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Abstract 

Background Nested case–control (NCC) designs are efficient for developing and validating prediction mod‑
els that use expensive or difficult‑to‑obtain predictors, especially when the outcome is rare. Previous research 
has focused on how to develop prediction models in this sampling design, but little attention has been 
given to model validation in this context. We therefore aimed to systematically characterize the key elements 
for the correct evaluation of the performance of prediction models in NCC data.

Methods We proposed how to correctly evaluate prediction models in NCC data, by adjusting performance met‑
rics with sampling weights to account for the NCC sampling. We included in this study the C‑index, threshold‑based 
metrics, Observed‑to‑expected events ratio (O/E ratio), calibration slope, and decision curve analysis. We illustrated 
the proposed metrics with a validation of the Breast and Ovarian Analysis of Disease Incidence and Carrier Estima‑
tion Algorithm (BOADICEA version 5) in data from the population‑based Rotterdam study. We compared the metrics 
obtained in the full cohort with those obtained in NCC datasets sampled from the Rotterdam study, with and without 
a matched design.

Results Performance metrics without weight adjustment were biased: the unweighted C‑index in NCC datasets 
was 0.61 (0.58–0.63) for the unmatched design, while the C‑index in the full cohort and the weighted C‑index 
in the NCC datasets were similar: 0.65 (0.62–0.69) and 0.65 (0.61–0.69), respectively. The unweighted O/E ratio 
was 18.38 (17.67–19.06) in the NCC datasets, while it was 1.69 (1.42–1.93) in the full cohort and its weighted version 
in the NCC datasets was 1.68 (1.53–1.84). Similarly, weighted adjustments of threshold‑based metrics and net benefit 
for decision curves were unbiased estimates of the corresponding metrics in the full cohort, while the corresponding 
unweighted metrics were biased. In the matched design, the bias of the unweighted metrics was larger, but it could 
also be compensated by the weight adjustment.

Conclusions Nested case–control studies are an efficient solution for evaluating the performance of prediction 
models that use expensive or difficult‑to‑obtain biomarkers, especially when the outcome is rare, but the perfor‑
mance metrics need to be adjusted to the sampling procedure.
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Background
Risk prediction models are becoming increasingly popu-
lar in the medical community to predict clinical outcomes 
and can be used to provide more personalized decisions 
to patients. Population-based longitudinal cohorts, with 
information on thousands of individuals, are now wide-
spread. These cohorts enable the identification of indi-
viduals with a disease and their biological samples at the 
population level, as well as the development of (risk) pre-
diction models [1, 2]. While population-based cohorts 
are the preferred study design for building and validat-
ing such models [3, 4], they are expensive, particularly 
when the collected data go beyond routinely available 
variables (e.g. demographic or basic clinical characteris-
tics), and include additional information (e.g. measure-
ments of expensive or difficult-to-obtain biomarkers). 
In addition, collecting this information for all subjects 
might not always be feasible. Using the full cohort is, 
therefore, functional for unbiased sample identification, 
but not efficient for model development and validation, 
particularly for rare outcomes. These scenarios require 
more efficient study designs, such as nested case–control 
(NCC) and case-cohort designs [3, 4].

In NCC studies, a subsample of a fully enumerated 
source population is identified, containing all patients 
who experience the outcome of interest during the 
study follow-up period (cases), together with a sample of 
patients who do not experience the outcome during the 
time-at-risk (controls) [4, 5]. Often, controls are matched 
to cases to reduce potential confounding [5]. Follow-
up and matching variables must be available in the full 
cohort to identify the controls, whereas other variables of 
interest are only collected for the case–control set. This 
greatly reduces the amount of data collection needed 
(and the associated costs), while still providing accurate 
estimates of the effects of risk factors and performance 
estimates [4, 6]. In contrast to the traditional case–con-
trol design, where cases and controls are sampled from 
a population of unknown size, in NCC studies, cases and 
controls are sampled from a well-defined population of 
known size (i.e. hence the designation “nested”) [3]. This 
makes them suitable to estimate hazard and odds ratios 
of the full cohort and to build absolute risk models [3, 
5], without the need for additional data sources. How-
ever, appropriate methodology must be employed to 

accommodate the under-sampling of controls and poten-
tially any matching [5, 7, 8].

Clear recommendations on how to develop prediction 
models in NCC designs can be found in the literature 
[9, 10], as well as some examples of risk prediction mod-
els for rare outcomes developed in NCC data [8, 11–13]. 
However, we have noticed that there is a lack of clear 
guidance on how to properly validate prediction models 
in this study design. This has led to incorrect performance 
estimates of these models reported in several works in the 
literature [14, 15], and to the misconception that NCC 
studies are not suited to validate prediction models [16]. 
Clear guidance on this matter would therefore be useful 
for clinical and methodological researchers evaluating the 
performance of prediction models in NCC data.

We aim to present the key elements for correct evalu-
ation of the performance of prediction models in NCC 
datasets. We propose how relevant model performance 
metrics should be adjusted to compensate for 1) the 
overrepresentation of cases in the NCC dataset and 
2) the fact that the controls in the NCC dataset are no 
longer representative of all controls in the source popula-
tion. We then illustrate the importance of using adjusted 
performance metrics with a real world example, where 
we validate the well-known BOADICEA [17] breast can-
cer risk prediction model in NCC datasets, and compare 
the obtained performance metrics  to those that were 
reported in the original full cohort study [18].

