − 1 and t. For example, if the variable y meas-
ures health status, this rate can be considered a deteriora-
tion/improvement rate, θ̂RATEMj−Mj−1

 . The formula can be 
defined as follows:

where

and

Based on both previous estimators, those based on 
the absolute and relative gender gap of the absolute 
difference between j and j − 1 are defined as follows, 
respectively:

A positive value of these estimators would indicate, in 
absolute (percentage points) or relative terms (percent-
ages), that the percentage of women who improved/
increased, remained the same, or deteriorated/decreased 
their outcome in the target difference variable was higher 
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than the corresponding percentage in the male popula-
tion, while a negative value would indicate that the per-
centage was lower in women. Estimator 21 is defined 
as the linear combination of two estimators in certain 
domains, while estimator 22 is a quotient of two estima-
tors based on the same samples, hence their theoretical 
properties can be easily derived.

Variance estimation
It is no simple task to develop suitable variance estima-
tors for these proposed estimators taking into account 
the panel design used. The variance estimation problem 
in longitudinal surveys is addressed in several papers. For 
example, [28] considers variance estimation for Canada’s 
Survey of Labor and Income Dynamics within a Taylor 
linearization approach and a bootstrap method.

Some other works are developed for rotation panels: 
[17] considers the estimation of the variance of cross-
sectional indicators for the SILC survey in Switzerland 
based on a four-panel rotation scheme where the non-
response is modeled using a Poisson design. [50] consid-
ers variance estimation for weighting in the SILC survey 
in France with a rotation scheme consisting of four pan-
els. Ardilly and Osier [31] considers the case of a panel 
survey in which solely the units in the original sample are 
followed over time, without reentry or late entry units at 
subsequent times to represent possible newborns. They 
assume a non-response model where the response proba-
bility at time t can be explained by the variables observed 
at times 0, t − 1 , including the variables of interest. Zhou 

and Kim [51] also consider the estimation of a mean for a 
panel survey, in case of monotone non-response.

On the other hand, there is little work about variance 
estimation for machine learning methods. Some work 
about variance estimation for tree-based methods is the 
infinitesimal jackknife [52].

In this study, the formulas used for estimating the vari-
ance of indicators must take into account the structure 
and complexity of the ESSA survey. The main factors 
to consider for estimating the variance of the proposed 
estimators are the non-linearity of the estimators, total 
non-response at different survey stages and the use of 
machine learning models in conjunction with calibration. 
Therefore, we consider the application of bias-corrected 
and accelerated bootstrap [53]. It is well suited for a wide 
variety of scenarios, including ours, and it is easy to effi-
ciently implement via Scipy [54], a standard Python sci-
entific library.

Results
Observed non‑response biases
To illustrate the observed biases produced mainly by 
non-response in the ESSA survey, Figs. 2 and 3 show the 
differences between the sample and the study population 
at measurement 4. These differences are according to the 
intersection of the sex variable with age, province, degree 
of urbanization and nationality. Thus, with respect to age, 
the largest differences between the values observed from 
the sample and those from the population are found in 
the youngest men (under 30 years old), in middle-aged 
women (between 35 and 54 years old) and in the oldest 

Fig. 2 Observed biases for the calibration variables in measurement 4 (age and sex)
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women and men (over 70 years old), these differences 
increasing with age. With regard to the other segmenta-
tion variables, the largest differences were found among 
people with a nationality other than Spanish, especially 
among men. These results are also observed although to 
a lesser extent in the previous measurements, showing 
a lower participation of these population groups in the 
ESSA, and therefore justify the need to adjust the sample 
weights.

Modelling non‑response
ESSA thus has a non-monotone missing pattern and 
shows a lower participation of some population groups. 
This non-response, given in the new theoretical samples 
created in each measurement and in the panels involved 
in each measurement, is modelled with PSA as explained 
in the Methods section. In order to ensure that the 
XGBoost model is learning properly, we considered the 
following hyper-parameters:

• Number of estimators ∈ [10, 1000] : the number of 
trees forming the ensemble.

