
S O F T WA R E Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Grodd et al. BMC Medical Research Methodology          (2024) 24:116 
https://doi.org/10.1186/s12874-024-02240-3

take into account the timing of events but fail to consider 
competing events. Analysing hospital-acquired infec-
tions (HAI), ventilation-associated pneumonia (VAP), 
worsening of COVID19-cases in hospital or transfers 
of COVID19-ICU-cases are just a few examples of situ-
ations where competing events like death and discharge 
have to be taken into account.

The European Medicines Agency (EMA) has included 
the occurrence of intercurrent events in its list of things 
to consider when describing treatment effects [1]. Mul-
tistate models are one way to meet this requirement. 
U. Beyer et al. [2] and A. Erdmann et al. [3] showed the 
use of multistate models to address the occurrence of 

Background
Choosing and understanding statistical analysis models 
in epidemiology can be challenging. Many models have 
distinct shortcomings. For example, standard logistic 
regression ignores the timing of events and therefore, 
only provides a restricted view. Kaplan-Meier models 
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Abstract
Background Extended illness-death models (a specific class of multistate models) are a useful tool to analyse 
situations like hospital-acquired infections, ventilation-associated pneumonia, and transfers between hospitals. The 
main components of these models are hazard rates and transition probabilities. Calculation of different measures and 
their interpretation can be challenging due to their complexity.

Methods By assuming time-constant hazards, the complexity of these models becomes manageable and closed 
mathematical forms for transition probabilities can be derived. Using these forms, we created a tool in R to visualize 
transition probabilities via stacked probability plots.

Results In this article, we present this tool and give some insights into its theoretical background. Using published 
examples, we give guidelines on how this tool can be used. Our goal is to provide an instrument that helps obtain a 
deeper understanding of a complex multistate setting.

Conclusion While multistate models (in particular extended illness-death models), can be highly complex, this tool 
can be used in studies to both understand assumptions, which have been made during planning and as a first step in 
analysing complex data structures. An online version of this tool can be found at https://eidm.imbi.uni-freiburg.de/.
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intermediate events in cancer patients with a slightly dif-
ferent models.

Multistate (especially competing risk) models are 
becoming a more and more established tool to anal-
yse such complex settings. Many authors have already 
pointed out the importance of being careful in the pres-
ence of competing events [4, 5] and have given sugges-
tions on which methods to use in specific situations 
[6–9]. C. H. Jackson et al. [10] shows the advantage of 
multistate models by comparing different modelling 
frameworks in a model which is quite similar to the one 
used in this article.

In this work we will focus on the extended illness-death 
model (eidm) which can be seen in Fig. 1 and is described 
in detail in [6] while considering constant hazards. The 
implied limitations will be discussed in the conclusion 
section. This model distinguishes between two absorb-
ing events before or after the intermediate event. The 
term “intermediate event” depends on the setting of the 
study. Some examples could be disease progression, as in 
the articles by U. Beyer et al. [2] and A. Erdmann et al. 
[3] or nosocomial pneumonia like seen in the work of B. 
François et al. [11] and J. Chastre et al. [12]. This accounts 
for the time-dependencies of intermediate events like 
HAI, VAP, and worsening patient condition or transfer of 
COVID-19-cases.

Using constant transition hazards offers the opportu-
nity to calculate closed forms of transition probabilities 
at a given point in time. The second advantage of using 
the constant hazard framework is that there are few to 
no data requirements. These transition probabilities can 
be visualized in stacked probability plots which are dis-
cussed in detail by Hazard et al. and von Cube et al. [15, 
13].

Our goal is to provide a tool, which utilizes the benefits 
of a multistate model especially in the framework of con-
stant hazards and the visual advantages of stacked prob-
ability plots to provide a tool for non-statisticians like 
clinicians to improve the planning and analysis of epide-
miologic studies. Specifically, for studies with non-mortal 
Endpoints (e.g. discharge or infection) corresponding to 

an extended illness-death model. Hence, we implemented 
an app using R [14]. This app takes hazards or hazard 
ratios as inputs and renders corresponding stacked prob-
ability plots, plots for the population attributable frac-
tion (PAF), and plots for attributable mortality (AM) (not 
discussed in this article).