Methods
Validating risk prediction models in nested case–control 
data
In this study, we focus on the scenario where a prediction 
model has already been developed, in a population-based 
cohort or in another design, and we aim to evaluate its 
performance in an NCC design. Table  1 describes how 
NCC datasets are obtained using incidence density sam-
pling, and Fig.  1 illustrates two completely worked out 
examples for an unmatched (A) and matched design (B) 
respectively. Of note, under this sampling method, the 
same subject can be selected multiple times: cases can 
be selected as controls of other cases with shorter event 
times; controls can be selected in risk sets of different 
cases. However, for model validation in NCC datasets, 
including the same subject multiple times can lead to 

Table 1 Sampling of a nested case–control (NCC) dataset from a full cohort

In NCC studies, a subsample of a fully enumerated source population (full cohort) is identified. This subsample contains all patients who have experi‑
enced the outcome of interest during the study follow‑up period (cases), together with a sample of patients who have not experienced the outcome 
during the time‑at‑risk (controls). Often, controls are matched to cases on some additional variables such as sex or age. Steps to obtain an unmatched 
or matched NCC dataset are similar (Fig. 1): first, required information for all subjects in the source population is extracted: outcome of interest, follow 
up time and, if needed, additional matching variables. Second, a pre‑defined number of controls is sampled for each case, preferably using the inci‑
dence density sampling method [5]. This sampling step is more constrained when matching is applied
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Fig. 1 Derivation of a nested case–control dataset from a full cohort, using incidence density sampling. In A, no matching variable is used. In B, 
sex is used to match controls to cases. Step 1. Required information for all subjects in the source population (full cohort) is extracted: outcome 
of interest, follow up time and, if needed, additional matching variables. Time‑to‑event plot represents timelines of subjects in the full cohort 
(each row represents one subject). Cases (in red) correspond to subjects who experience the outcome of interest. Controls (in yellow) correspond 
to subjects who do not experience the outcome of interest. Crosses represent last time of follow‑up for controls. Sex (male (M) or female (F)) 
is indicated in purple. Step 2: Control sampling using incidence density sampling: for each case, the subjects who have not experienced any event 
at the time of the event for that case (subjects‑at‑risk) are identified, and one or more subjects‑at‑risk are randomly sampled. In this example, 
the sampling ratio is 1:1, therefore only 1 control is sampled per case (indicated with a light blue circle in A and a purple circle in B). The number 
of subjects‑at‑risk in step 2 in the matched scenario (B) is typically smaller than in the scenario without matching (A). Note that, under incidence 
density sampling, some cases can be sampled as controls if they are part of the subjects‑at‑risk for another case before they experience the event 
of interest. Subjects can also be sampled more than once as controls. Other sampling methods exist, but incidence density sampling is the method 
that leads to more unbiased estimates in NCC datasets
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biased estimates of performance metrics [4]. Therefore, 
only one record should be kept for each subject: the case 
record for subjects selected as cases, and a randomly 
selected control record for controls [4].

Challenges in validating prediction models in NCC data
Validating prediction models in NCC datasets cannot be 
performed in the same way as in full cohorts for two rea-
sons. First, the sampling procedure artificially increases 
the proportion of cases (Fig. 2A). The difference between 
the original proportion and the one in the NCC dataset 
will depend on the chosen sampling ratio (number of 
controls sampled per case). Second, the controls in the 
NCC dataset are no longer representative of all controls: 
even if no matching is performed, subjects with longer 
survival time are more likely to be included in the NCC 
dataset as controls. This can distort the distributions of 
the risk factors in the NCC dataset (Fig.  2B). Failing to 
account for this distortion will result in overestimation 
of the absolute risk, since controls are underrepresented 
in the NCC dataset compared to the full cohort, and in 
the inaccurate estimation of both risk factor effects (e.g., 
odds ratios) and performance metrics.

However, if subjects are weighted based on their sam-
pling probability, NCC datasets can be used to develop 
and validate prediction models. The weighting process 
enables the recovery of the original ratio of cases to con-
trols and the original risk factor distributions, which con-
sequently enables the development of models that predict 
absolute risk [5, 10]. Additionally, in the validation of a 
model in an NCC dataset, the same weighting process 
can be applied to adjust the performance metrics, mak-
ing it possible to evaluate model performance accurately, 
without applying the model to all subjects of the corre-
sponding full cohort.

Assigning weights to subjects in NCC data
The weight of subject k (wk) is computed as the inverse 
of the probability of subject k being included in the NCC 
dataset, and accounts for the sampling design, namely 
any matching performed, as well as the case–control 
sampling ratio. For a NCC dataset with K  subjects ( J  
cases and I controls), the sampling probability of case 
j (pj) is straightforward to compute. However, the sam-
pling probabilities of controls, each denoted as pi , take a 
more complex form, as several factors can influence their 
selection.

Sampling probabilities of cases ( pj)
In a typical NCC study, all cases present in the full cohort 
are included in the NCC dataset; therefore, all cases have 
a sampling probability pj of 1. However, extracting model 

variables for all cases might not be possible due to time 
or cost constraints, leading to more atypical NCC stud-
ies, where only a portion of the cases are included. In this 
scenario, the sampling probability corresponds to the 
proportion of cases identified in the full cohort that are 
included in the NCC dataset [19].

Sampling probabilities of controls ( pi)
There are different ways of estimating the probabil-
ity of sampling subject k as a control [20]. We focus on 
the Kaplan–Meier and the logistic/generalized additive 
model estimators, for their ease of implementation and 
ability to deal with matched NCC designs.

The sampling probability of control i  ( pi ) estimated 
with the Kaplan–Meier estimate [20] uses the property 
that under the incidence density sampling scheme, the 
probabilities of a control being eligible for sampling for 
different cases are independent across the (matched) risk 
sets [21]. It is defined as follows:

where m is the number of controls sampled per case, I is 
an indicator variable (with value 1 if control i is eligible 
for case j , and 0 otherwise), tj is the event time of case 
j , and  nj tj  is the number of subjects at risk at time tj , 
which could be matched to case j.

Sampling probabilities can also be estimated using a 
model-based approach. For example, a logistic regres-
sion model can be fitted to predict the probability of a 
control being sampled, using its censoring time and 
additional matching variables as predictors. This logistic 
regression is fitted to the full cohort, excluding all cases.  
The sampling probability pi then corresponds to the 
output probability of this logistic regression applied to 
control i , and the inverse of such sampling probabili-
ties are denominated generalized linear model (GLM) 
weights. Sampling probabilities can also be estimated 
based on a generalized additive model (GAM), leading to 
GAM weights.

These weighting schemes are described in more detail 
in Støer and Samuelsen [20]. Of note, other weighing 
methods exist, such as the Chen weights [20]. Despite 
their differences, there is little variation in model esti-
mates and standard errors using different weighting 
schemes during model development [10, 22]. All of these 
methods for weight computation can be implemented 
with the multipleNCC R package [20].