• Learning rate ∈ [0.001, 0.9] : the weight shrinkage 
applied after each boosting step.

• Maximum depth ∈ [1, 30] : the maximum number of 
splits that each tree can contain.

• Minimum child weight ∈ [0, 10] : the minimum 
total of instance weights needed to consider a new 
partition.

• Subsample ∈ [0.6, 1] : proportion of training data 
which is randomly sampled for each iteration.

The accuracy of the algorithm was tested with cross-
validation. Therefore, training data is partitioned into 5 
complementary subsets so that each one has the same 
proportion of δ(t)k = 1 and δ(t)k = 0 as the total. Then 5 
models are trained leaving each one of the subsets out 
of the training data. For each model, the logistic loss 
was calculated for its corresponding remaining subset. 
The mean logistic loss is the estimated error.

The values for the hyperparameters minimizing this 
estimated error were obtained using the Tree-struc-
tured Parzen Estimator (TPE) algorithm [55, 56]. TPE 
is implemented as default method in Optuna [57], an 
optimization library for Python.

The cross-sectional and longitudinal estimators were 
calculated by using these PSA weights.

Calibrating sample representativeness
As explained in the Methods section, the weights 
obtained to adjust non-response are reweighted by 
calibration to achieve better representativeness of the 
population and reduce biases in the cross-sectional and 
longitudinal estimators.

The first ESSA measurement was carried out by IECA 
as another edition of the Social Household Survey that 
they have been conducting since 2007. Similarly, to 
deal with the observed biases, we had to apply the same 

Fig. 3 Observed biases for the calibration variables in measurement 4 (sex‑province, sex‑urbanization and sex‑nationality)
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adjustment as IECA for the sample weights of the new 
samples and panels of each ESSA measurement, i.e. trun-
cated raking calibration and the total population size for 
the intersection of the sex variable with province, age, 
urbanization grades and nationality as auxiliary infor-
mation. The data for these totals were obtained from the 
2019 Municipal Register of Inhabitants [58].

Cross‑sectional estimators
Supplementary Table 1 shows for measurement 4 the per-
centages with corresponding 95% confidence intervals in 
addition to the sample size for each original category of 
the self-perceived general health variable grouped by sex 
and age. It may be observed from the chart that the per-
centages for the ‘excellent’ or ‘very good’ categories do not 
follow a clear pattern throughout measurements for the 
population between 16 and 34 years old, and 65+, either 
for men or for women. However, ‘excellent’ or ‘very good’ 
self-perceived health decreases for the population between 
35 and 64 years old as the pandemic advances. This can be 

observed more as age increases, especially in women. This 
reduction results in an increment for the ’fair’ and ’bad’ 
categories. However, the ’good’ general health category 
remains stable throughout the pandemic for each sex and 
age group. Figure 4 shows the percentages and confidence 
intervals given in Supplementary Table  1 not only for 
measurement 4, but also for all other ESSA measurements.

Based on these results, we dichotomized this variable 
with the categories ’excellent, very good and good’ and 
’fair and poor’. For each ESSA measurement, Supplemen-
tary Table 2 shows the percentages and 95% confidence 
intervals of this dichotomized self-perceived general 
health variable. These results can be seen in Fig. 5, which 
shows an increase in ’fair and poor’ self-perceived health 
in measurements 3 and 4, this increase being slightly 
larger among women. Regarding age groups, evolution 
remained stable throughout the pandemic from lock-
down onwards for the population aged between 16 and 
24 for men and women alike. However, for the popula-
tion aged over 25, the evolution worsens as age increases 

Fig. 4 Estimations grouped by sex and age for the original categories of self‑perceived general health

Fig. 5 Percentages and confidence intervals at 95% level of people with fair or poor self‑perceived general health
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and the pandemic advances, especially in women. There-
fore, this subpopulation got the highest ’fair or poor’ gen-
eral health values from the beginning of the lockdown for 
every age group above 25 years old.