In the following, we present statistical considerations 
for our calculations followed by a guideline on how to use 
this tool. In addition, we give some hypothetical and real 
examples.

Implementation
We consider a finite state continuous time markov pro-
cess X (t) which can occupy states in {0, . . . , 5}  at a 
given time t , see Fig. 1. Since this process is markov, the 
transition probabilities (i.e. the probability to be in state 
j  at time t  while previously being in state i  at time s ) 
can be written as

 Pij (s, t) = P (X (t) = j|X (s) = i) .

By considering every possible transition from state i  to 
state j , we get a transition probability matrix P (t) given 
by:

 P (t) = (Pij (0, t))i,j = P (0, t)

 
=




P11(0, t) · · · P15(0, t)

... . . . ...
P51(0, t) . . . P55(0, t)





The explicit formulas for those probabilities can be found 
in the supplement material. Those formulas can be used 
to plot the transition probabilities Pij(0, t) dependent on 
the hazards λij . Finally, we stack these probability plots 
upon each other to create a stacked probability plot. See 
Figs. 2 and 3 for some example visualizations.

Therefore, by plotting those probabilities over time 
stacked on each other, we get a graphic that ranges from 
0  to 1  on the y-Axis, hence each Probability is repre-
sented by a specific area in this plot. Those areas can 

Fig. 1 Extended illness-death model with constant hazard rates
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be interpreted as the time spent in certain state [15]. 
Arranging those areas can furthermore help to inter-
pret the sum of specific areas as cumulative incidence i.e. 
P01 (0, t) + P04 (0, t) + P05 (0, t) is the cumulative prob-
ability to get an intermediate event until time t .

Application
In order to use this tool, one first needs to estimate time 
constant hazard rates. These are calculated by dividing 
the number of transitions by the time at risk in the state 
from which the transition occurs:

 
λ01 =

N01

T0
λ02 =

N02

T0
λ03 =

N03

T0
λ14 =

N14

T1
λ15 =

N15

T1

Where Nij  corresponds to the number of transitions 
from state i to state j and Ti  is the total time at risk in 
state i .

These hazard rates can be plugged into the tool. In 
the following we discuss some examples to illustrate the 
application.

The absolute easiest and intended way to actually use 
this tool is to go to https://eidm.imbi.uni-freiburg.de/ 
and start playing around.

If you are interested in using this tool locally, it gets 
more technical. The necessary code and instructions can 
be found in the supplementary material or at https://
github.com/marlongrodd/eidm.

Figure  2 shows the interface of the application. First 
there are some instructions on how to use the tool. Then 
you can choose to enter either the hazards for each group 
separately, or just the hazards for group A and the corre-
sponding hazard ratios for group B. The next input fields 

are for the hazards and hazard ratios, depending on the 
choice made earlier. The “Limit of x-axis” option can be 
used to limit the plots to certain time periods. The ‘Order 
of stacked plot’ field is used to determine the order in 
which the coloured areas are stacked. Finally, you can 
choose to display the PAF and AM plots as well.

Examples
Multistate models, and in particular extended illness-
death models, can have beneficial insights into the struc-
tural background of many situations. For instance, some 
examples in the hospital setting are listed in Table 1.