(1)

pi = 1− p
(

i is not sampled as control for any case
)

= 1−
∏

j

p
(

i is not sampled as control for any case j
)

= 1−
∏

j

(1−
m

nj(tj)− 1
I(Control i is eligible for sampling for case j))
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Fig. 2 Characteristics of nested case–control (NCC) datasets that affect model validation (A) Comparison of proportions of cases (in red) 
and of controls (in yellow) in the full cohort and the NCC data. Outcome prevalence is distorted in the NCC dataset, compared to the full cohort. 
The magnitude of the distortion depends on the sampling ratio (number of controls sampled for each case). (B) NCC sampling can distort risk factor 
distribution in sampled controls. For example, we might be studying a clinical outcome that is more prevalent in females (in pink) than males (in 
blue), with 75% of events occurring in females (3 out of 4 events). However, in subjects without events sex is evenly distributed (48 females + 48 
males). In the study, males are more likely to leave the study earlier than females, leading to shorter follow up times for males. This results in females 
being more likely to be sampled as controls: the proportion of females in the NCC controls is 75% instead of 50% observed in the full cohort. 
Reweighting the NCC data can reconstruct the original distribution of sex in the sampled controls (50% males, 50% females) and allow the unbiased 
estimation of odds ratios and performance metrics
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Inverse probability weights
Once the sampling probabilities are computed, the weight  
wk assigned to subject k is:

In both typical and atypical NCC data, the weights of all 
cases have the same value, because the sampling probability is 
the same for all cases. The weights of controls depend on the 
control and are always larger (or equal) to 1, in order to repre-
sent multiple controls in the original cohort: the lower their 
probability of being sampled, the higher their weight [20].

Of note, the sum of the weights will generally not cor-
respond to the number of subjects in the cohort, particu-
larly if KM-type of weights are used. To compensate for 
this, the weights of controls should be rescaled [4]:

where wk ′ is the rescaled version of weight wk and nc is 
the total number of controls in the cohort.

Model performance metrics adjusted to the NCC data
As recommended in the TRIPOD guidelines for risk pre-
diction models [23], models should be validated with 
respect to their discrimination ability, the agreement 
between observed and predicted outcomes (calibration), 
and the clinical utility they provide. Therefore, we focused 
on the following performance metrics to quantify these 
characteristics: C-index, threshold-based metrics (such as 
sensitivity and specificity), observed-to-events ratio, cali-
bration slope, and decision curve analysis. The application 
of these metrics to full cohorts is straightforward, and we 
refer the reader to the literature for an in depth characteri-
zation of these metrics [24, 25]. While these metrics can 
be obtained in NCC studies, they must be adjusted due to 
the under-sampling of controls, by using the weights of the 
subjects included in the NCC dataset. Of note, adjusted 
metrics should be used in both internal or external valida-
tion of the models in NCC datasets (see the section “Boot-
strapping and cross-validation in NCC data”).

C‑index
The C-index estimates the probability that the predicted 
order of the events of a randomly selected subject pair is 
correct. The C-index is calculated by identifying all pos-
sible pairs where at least one subject had an event (usable 
pairs). From these, concordant pairs and discordant pairs 
are identified as pairs where subjects with longer survival 
time have smaller or larger predicted risk, respectively. 
The C-index is then calculated as follows:

(2)wk =

1

pk

(3)wk ′ = wk ×
nc

∑nc
i=1 wi

where Ck and Dk  denote respectively the number of con-
cordant and discordant pairs for subject k.

When a model is validated in an NCC dataset, the 
C-index should be adjusted by weighing the concordant 
and discordant pairs by the estimated weight of subject k 
( wk ), as follows [4]:

Threshold‑based performance metrics
Often, prediction models are used with decision thresh-
olds: subjects above and below the risk threshold are 
considered high-risk and low-risk, respectively. Perfor-
mance metrics such as sensitivity (SE), specificity (SP), 
positive predictive value (PPV) and negative predictive 
value (NPV) are informative to validate a model in this 
setting. The need to adjust PPV and NPV is clear, as these 
metrics are directly dependent on the prevalence of the 
outcome of interest in a cohort [26], but SE and SP must 
also be adjusted in NCC datasets, due to the biased sam-
pling. Unbiased estimates of these metrics are obtained 
by using the weights of cases and controls as described in 
Table 2.

The adjustment of these metrics has been described for 
model validation in NCC datasets when the outcome of 
interest is binary, and no survival data was available [6]. 
In this situation, the weights of all controls are the same 
and they correspond to the inverse of the control sam-
pling fraction (i.e., 1

sampledcontrols
totalnumberofcontrols

). In Table 2, we general-

ized this adjustment for survival data and for the 
possibility of controls having different weights.

Calibration
Model calibration aims to assess whether the abso-
lute risks predicted by the model correctly estimate the 
observed risks. For example, for patients with, say, a 20% 
predicted risk of an event of interest, 20 patients out of 
100 should indeed experience the event.

Calibration can be evaluated in multiple ways. We 
focused on the most important calibration metrics for 
risk prediction models [27]: mean calibration, calibration 
slope, and calibration plot.

Mean calibration corresponds to the difference 
between the proportion of observed events, for binary 
events; or 1-observed survival fraction at the chosen 
time point estimated by e.g. the Kaplan–Meier estimate, 
for survival data [28], and the average predicted risk. It 

(4)C − index =

∑

k Ck
∑

k (Dk + Ck)

(5)weighted C − index =

∑

k wkCk
∑

k wk(Dk + Ck)
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can also be expressed as a ratio of observed to expected 
(i.e., predicted) events. In a NCC dataset, the observed 
events or survival fraction should be derived from the 
full cohort, and, apart from rounding differences, these 
should correspond to the weighted event proportion or 
weighted KM survival probability, respectively. Likewise, 
the average predicted risk should be computed using the 
weighted average of the predicted risk, with the previ-
ously described weights.

The calibration slope summarizes the strength of the 
association between predicted and observed outcomes 
[27]. It corresponds to the slope of the regression of 
the observed outcomes (binary or survival) on the lin-
ear predictor of the model. A perfectly calibrated model 
has a slope of 1, while lower and greater values indicate 
over- and underfitting respectively. Calibration can be 
visualized in a calibration plot showing the observed 
proportions or (1-observed survival fractions) against 
the average predicted risks for a given number of sub-
ject groups. For NCC datasets, a weighted regression of 
the observed outcomes (binary or survival) on the lin-
ear predictors of the model should be used to obtain the 

calibration slope (Supplementary Table  1). The calibra-
tion plot should show weighted observed proportions/
survival fractions against weighted averages of the pre-
dicted risks for a given number of subject groups.