Supplementary Table  3 shows the relative percentage 
changes and 95% confidence intervals for each measure-
ment compared to measurement 1 for the ’fair or poor’ 
self-perceived general health variable, while Fig. 6 shows 
the absolute percentage changes. It can be seen that fair 
or poor perception of general health increased in the 
general population by a 20% (CI95%=[5.2; 35.7] in meas-
urement 4 compared to measurement 1. This increase 
was observed in all age groups, except for people under 
the age of 24 and over 65 years old, with no differences 
between women and men.

Supplementary Table  2 also includes absolute and rela-
tive gender gaps, i.e. the absolute difference (in percentage 
points) and the relative difference (in percentages) between 
women and men of a given measurement compared to the 
first measurement in which the target variable was gath-
ered. This can be interpretated as a positive value indicating 
that women showed a positive difference (absolute or rela-
tive) in comparison to men in their ’fair or poor’ self-per-
ceived general health. This result could therefore be seen as 
a negative gender gap in the corresponding measurement 
(i.e. worse result or unfavorable to women as the refer-
ence category is ’fair or poor’). By contrast, a negative value 
would indicate that women showed a negative difference 

(absolute or relative) in comparison to men in their ’fair 
or poor’ self-perceived general health, which could be 
seen as a positive gender gap (i.e. better result or favora-
ble to women). These results are shown in Fig. 7; we can 
see, for example that both the absolute and relative gender 
gaps were positive throughout the pandemic, confirming 
an increasingly negative impact on women compared to 
men in terms of fair or poor self-perceived general health. 
Results by age reveal that the largest positive gender gaps 
were observed in people over 45 years old.

Longitudinal estimators
Supplementary Table  4 shows estimates of better, equal 
or worse self-perception of health in the population for 
a given measurement compared to the same popula-
tion in the previous measurement. Thus, 21.7% of the 
study population improved their self-perceived general 
health in measurement 2 compared to measurement 1, 
but this percentage was slightly smaller in subsequent 
measurements. By contrast, 23.8% of this population 
group presented worse self-perceived general health in 
measurement 2 compared to measurement 1, with this 
percentage being slightly higher in subsequent measure-
ments. When we analyze these results by sex and age, it 
can be observed that it is women between 25 and 54 years 
old who experience the decreases in the improvement of 
general health over the course of the pandemic and, con-
versely, women between 45-54 years old who experience 

Fig. 6 Absolute percentage changes and 95% confidence intervals for people with fair or poor self‑perceived general health
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an increase in the deterioration of self-perceived general 
health. On the other hand, the percentage of people who 
had remained the same self-perceived general health sta-
tus in a given measurement compared to the previous 
one did not vary over the course of the pandemic, except 
for the population below 24 years old which did experi-
ence increases in the aforementioned percentage, going 
from 44% in measurement 2 to 55.9% in measurement 4. 
These results are shown in Fig. 8.

If we calculate the ratio of the population with wors-
ening self-perceived general health (in a given measure-
ment compared to the previous one) and the population 
where it improves, a positive value means that there are 
more people whose self-perceived general health has 
deteriorated than people whose health has improved, 
as seen in Fig.  9. In relative terms it could be observed 
that, in measurement 2 compared to measurement 1, 
10% more of the population had worse self-perceived 
health than better health; this percentage increased to 

19.5% and 34.2% in measurements 3 and 4 compared to 
measurements 2 and 3, respectively. These differences are 
larger in women, reaching values of 51.9% and 49.8% in 
measurements 3 and 4, respectively. If the ratio is ana-
lyzed according to the age of individuals regarding meas-
urement 3 compared to measurement 2, deterioration of 
health was more frequently observed in women of any 
age.