Note that in this work we focus on the hospital set-
ting. However, there are many other settings that can be 
analyzed using multistate models. These models are rel-
evant as soon as there are several outcomes of interest or 

Table 1 Examples of initial states, intermediate events and 
absorbing states for possible applications
Initial state Intermediate state Absorbing 

states
Hospitalized Hospital-acquired infection (HAI)

ICU admission
Transfers between hospitals
Disease progression
Decubitus
Delirium

Death
Discharge

ICU Starting ventilation
Disease progression
Decubitus

Death
Discharge
ICU Discharge

Ventilated Ventilation-associated infection
Extubation after ventilation
Disease progression
Decubitus

Death
Discharge
Extuba-
tion after 
ventilation
ICU Discharge

Fig. 2 Main window and output of the tool for example 1

 

https://eidm.imbi.uni-freiburg.de/
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intermediate events. For instance disease progression as 
an intermediate event for outpatients. In the following, 
some of the examples in a hospital setting loosely refer-
ring to real world data will be presented. We take a closer 
look at examples for ventilation-acquired infections and 
disease progression. Aside from describing the usage and 
interpretation of the stacked probability plots, one fur-
ther focus will be on how one can order the plot areas.

Three examples are considered. The corresponding 
hazards are given in Table 2.

Example 1 considers VAP as an intermediate event. The 
only effect of the group variable is on the hazard of the 
transition from the initial state to VAP (decreasing haz-
ard). The question of interest is how does this single dif-
ference effect the occurrence of all possible transitions?

Example 2 considers a completely different setting with 
disease progression as intermediate event and only one 
absorbing state (death). There is an increased hazard for 
the intermediate event and a decreased hazard for death 
after the intermediate event in group B compared to 
group A. How do these two effects in different directions 
affect the overall occurrence of death?

Example 3 illustrates the differences between the full 
follow-up analysis and the simplified constant hazard 
approach. Real data of hospitalized patients is considered. 
Hospital acquired infection is the intermediate event and 
discharge or death are the absorbing events.

 
Note that if a transition hazard is zero this means that 
this transition is not possible. Thus, example 2 reduces to 
a simple illness-death model with one intermediate and 
only one absorbing state (death).

For a detailed description of the examples, see the fol-
lowing section.

Example 1: Ventilation-associated pneumonia
In this example, we consider ventilated patients and 
VAP as intermediate event. Motivated by the project 

EVADE (Effort to Prevent Nosocomial Pneumonia caused 
by Pseudomonas aeruginosa in Mechanically ventilated 
Subjects) which is part of the COMBACTE  (Combat-
ting Bacterial Resistance in Europe, https://www.com-
bacte.com/) consortium, we discuss the effects of VAP on 
death and discharge [12]. The aim of this project was to 
analyze the impact of treatment with specific antibodies 
in ventilated patients against VAP. Therefore, informa-
tion about observation times of VAP, death and discharge 
have been collected. Note that our focus lies in present-
ing the results. Our aim is not to discuss medical implica-
tions. The hazards are not the real hazards from the trial, 
but are inspired by the real hazards calculated from the 
dataset by dividing the number of events by the number 
of patient days in hospital. Those hazards can be found in 
Table 2. Using those values as input, the tool provides the 
plots as presented in Fig. 2a.

Group A corresponds to the control group and group 
B to the intervention group. Note that the death and dis-
charge hazards are the same in both treatment groups. 
Only the VAP hazard (λ01) differs between the treatment 
groups and is lower in group B compared to group A, 
implying an advantage in group B with respect to VAP. 
However, the death and discharge hazards before the 
intermediate event differ from the death and discharge 
hazard after the intermediate event (equal hazards in 
both groups). The hazard for death is lower before VAP 
compared to the time afterwards (λ03compared to λ15). 
In contrast the discharge hazard before VAP is greater 
than afterwards (λ02 compared to λ14).

Hence, as the probability of the intermediate event 
differs between treatment groups, the overall probabili-
ties of dying and being discharged with and without the 
treatment differ too, even if there is no difference in the 
death and discharge hazards between the groups. The 
overall probability of dying declines after receiving the 
treatment. For discharge, this effect can be seen in the 
opposite direction. This effect can also be highlighted 
using the tool, see Fig. 2b. In this figure, the order of the 
areas is modified. On the top of Fig. 2b, the two desirable 
discharge states are combined. At the bottom, the three 
non-desirable states are plotted. The dark blue and dark 
brown area represent the death states (without and with 
VAP) and thus overall mortality. These combined areas 
on the left hand side is lower than those on the right 
hand side. Meanwhile the combined areas for discharge 
(without or with VAP) at the top of the plot is greater on 
the right than on the left graphics.