Decision curve analysis
Discrimination and calibration measures are insufficient 
to evaluate the model utility in the context of a clinical 
decision. Decision curve analysis aims to assess the net 
benefit of making clinical decisions based on the predic-
tion model compared to other models or default strate-
gies by accounting for the trade-off between the relative 
harms of false positives and false negatives [29]. The rel-
ative harm can be interpreted as how much worse it is 
to miss a poor clinical outcome and wrongly withhold-
ing treatment (i.e., false negative) compared to provid-
ing an unnecessary intervention to a patient who will not 
develop the outcome (i.e., false positive). For example, 
if the harm of missing a cancer is 4 times greater than 
performing an unnecessary invasive procedure, we can 
translate this relative harm into a probability threshold 
such that the patient should only undergo the procedure 

Table 2 Definition of performance metrics to validate models with decision thresholds, and respective modifications for NCC data

SE Sensitivity,SP Specificity,PPV  Positive predictive value,NPV  Negative predictive value,TP number of true positives,TN number of true negatives,FP number of false 
positives,FN number of false negatives,pt threshold probability,r  risk probability, n total number of subjects in the NCC dataset

Indicator variables:

I(xk = 1) is an indicator variable = 1 if subject k is a case, and 0 otherwise

I(xk = 0) is an indicator variable = 1 if subject k is a control, and 0 otherwise

I(rk ≤ pt) is an indicator variable = 1 if subject k has a predicted risk probability ≤ pt , and 0 otherwise

I(rk > pt) is an indicator variable = 1 if subject k has a predicted risk probability > pt , and 0 otherwise

Survival data:

(Sw(t)|r > pt) is the weighted Kaplan–Meier survival probability for subjects with a predicted risk probability > pt . Weighted Kaplan–Meier estimates are obtained 
by using the sum of weights of individuals with an event at time t, instead of the number of events at that time; and the sum of the weights of the subjects‑at‑risk at 
time t, instead of the number of subjects‑at‑risk at that time

(Sw(t)|r ≤ pt) is the weighted Kaplan–Meier survival probability for subjects with a predicted risk probability ≤ pt

Competing risks can be incorporated by replacing Sw(t) with the complement of a weighted cumulative incidence function

Note: The definitions of Pos, Neg, PPV  and NPV  are provided for binary and survival data separately, to avoid computing Kaplan–Meier survival estimates for the 
quantities TN, FP, TP and FN and then adding these up, which produces slightly different results than directly estimating survival probabilities of the larger groups, 
such as TP + FN

Threshold-based metrics on NCC data

Binary data Survival data

SE =
TP
Pos

SE =
TP
Pos

SP =
TN
Neg

SP =
TN
Neg

PPV =
TP

TP+FP
PPV = 1− (Sw(t)|r > pt)

NPV =
TN

TN+FN
NPV = (Sw(t)|r ≤ pt)

Where:

TN =

∑n
k=1 wkI(xk = 0, rk ≤ pt) TN = (Sw(t)|r ≤ pt)×

∑n
k=1 wkI(rk ≤ pt)

FP =

∑n
k=1 wkI(xk = 0, rk > pt) FP = (Sw(t)|r > pt)×

∑n
k=1 wkI(rk > pt)

TP =

∑n
k=1 wkI(xk = 1, rk > pt) TP =

[

1− (Sw(t)|r > pt)
]

×

∑n
k=1 wkI(rk > pt)

FN =

∑n
k=1 wkI(xk = 1, rk ≤ pt) FN = [1− (Sw(t)|r ≤ pt)] ×

∑n
k=1 wkI(rk ≤ pt)

Pos = TP + FN Pos = [1− Sw(t)] ×
∑n

k=1 wk

Neg = TN + FP Neg = [Sw(t)] ×
∑n

k=1 wk
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if the risk is greater than the threshold (1/(4 + 1) = 0.2). 
The decision curve is constructed by computing the net 
benefit over a clinically meaningful range of probability 
thresholds.

The net benefit (NB) at a given threshold is computed 
as follows [29]:

where TP denotes true positives, FP denotes false posi-
tives, n is the total number of subjects and pt is the prob-
ability threshold.

In NCC data, the net benefit of Eq.  (6) should be cal-
culated using the definitions of TP and FP for binary or 
survival data provided in Table 2. Net benefit for binary 
outcomes in NCC data has already been derived in [30], 
but not for survival outcomes.

Bootstrapping and cross-validation in NCC data
Bootstrapping and cross-validation are techniques that 
are frequently employed to internally validate prediction 
models and to obtain estimates of the variability of model 
performance metrics. In general, bootstrap samples and 
cross-validation folds should mimic the original sampling 
design as well as possible [31]. Therefore, when these pro-
cedures are applied to NCC datasets, they should account 
for the fact that the NCC design is a stratified design, 
where controls are matched to cases (at least on follow-up 
time). This translates into obtaining bootstrap samples by 
sampling case–control pairs with replacement, rather than 
individual samples. In the case of cross-validation, case–
control pairs should be included in the same fold in cross-
validation schemes. Weighted metrics should also be used 
when evaluating the model within the NCC cross-valida-
tion folds and the bootstrap samples.

Code availability
We implemented a subset of the weighted performance 
metrics (threshold-based metrics, calibration plot and 
decision curve analysis for survival data). We used the R 
packages described in Supplementary Table  1 for com-
puting sampling weights and the remaining weighted 
performance metrics. The code to reproduce our analysis 
is available at https:// github. com/ emc- derma tology/ ncc- 
evalu ation.

Real‑world illustration: validation of the BOADICEA 
model
Breast cancer is the most commonly diagnosed cancer in 
women worldwide [32]. Identifying high-risk individu-
als is critical to reduce mortality and improve quality of 
life. However, excessive screening also results in false 

(6)NB(t) =
TP

n
−

FP

n
(

pt

1− pt
)

positives and overdiagnosis [33]. Risk prediction mod-
els can help healthcare systems by targeting women at 
high risk of developing breast cancer for screening, while 
reducing the side-effects of screening for those at lower 
risk.