Supplementary Table 4 also shows absolute and rela-
tive gender gaps in improvement self-perceived general 
health, staying the same or deteriorating in a meas-
urement compared to the previous one in the same 
population. On the one hand, absolute gender gap is 
the absolute difference (in percentage points) between 
women and men with better, equal or worse self-per-
ceived health in a measurement compared to the previ-
ous one, and on the other hand relative gender gap is 
the relative difference (in percentage) between women 
and men with better, equal or worse self-perceived 

Fig. 7 Absolute and relative gender gap for the change in the fair or poor self‑perceived health in each measurement (M)

Fig. 8 Percentage of population whose self‑perceived general health improves, deteriorates or remains the same
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health. This means that a positive value in the gap 
(absolute or relative) indicates that the percentage of 
the female population with improved, equal or wors-
ened self-perceived general health was greater than the 
corresponding percentage in the male population. A 
negative value would indicate that the percentage was 
smaller in women. Regarding deterioration of health, 
we observe in Fig. 10 that the percentage of the female 
population whose self-perceived health was worse in 
measurement 2 than in measurement 1 was 8.2% lower 
than among their male counterpart. However, this rela-
tive gender gap in health deterioration became positive 
in subsequent measurements, increasing to 20.9% and 
13.8%, i.e. the deteriorating percentages were greater 
among women in measurement 3 and in measurement 
4. This result was observed across all age groups, except 
for the population younger than 24 years old and the 
population between 55 and 64 years old.

Tables 1 and 2 summarize the name, table, figure, for-
mula and interpretation relating to the estimators devel-
oped throughout this paper for cross-sectional and 
longitudinal samples, respectively.

Discussion
The rapid evolution of the COVID-19 pandemic has 
forced researchers to provide timely estimates on the 
disease’s impact on the population. This has often led 
to the creation of survey studies which did not meet 
the criteria for being considered probabilistic, entail-
ing many sources of error that may affect the final 
estimates obtained from them. In this sense, a recent 
scoping review on the methodological characteristics of 
the health surveys conducted in Spain early on in the 
COVID-19 pandemic included 55 studies (among over 
3000 initially identified) [4]. An outcome of this review 
worth noting is the low proportion of longitudinal sur-
veys identified (12.7%) and the implementation of some 
type of sampling adjustment (30.9%), even though most 
of the surveys were based on non-probability sam-
pling (92.7%). Moreover, none of them considered the 
ESSA design or the reweighting approach described in 
this paper. Therefore, the ESSA survey is particularly 
valuable in the sense that its overlapping probability 
panel design offers the opportunity to obtain reliable 
estimates, both cross-sectional and longitudinal, on 
the impact of COVID-19 on health and its determi-
nants. However, the analysis of the survey has not been 

Fig. 9 Population whose health worsens between one measurement and the previous one compared to the population whose health improves

Fig. 10 Absolute and relative gender gaps in the improved, equal or worse self‑perceived general health
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exempt from statistical adjustments to correct for attri-
tion and survey non-response.

The two-step adjustment procedure has been established 
in this study to remove the two main sources of error in 
the sampling design: population non-response, understood 
as people who did not take part in the survey despite hav-
ing been selected in the sample, which was treated in the 

calibration step, and panel non-response, understood as 
people who participated in some of the measurements but 
did not follow up in subsequent ones. Panel non-response 
has been treated using PSA, which is a technique often 
used for addressing selection bias in online surveys [59] 
but which can also be used for non-response; in fact, it was 
originally adapted from [29] for this matter [60].

Table 1 Name, table, figure, formula and interpretation of each estimator developed for the cross‑sectional samples

NAME TABLE FIGURE FORMULA INTERPRETATION

Original variables 1 4 (10) Percentages, confidence intervals at 95%, sample size and population estimations 
at measurement 4, grouped by sex and age, for the original categories of self‑perceived 
general health.

Dichotomized variables 2 5 (10) Evolution of percentages and confidence intervals at 95%, grouped by sex and age, 
of people with fair or poor self‑perceived general health. If the confidence intervals 
for the same measurement do not overlap, it can be said that there are statistically 
significant differences between women and men. Similarly, if the confidence intervals 
of two different measurements do not overlap, it can be said that there are statistically 
significant differences between them.