Example 2: Disease progression
Our second example considers disease progression as an 
intermediate event and orientates on [17]. The focus of 
this study was to analyse the effect of the drug Selexipag 
on the occurrence of complications related to pulmonary 

Table 2 Hazards for the examples
Example 1 Example 2 Example 3

VAP Disease 
progression

Real data example
N = 756

Group A B A B

λ01 0.01 0.005 0.005 0.01 0.01924868

λ02 0.01 0.01 0 0 0.07373486

λ03 0.003 0.003 0.001 0.001 0.02437131

λ14 0.001 0.001 0 0 0.03453569

λ15 0.006 0.006 0.02 0.015 0.01304682

VAP = Ventilation-associated pneumonia, Real data example: random sample of 
the SIR-3 Dataset found in the “etm” R package [16]

https://www.combacte.com/
https://www.combacte.com/
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hypertension. This article provides information about the 
total number of patients, the number of disease progres-
sions, deaths and median follow up. With these numbers, 
we can calculate the corresponding transition hazards by 
dividing the number of events (progression or death) by 
the patient days. In fact the numbers used in our example 
are just inspired by those given in the paper. We ignore 
discharge in this example and consequently use a sim-
ple illness-death model. The resulting plots are given in 
Fig. 3a and b, considering different orders.

The hazard rates for discharge are set to zero, making 
this transition not possible and reducing the model to a 
simple illness-death model. Consequently, there are no 
areas present for discharge in this plot. The hazard for 
complications related to pulmonary hypertension (inter-
mediate event) is higher in group B compared to group A. 
Thus, the area for the intermediate event is bigger on the 
right side. The death-hazard before complications related 
to pulmonary hypertension is the same in both groups. 
However, the intermediate event leads to a higher death 
hazard in both groups. This increase is higher in group 
A. Thus, on the one hand, Group B has a disadvantage 
concerning the intermediate event, but on the other hand 
has an advantage concerning death after intermediate 
event. This leads to the situation that the two differences 
in hazards basically cancel each other out. If the death-
hazard after the intermediate event would be the same in 

both groups the higher hazard for the intermediate event 
would lead to a much higher probability of dying in gen-
eral in group B (blue and brown area combined).

Example 3: Real data
This example uses the los.data dataset from the R pack-
age “etm” to compare the constant hazard approach with 
non-parametric estimation using the Aalen-Johansen 
estimator [18].

The los.data consists of a sample of the dataset from 
the SIR-3 study, an observational cohort study to analyse 
the burden of hospital-acquired infections [16].

As this dataset does not distinguish between differ-
ent groups, we will focus on the differences between the 
models. We calculated constant transition hazards for 
the five possible transitions (baseline -> discharge, death 
or intermediate event; intermediate event -> death or 
discharge) and used these in the application by dividing 
the number of events by the total amount of time patients 
spend in each state (see section “Application” for more 
details). In addition, we used the etm function to calcu-
late empirical state occupancy probabilities and plotted 
these using the R package ggplot2. We arranged these 
two plots together for better comparison (see Fig. 4).

It can be seen that the use of constant hazard can 
mimic the empirical state occupancy probabilities. Thus, 
if there are no real data but information about patient 

Fig. 3 Output of the tool from the second example
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days and number of events for each transition, one can 
calculate the corresponding hazard rates and use them 
to get a good idea of what the probabilities from the real 
data set might look like.

On the other hand, there are clearly some differences. 
In this example, the first days differ between these two 
plots; while the intermediate event has a high slope in 
the constant hazard approach, this behaviour is not seen 
in the empirical estimate, where the high slope does not 
start until day four. This is an obvious violation of the 
constant hazard assumption and shows that this tool 
should not be used for the final analysis of the data, but 
rather to get an impression of the possible results of 
planned studies.