In this clinical illustration, we focused on the valida-
tion of the Breast and Ovarian Analysis of Disease Inci-
dence and Carrier Estimation Algorithm (BOADICEA 
version 5) model in the Rotterdam study, a population-
based cohort. The performance of the model predicting 
the development of breast cancer (invasive or in  situ) 
within 10 years has been previously evaluated in this 
cohort [18]. We use this cohort to show that it is also pos-
sible to validate a prediction model in a sub-cohort much 
smaller than the full cohort (more than 10 times smaller 
in this case), if the sub-cohort is carefully designed (i.e., 
the nested case–control dataset).

Model and study cohort
The BOADICEA model is an absolute risk prediction model 
that estimates the probability of developing breast cancer 
within 5 years, 10 years or within a lifetime, for women until 
the age of 80. The model uses genetic input variables such 
as a polygenic risk score (PRS) based on 313 breast cancer 
associated variants, together with nongenetic risk factors 
and family history. The nongenetic risk factors are: mam-
mographic density, age at menarche, age at menopause, par-
ity, age at first live birth, oral contraceptive use, hormonal 
treatment, height body mass index and alcohol intake. The 
formula for computing the absolute risk is available in Lee 
et al. [17]. The model was validated in the Rotterdam Study 
cohort, a population-based cohort of elderly Dutch indi-
viduals living in a district of Rotterdam in the Netherlands. 
In 2008, the cohort consisted of 14,926 subjects aged 45 
years or older, out of which 8,823 were women. As in Lake-
man et al. [18], we excluded all women for whom 10-year 
BOADICEA risk estimates could not be obtained: women 
for whom genotype data were not available or did not have 
enough quality (n = 2153), and women who, at the time of 
recruitment into the cohort, had breast cancer (n = 148) or 
were older than 70 years (n = 2145). This left a total of 4,377 
women. All BOADICEA risk factors were available in this 
cohort, except for mammographic density. However, the 
BOADICEA model allows for missing information [17].

Ethics statement
The Rotterdam Study has been approved by the institu-
tional review board (Medical Ethics Committee) of the 
Erasmus Medical Center and by the review board of The 
Netherlands Ministry of Health, Welfare and Sports. The 
analyses in this study were approved by the management 
team of the Rotterdam study.

https://github.com/emc-dermatology/ncc-evaluation
https://github.com/emc-dermatology/ncc-evaluation
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Illustration setup
NCC datasets with one control per case were derived 
from the full cohort of 4,377 subjects in 3 different sce-
narios: a NCC design without any matching variables 
(NCC-NM); an NCC design with matching on an admin-
istrative variable (Rotterdam study sub-cohort), which 
is not strongly associated with the model predictions 
(NCC-MNR); and an NCC design with matching based 
on the non-genetic risk estimates (NCC-MR). In the 
NCC-MNR design, the matching variable has 3 catego-
ries, and in the NCC-MR, the matching variable has 6 
categories, representing the risk percentages (from 1 to 
6%). Control sampling in all designs was performed with 
incidence density sampling without duplicated subjects. 
Cases without a control after duplicate removal were 
matched to another control so that the total KM weight 
sum before rescaling was similar to the size of the full 
cohort. Control replacement is typically possible for NCC 
designs in rare outcomes and sufficiently loose matching.

The BOADICEA model was applied to both the full 
cohort and all the derived NCC datasets (Supplemen-
tary Fig. 1). Performance metrics, including the C-index, 
calibration metrics, and decision curve analysis, were 
computed in all cohorts. For the NCC datasets, the per-
formance of the BOADICEA model was evaluated with 
and without adjustment for the NCC design. These 
unweighted (“naïve”) and weighted metrics were com-
pared with the performance metrics on the full cohort. 
In practice, only one NCC dataset would be sampled, 
and performance metrics would be evaluated on that  
single cohort, however, to account for sampling variation, 
we repeated the derivation of NCC datasets 100 times 
in each scenario. As a sensitivity analysis, we used three 
ways to compute the sampling weights: Kaplan–Meier 
type of weights (KM), weights computed with logistic 
regression (GLM) and weights computed with gener-
alized additive models (GAM). We also repeated the 
analyses with NCC datasets with 2 controls per case, to 
investigate the impact of the case–control ratio on the 
precision of the performance metric estimates.

Results
A total of 4,377 subjects were included in our analysis,  
out of which 163 developed breast cancer within 10 
years of their recruitment into the cohort (Table  3). 
The median follow-up was 12.9 (6.9–20.9) years for 
subjects without an event. Women who developed 
breast cancer (cases) differed significantly from those 
who did not (controls) in Body Mass Index and in their 
313-variant PRS. The original Rotterdam study (RS-I) 
was extended twice (RS-II and RS-III) [34]. The pro-
portion of cases was significantly different among these 
sub-cohorts.

Model validation in the full cohort
Similarly to the validation publication in the Rotterdam 
Study [18], the performance of the BOADICEA model 
was evaluated in all the subjects of this cohort, and com-
pared to the performance of the risk estimates based 
on subsets of the model components (age only, age and 
non-genetic risk factors, and age and genetic compo-
nent). All of the metrics are reported in Supplementary 
Table 2). The BOADICEA model (using age, non-genetic 
risk factors and the PRS) showed reasonable discrimi-
native ability (C-index 0.65 (0.61–0.69)) and calibration 
(calibration slope 1.19 (0.87–1.54)). However, breast 
cancer occurrences were substantially underestimated, 
with an observed-to-expected ratio (O/E ratio) of 1.69 
(1.42–1.93). This underestimation was more evident in 
the higher risk range (Supplementary Fig. 2). Despite the 
observed miscalibration, decision curve analysis showed 
that the BOADICEA model is still clinically useful for 
targeted screening in the vicinity of the outcome cumula-
tive incidence (Fig. 3): for threshold probabilities between 
3% and 7.5%, the model outperformed the treat all strat-
egy. Interestingly, comparison of different subcompo-
nents of the model shows that risk estimates based on the 
genetic component were more clinically useful than risk 
estimates relying on age or risk factors alone. Since risk 
predictions are often dichotomized to guide decisions, 
we used the risk threshold described in the BOADICEA 
development publication [17] (3%) and classified subjects 
with a risk prediction lower than 3% as low-risk and the 
remaining as high-risk. Performance metrics obtained 
with this risk threshold were suboptimal: namely, sensi-
tivity to detect breast cancer occurrences was only 0.52 
(0.43–0.61).