Absolute/Relative change No/3 6 (13)/(14) Evolution of absolute/relative changes and confidence intervals at 95%, grouped by sex 
and age, of people with fair or poor self‑perceived general health in each measurement 
compared to measurement 1. A positive value indicates an increase, in percentage 
points/terms, in the fair or poor self‑perception of overall health of the correspond‑
ing measure compared to the first measure. Conversely, a negative value indicates 
a decrease, in percentage points/terms, in the fair or poor self‑perception of overall 
health of the corresponding measure compared to the first one. If the confidence inter‑
val does not include the value 0, this increase or decrease can be said to be statistically 
significant. Similarly, if the confidence intervals for the same measurement do not over‑
lap, it can be said that there are statistically significant differences between women 
and men.

Absolute/Relative gender gap 2 7 (15)/(16) Evolution in each measurement (M) of absolute/relative gender gaps (women 
versus men) and confidence intervals at 95%, grouped by age, of people with fair 
or poor self‑perceived general health. A positive value indicates that women show, 
in percentage points/terms, a larger value in comparison to men in their ’fair or poor’ 
self‑perceived general health of the corresponding measurement. Therefore, this result 
could be seen as a negative gender gap (i.e., worse result or unfavorable to women) 
in the corresponding measurement. Conversely, a negative value indicates that women 
showed, in percentage points/terms, a smaller value in comparison to men in their ’fair 
or poor’ self‑perceived general health. It could be seen as a positive gender gap (i.e., 
better result or favorable to women) in the corresponding measurement. If the confi‑
dence interval does not include the value 0, the corresponding gender gap can be said 
to be statistically significant.

Table 2 Name, table, figure, formula and interpretation of each estimator developed for the longitudinal samples

NAME TABLE FIGURE FORMULA INTERPRETATION

Longitudinal difference 4 8 (19) Percentage of population and confidence intervals at 95% whose self‑perceived general 
health increases/improves, decreases/deteriorates or remains the same between a meas‑
urement and the previous one

Decrease Increase Rate No 9 (20) Percentage of the population and confidence intervals at 95% that worsens their general 
health (in a given measurement compared to the previous one) and the population 
that improves it. A positive value means that there are more people whose self‑perceived 
general health has deteriorated than people whose health has improved.

Absolute/Relative gender 
gap in the absolute differ‑
ence

4 10 (21)/(22) Absolute/Relative difference (in percentage points/terms) and confidence intervals 
at 95% between women and men with better, equal or worse self‑perceived health 
in a measurement compared to the previous one. A positive value indicates that the per‑
centage of the female population with improved, equal or worsened self‑perceived 
general health was greater than the corresponding percentage in the male population. 
A negative value would indicate that the percentage was smaller in women.
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In our study, the XGBoost technique has been used 
to model lack of response from one measurement to 
another. The authors in [21] propose a novel neural 
network structure and they compare it with advanced 
gradient boosting methods such as XGBoost, using a 
justification that these are still state-of-the-art in spite 
of their age. It would be of great interest to consider 
their recent proposal in order to model non-response. 
However, it is still very experimental, as evidenced by 
the scarcity of papers and implementations. For such 
an important application as the ESSA, we therefore 
prefer an established method. The application devel-
oped in this work is one example where techniques in 
the machine learning field need to be combined with 
other important techniques in survey research, such as 
calibration and PSA, when studying non-response in a 
panel setting.

The propensities obtained could also be further ana-
lyzed by interpretable models [61] in order to determine 
the factors associated with non-response. This would 
help establish strategies for obtaining higher response 
rates, or at least for offsetting low response rates by tar-
geting specifically hard-to-reach groups.