Model validation in NCC data
We evaluated the performance of the model in 3 sce-
narios with variations in the NCC sampling design; all 
sampling designs led to NCC datasets with 163 cases 
and 163 controls. To evaluate model predictions, we 
first analyzed performance metrics without setting any 
risk threshold. Fig. 4 clearly shows that the unweighted 
performance metrics obtained in the NCC datasets do 
not correspond to those obtained in the full cohort. The 
bias was larger when controls were matched to cases 
on a variable that is associated with the model predic-
tions, but precision was similar for most metrics. In 
contrast, weighted performance metrics were unbiased 
in all scenarios. The results were very similar for other 
types of sampling weights (GLM and GAM weights, 
Supplementary Fig. 3). The unweighted calibration plot 
suggests that the model substantially underestimated 
the risk of the outcome (Fig.  5), while all weighted 
calibration plots resemble the calibration plot of the 
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full cohort. Similarly, the unweighted decision curve 
indicates that the model is not more useful than the 
screen-all strategy, while the weighted decision curves 
are very similar to the decision curve on the full cohort 
(Fig. 6); therefore correctly showing that the model out-
performs the screen-all strategy. Precision for lower 
probability ranges was slightly higher for the matched 
NCC datasets. However, for all designs the width of the 
confidence intervals and bias of net benefit estimates 
substantially increased with increasing risk thresholds, 

because there were fewer subjects with higher risk pre-
dictions, and therefore more variability across different 
realizations of the NCC sampling.

As with the previous performance metrics, the 
threshold-dependent metrics (SE, SP, PPV and NPV) 
were biased without weighting, and close to unbi-
ased when weighted (Fig.  7). Unbiased estimates were 
also obtained for all weighted metrics when 2 controls 
were sampled per case; however, the precision of per-
formance estimates was higher for most performance 

Table 3 Characteristics of the subjects in the Rotterdam study included in our real‑world illustration. Only subjects for whom the 
10‑year BOADICEA risk predictions could be obtained (women younger than 70 years, with genotype data of sufficient quality) were 
included. This cohort is designated as the “full cohort” in our illustration. A more extensive description of the patient characteristics is 
provided in Lakeman et al. [18] Mammographic density was lacking for all subjects

RS-I Original Rotterdam study cohort

RS-II, RS-III Extensions of the Rotterdam study cohort

RF Non‑genetic risk factors

PRS Polygenic risk score
a Median (Interquantile range); n (%)
b Wilcoxon rank sum test for numerical variables; Pearson’s Chi‑squared test for categorical variables
c For women known to have children

Variables Controls,  N =  4214a Cases,  N =  163a p-valueb

Administrative Study recruitment  < 0.001

      1st (RS‑I) 1881 (45%) 92 (57%)

      2nd (RS‑II) 808 (19%) 38 (23%)

      3rd (RS‑III) 1525 (36%) 33 (20%)

Follow‑up, in years 12.9 (6.9, 20.9) 5.1 (2.3, 7.2)  < 0.001

Year of birth 1938 (1930, 1948) 1935 (1929, 1942) 0.003

Age at recruitment 60.0 (56.7, 63.4) 60.9 (57.2, 64.5) 0.15

Risk factors Height, in m
missing (%)

1.64 (1.60, 1.68)
9 (0.2%)

1.64 (1.61, 1.68)
3 (1.8%)

0.43

Age at menarche
missing (%)

13 (12, 14)
102 (2.4%)

13 (12, 14)
4 (2.5%)

0.52

Age at menopause
missing (%)

50 (46, 53)
255 (6.1%)

51 (47, 53)
15 (9.2%)

0.12

Number of children
missing (%)

2 (1, 3)
584 (13%)

2 (1, 3)
33 (20%)

0.74

Age at first  childbirthc

missing (%)
24 (22, 27)
19 (0.5%)

25 (23, 28)
1 (0.6%)

0.06

Any hormonal treatment
missing (%)

758 (18%)
40 (1%)

32 (20%)
3 (1.8%)

0.55

Any oral contraception
missing (%)

2665 (68%)
311 (7.4%)

90 (64%)
23 (14%)

0.32

Body Mass Index
missing (%)

26.3 (23.9, 29.4)
38 (0.9%)

27.5 (24.7, 30.5)
3 (1.8%)

0.01

Alcohol use, in grams per day
missing (%)

3 (0, 9)
742 (18%)

3 (0, 9)
34 (21%)

0.98

Genetic Standardized PRS 0.05 (‑0.61, 0.72) 0.62 (‑0.04, 1.35)  < 0.001

10y risk estimates (%), based 
on

Age 2.9 (2.7, 3.3) 2.9 (2.7, 3.1) 0.02

Age + RF 2.4 (2.0, 2.9) 2.5 (2.2, 3.0) 0.11

Age + PRS 2.9 (2.2, 3.7) 3.5 (2.7, 4.4)  < 0.001

Age + RF + PRS 2.3 (1.7, 3.2) 3.0 (2.3, 4.2)  < 0.001
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metrics (Supplementary Table 3, Supplementary Figs. 4 
and 5). Lastly, model comparisons were also biased 
when unweighted metrics were used (Supplementary 
Fig.  6). Namely, using unweighted metrics to compare 
the BOADICEA model with the genetic component 
or without leads to a substantial underestimation of 
the benefit of the genetic component: the difference 
between the unweighted C-indexes of the two models 
was respectively 7% and 4% in the NCC-NM and NCC-
MR scenarios, compared to 10% when the difference in 
C-index was computed using weighted metrics in either 
scenario, or based on the full cohort.

Discussion
We systematically proposed how to validate prediction 
models in nested case–control data, by adjusting dis-
criminative and calibration metrics, as well as calibra-
tion plots and decision curves. Despite their sample size 
being much smaller, we showed that NCC datasets can 
be used to obtain performance estimates that correspond 
to those of the original population-based cohorts, as long 
as performance metrics are appropriately weighted. The 
weighting procedure consists of estimating the sampling 
weight [20] of each subject in the NCC dataset and using 
those weights when computing each performance metric.

Fig. 3 Decision curve analysis comparing different components of the BOADICEA model in the full cohort of 4377 women. The plot describes 
the decision curves for 1) the 10‑year risk estimates based on Age alone (Age); 2) Age and Risk Factors (Age + RF); 3) Age and Polygenic Risk Score 
(Age + PRS); and, finally, for 4) the full BOADICEA model, with all these components (Age + RF + PRS). Risk factors do not include mammography 
density information

Fig. 4 Performance metrics obtained in the full cohort and in the NCC datasets, for threshold‑independent model predictions. The horizontal black 
line indicates the value of the performance metric in the full cohort and the dashed horizontal black lines indicate the upper and lower bounds 
of the 95% confidence interval of the performance metric in the full cohort. The color of the boxplots indicates whether performance metrics 
on the NCC datasets are weighted (“Yes”) or unweighted (“No”). NCC‑NM: a regular NCC design with incidence density sampling and without any 
matching variables; NCC‑MNR: a NCC design with incidence density sampling and matching on an administrative variable, which is not associated 
with the model predictions; NCC‑MR: NCC design with incidence density sampling and matching based on the non‑genetic risk predictions
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We illustrated the importance and validity of the 
described weighted metrics in a real-world case study 
where we validated the BOADICEA model in NCC 
datasets derived from the Rotterdam study. Although 
the BOADICEA model had previously been externally 
validated in the Rotterdam study [18], we showed that, 
if the model input variables had not been available for 
the entire cohort, unbiased performance estimates could 

have also been obtained in an NCC subset of the original 
cohort: the median/mean of the estimated metrics in the 
NCC datasets corresponded to their values in the Rotter-
dam study (Figs. 4–7).

NCC datasets are therefore a more cost-effective 
design for model validation, as they allow the estimation 
of unbiased performance metrics with a much smaller 
sample size: in this case less than 10% of the original 

Fig. 5 Calibration plots for the BOADICEA model applied to NCC datasets. The full cohort and the NCC datasets were divided into 5 quantiles based 
on predicted risk probabilities. Event estimates of the full cohort are depicted in dark blue. Unweighted event estimates are depicted in salmon; 
weighted event estimates are depicted in light blue. Reported 95% confidence intervals were computed by considering the variance of the Kaplan–
Meier estimates, and of the mean risk probability of each group within each NCC dataset, together with the variance of these estimates between all 
100 samples of NCC datasets. NCC‑NM: a regular NCC design with incidence density sampling and without any matching variables; NCC‑MNR: 
an NCC design with incidence density sampling and matching on an administrative variable, which is not associated with the model predictions; 
NCC‑MR: NCC design with incidence density sampling and matching based on the non‑genetic risk predictions
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cohort. This is of particular interest for evaluating the 
performance of models that require measuring biomark-
ers that are difficult to obtain in large cohorts, such as the 
polygenic risk scores included in the BOADICEA model. 
Of note, the smaller sample size of NCC datasets leads to 
higher uncertainty regarding the estimated performance 
metrics. If this is of concern, the number of controls sam-
pled per case can be increased to increase precision of 

the estimates (Supplementary Table  3, Supplementary 
Figs. 4 and 5).

We observed two distinct patterns depending on 
whether metrics directly depend on the outcome preva-
lence or not. Metrics such as the O/E ratio, net ben-
efit, PPV and NPV are easily flagged as implausible if 
unweighted. For example, the unweighted calibration 
plot suggests that the model substantially underestimated 

Fig. 6 Decision curves obtained for the BOADICEA model in the full and the NCC datasets. Unweighted net benefit in the NCC datasets 
is depicted in salmon; weighted net benefit is depicted in light blue. These net benefit estimates correspond to the average of the estimates 
obtained in the 100 samples of NCC datasets. Shaded areas correspond to the bootstrap‑percentile 95% confidence interval obtained across all 
100 samples of NCC datasets. The net benefit of the full cohort is depicted by the dashed dark blue line. The net benefit of screening everyone 
is depicted in black (“Treat all”), and the net benefit of screening no one is depicted in gray (“Treat none”). The net benefit of “Treat all” is unweighted 
in the unweighted plot and weighted in the remaining plots. NCC‑NM: a regular NCC design with incidence density sampling and without any 
matching variables; NCC‑MNR: an NCC design with incidence density sampling and matching on an administrative variable, which is not associated 
with the model predictions; NCC‑MR: NCC design with incidence density sampling and matching based on the non‑genetic risk predictions
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the risk of the outcome (Fig. 5). On the other hand, met-
rics such as the C-index, calibration slope, sensitivity and 
specificity have plausible ranges even if unweighted.

However, we illustrated that using such metrics without 
weighting would lead to incorrect conclusions regard-
ing model performance. In particular, we showed that 
when no weighting was applied, the C-index of the BOA-
DICEA model was consistently underestimated in the 
NCC datasets. This underestimation has been observed 
in other  studies34,38, and is, in fact, expected, as the NCC 
matching procedure (on time and on potential additional 
matching variables) frequently attenuates the association 
between the outcome and any model variables that might 
be associated with time/matching variables. This in turn 
decreases discriminative performance metrics. Conclu-
sions regarding model calibration based on unweighted 
metrics would also be misleading: the unweighted cali-
bration slope was lower than 1 in all scenarios, suggest-
ing that the model was overfitted (Fig. 4), while the model 
was, in reality, underfitted. Furthermore, comparisons 
of the predictive ability of the different components of 

the model (non-genetic risk estimates, genetic risk esti-
mates and combined model) would also lead to different 
conclusions if metrics are not weighted (Supplementary 
Fig. 6). Namely, in the NCC datasets matched based on 
risk factors, the improvement in predictive ability asso-
ciated with adding the genetic component to the model 
was 4% based on unweighted C-indexes, compared to 
10% based on the weighted or full cohort C-indexes. This 
observation is important as the NCC study design is fre-
quently used to study the added value of biomarkers that 
are too expensive to collect in the full cohort. Our real-
world example shows that it is essential to use weighted 
metrics to correctly estimate the improvement of perfor-
mance metrics associated with novel biomarkers.