The results observed in the different estimates obtained 
from the self-perceived general health variable show that 
the impact of the pandemic has affected age age groups 
and genders differently. More precisely, self-perceived 
general health seems to have decreased more notably in 
older age groups and among women, according to the 
evolution of cross-sectional estimates and longitudinal 
estimates alike. The gender gap in both absolute and rela-
tive terms generally increased as the pandemic advanced, 
meaning that the differences (mostly decreases in self-
perceived general health) have been larger and worse 
in women than in men. We chose this important health 
outcome because of the enormous amount of research it 
invests in studying risk factors and policy interventions 
in Public Health. This is due to its ability to summarize 
more objective measures such as morbidity, mortality, 
and clinical assessments of health conditions [62].

Some limitations must be noted in this study. Firstly, 
it is a well-known fact that subjective variables usually 
entail measurement errors, as the response given in such 
questions by the interviewee may depend on numer-
ous unmeasurable factors unrelated to the subject being 
studied, but which distance the final response from the 
objective value that should be given. Further studies 
should consider the measurement of such variables using 
validated instruments for a more objective understanding 
of the subject. In any case, the methodology developed in 
this research can be extended to any variables and scales.

Secondly, we assume a covariate-dependent missing-
ness pattern, as is usual in propensity score adjustment 

[63–65]. In a panel survey, it may be more realistic to 
assume Missing at Random which allows for dependence 
on the observed y-values in the previous years [31, 51], 
but has the drawback of the adjustment weights varying 
for each variable, which is not useful for multipurpose 
surveys such as the ESSA. This survey has more than 400 
variables and is used by health researchers from different 
specialties, the objective being to give adjusted weights to 
each unit of the sample so that each researcher can use 
them to carry out their specific studies related to the var-
iables that interest them. It would also be interesting to 
see the differences between the estimates with these two 
different patterns and whether this difference in accu-
racy offsets the complexity of having to build a different 
response model for each variable.

Another limitation in this work is that we have consid-
ered a situation in which the study population does not 
vary over time. This is justified because the new meas-
urements are made with little difference compared to 
the first measurement (at one month, 6 months and 12 
months) and all the samples are obtained from the same 
sampling frame [23], so we have assumed that the sample 
designs refer to the same population. In fact, the differ-
ence in population between the 2019 and 2020 popula-
tion frameworks is 0.6% in relative terms, or, in absolute 
terms, about 42,000 people out of almost 7.2M people 
over 16 years of age residing in Andalusia [23].

These methods would therefore not be well suited to 
overlapping panel surveys where samples are drawn from 
very different frames in different years and therefore 
from different populations. In such cases, the proposed 
methodology would have to be adapted.

Conclusion
For addressing future health crises such as COVID-
19, potential coverage and non-response biases in sur-
veys must be reduced by means of utilizing reweighting 
techniques.

In this respect, we propose a new reweighting approach 
to produce suitable estimators for both cross-sectional 
and longitudinal samples in overlapping panel surveys. 
To achieve this, first the original sampling design weights 
are corrected by modelling non-response in respect of 
the longitudinal sample obtained in a previous measure-
ment using machine learning techniques, and then, they 
are calibrated using the auxiliary information available at 
the population level.

We apply this methodology to estimate totals, propor-
tions, ratios, and differences between measurements 
as well as gender gaps in the variable of self-perceived 
general health. The descriptive results for this variable 
are an example applied to this paper to show the differ-
ent estimators, tables and figures developed which can 
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be replicated with other variables and scales from other 
overlapping panel surveys. In fact, they are all extended 
to the 400+ ESSA variables through the web platform at 
www. easp. es/ info/ ESSA. On this website, after selecting 
the set of variables to be described, the estimators to be 
shown and the segmentation variables to be considered 
(sex and age or sex and degree of urbanization), the user 
obtains the corresponding interactive figures to help 
interpret the selected variables. This will allow the sci-
entific epidemiological research community not only to 
access the descriptive results for all the ESSA variables, 
but also to carry out their own analyses by downloading 
the ESSA database and code developed, used as the basis 
for the conclusions of this paper.
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ESSA  Spanish acronym for Encuesta Sanitaria y Social de Andalucía (Andalu‑

sia Healthcare and Social Survey)
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