We have also shown that unbiased performance met-
rics can be obtained across different NCC sampling 
designs (with and without matching). This indicates that 
the effect of different types of biases introduced during 
cohort sampling can be mitigated during model valida-
tion by adjusting the performance metrics with sampling 
weights that account for the study design. Of note, while 

Fig. 7 Threshold‑based performance metrics obtained in the full cohort and in the NCC datasets. Here, the BOADICEA model was applied 
to the subjects, and those with a risk prediction lower than 3% were classified as low‑risk. The horizontal black line indicates the value 
of the performance metric in the full cohort and the dashed horizontal black lines indicate the upper and lower bounds of the 95% confidence 
interval of the performance metric in the full cohort. The color of the boxplots indicates whether performance metrics of the NCC datasets 
are weighted (“Yes”) or unweighted (“No”). PPV: Positive predictive value, NPV: Negative predictive value, NCC‑NM: a regular NCC design 
with incidence density sampling and without any matching variables; NCC‑MNR: an NCC design with incidence density sampling and matching 
on an administrative variable, which is not associated with the model predictions; NCC‑MR: NCC design with incidence density sampling 
and matching based on the non‑genetic risk predictions
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ignoring matching on administrative variables in the 
weight computation has a smaller impact than ignoring 
matching on variables associated with model risk predic-
tions, matching on administrative variables should still be 
accounted for, if possible. Other studies that have investi-
gated weighted metrics such as the C-index and calibra-
tion slope in matched NCC designs have shown biased 
estimation under fine matching [4, 35]. We have not 
observed this in our study but the matching we employed 
was not as fine: there were only 3 categories when we 
matched based on entry into the Rotterdam study (NCC-
MNR), and 6 categories when based on non-genetic risk 
estimates (NCC-MR), with subjects being well distrib-
uted among these categories. Moreover, Ganna et al. [4] 
evaluated a conditional logistic regression model that 
included the matching variables as predictors; meaning 
that they could not be included in the linear predictors 
used for risk estimation. This contributed to additional 
bias in the performance metrics obtained in the matched 
NCC design in their study. This was not the case with the 
BOADICEA model.

Finally, we have shown that unbiased performance met-
rics can be obtained using different methods for calculat-
ing the sampling weights (Supplementary Fig.  3), which 
means that weighted metrics are robust with respect to 
the computation method used for the weights. Similar 
conclusions regarding weight computation methods had 
already been demonstrated for the development of pre-
diction models in NCC datasets [10, 20], but not for their 
validation.

This study has some limitations. We illustrated the 
importance of using weighted performance metrics in a 
large real-world cohort, where using a nested case–con-
trol design can substantially reduce the cost of validating 
a prediction model that requires expensive data collec-
tion. However, the use of a real-world dataset prevents us 
from studying the robustness of our conclusions to vari-
ations in parameters such as outcome incidence and the 
magnitude of the performance metrics of the model. A 
simulation study [35], which investigated this for a sub-
set of the performance metrics, showed that the C-index 
was consistent for different outcome incidence rates, 
but calibration metrics deteriorated for lower incidence 
rates (5%). This slightly contrasts with our study, where 
the outcome cumulative incidence was 4.4% (95% CI 
3.7–5.1%) and all metrics could be unbiasedly estimated. 
However, we focused on external validation of the model 
while Lee et  al. [35] reported fivefold cross-validation 
metrics for the calibration metrics which might partially 
explain their observed decline in performance for lower 
outcome incidence.

We have extensively covered the most commonly recom-
mended metrics to assess the discrimination, calibration 
and clinical utility of prediction models [23]; however, 
there are other metrics and extensions that could be used. 
For example, goodness-of-fit tests such as Grønnesby and 
Borgan or Hosmer and Lemeshow’s test are employed to 
assess model calibration, although due to their limitations 
they are falling into disuse. The use of such tests in NCC 
datasets has been described in the literature [4, 8]. Quan-
tification of the incremental value of additional predictors 
can be estimated with the net reclassification index, and 
a weighted version is provided in [4]. However, concerns 
have also been raised regarding this metric [36].

Furthermore, for simplicity, we did not account for 
competing risks in our real-world illustration, as this 
would require using performance metrics that are 
adjusted to the competing risk scenario [37], and modify-
ing the sampling procedure of the NCC study to account 
for competing risks [38]. In fact, with strong competing 
risks or presence of multiple outcomes, the case-cohort 
design is preferred to the NCC design. Weighting of per-
formance metrics in this sampling design is also needed, 
although recommended methods to compute sampling 
weights in this design [39] are different than the ones 
described in our study.

Despite the above limitations, the described weighted 
metrics should be relevant for a wide audience (e.g., cli-
nicians, machine learning practitioners, epidemiologists 
and biostatisticians), as they must be used for a correct 
performance evaluation of any type of model that esti-
mates risk probabilities in an NCC study, from the widely 
used Cox model to machine learning or deep learning 
methods. Furthermore, difficulties in model performance 
evaluation, which resemble the ones we discussed, are 
addressed in the literature under different names (such 
as covariate shift in the machine learning field [40]). The 
NCC sampling design is a special case within these con-
cepts, as it performs sampling in a cost-effective way.

In summary, this study provides clear guidance on how 
prediction models should be validated in NCC studies 
using relevant performance metrics. Previously, most of 
this information was scattered in the literature and not 
available for all the metrics. Namely, weighted versions 
of performance metrics are available in different R pack-
ages [8], but we had to implement weight adjustments for 
threshold-based metrics and decision curve analyses for 
survival data. The code to implement the adjustment of 
these performance metrics with sampling weights is now 
available in a GitHub repository (see section “code avail-
ability”) for easy implementation and should facilitate the 
adoption of weighted metrics also by non-specialists.
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Conclusions
Clinical prediction models can be validated in NCC 
studies if the performance metrics are appropriately 
adjusted using the sampling weights of the subjects 
in the NCC dataset. If performance metrics are not 
weighted, their estimates will be biased, with the mag-
nitude of the bias being higher when matching variables 
are correlated with the model predictions. The choice of 
the method to compute sampling weights does not lead 
to large changes in the estimated weighted metrics, as 
long as the sampling design and all matching variables 
are considered in the computation. These results are 
particularly relevant for the validation of models that 
predict rare outcomes, and whose input variables can-
not be measured in all subjects in the validation cohort.
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