Conclusion
In conclusion, this tool can be used to translate the tran-
sition hazards into probabilities and furthermore to 
visualize the impact of a single varying hazard on all tran-
sition probabilities.

Furthermore, one can investigate the impact of dif-
ferent hazards with both, desirable and non-desirable 
effects. Additionally, one can experience the impact of 
varying hazard rates on the probabilities (i.e. what would 
happen if in example 1 the hazards for death before and 
after intermediate were also impacted by the interven-
tion? What are the Probabilities if the intervention does 
affect the hazard for discharge rather than the hazard for 
the intermediate event? ).

Investigation of effects when dealing with intermedi-
ate events faces different challenges. These settings can 
be analysed using multistate models. However, events 
and effects depend on time and all possible hazard rates. 
This creates a level of complexity that adds difficulty to 
achieving proper interpretation, planning, and analysis of 
epidemiologic studies. In this article, a tool to visualize 
multistate models in an extended-illness-death-setting 
was discussed. This is a common setting in epidemiologic 

studies addressing an intermediate event, e.g. studies on 
nosocomial infections [12].

This tool provides the benefits of multistate models and 
facilitates the interpretation of complex correlation. By 
visualizing the impact of expected hazard ratios in spe-
cific scenarios, one can acquire a better understanding of 
the effects of their intervention.

Furthermore, the area between the curves can be con-
sidered as the expected length of stay in the respected 
state. For example, Fig.  3 group B stays much longer in 
the initial state (yellow area) compared to group A. In 
contrast, the time “spent” in the state “death after inter-
mediate” (brown area) is greater for group A since the 
corresponding area is greater. The expected length of stay 
in the state “intermediate” without further progression is 
comparable in both groups.

Additionally, three examples were used to exhibit pos-
sible applications of this tool. In the first two examples, 
we orientated on the COMBACTE-study EVADE and 
discussed the direct and indirect impacts of an interven-
tion on intermediate events, death and discharge. The 
second example considered pulmonary hypertension [17] 
to cover settings where one terminal event, e.g. hospital 
discharge, is not present.

It is important to note that the assumption of constant 
hazards is a huge simplification and limitation of this 
tool. Constant hazards imply that the underlying mech-
anisms are independent of time. This is usually not the 
case in practice, so this tool should be used during the 
design phase of a study, or at most as a first step in the 
process of data analysis. For more complex analyses, R 
packages such as etm [18] or mstate [19] are more appro-
priate. How to use multistate models to analyse data sets 
from epidemiological studies is described in more detail 
in R. J. Cook & J. F. Lawless [20] in A. Bühler et al. [21] 
in J. Beyersmann et al. [22] or in P. Hougaard [23]. C. H. 
Jackson [10] showed the use of a similar model applied 
to outcomes after admission with COVID-19 in two 

Fig. 4 Comparison constant hazard (left) with non-parametric estimation using the etm package in R (right)
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frameworks (transition-specific hazard functions and 
mixture multi-state models) of parametric models using 
gamma distributions.

Our aim was to provide a tool to simplify the complex-
ity of multi-state models and to promote a better under-
standing of these processes. An additional concern was 
to give this tool a wide range of possible applications; 
Table 1 gives some examples of possible settings in a hos-
pital environment, without claiming to be exhaustive. 
Extended illness-death models can be applied whenever 
there is an intermediate event and a final event of interest 
other than death.

In further steps, our tool could be extended to more 
different models, as we see for example in M. Lafuente et 
al.‘s [24] established stand-alone tool for visualisation and 
prediction of multistate processes on ICU occupancy by 
patients with COVID-19.

The R-code for this tool is provided in the supplement 
file “Additional file 1.docx” as well as on https://github.
com/marlongrodd/eidm.

Availability and requirements.

  • Project name: Extended illness-death model with 
constant transition hazards.

  • Project home page: https://eidm.imbi.uni-freiburg.
de/.

  • Operating system(s): Platform independent.
  • Programming language: R.
  • Other requirements: R version 4.2.2 or higher.
  • License: GNU GPL.
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HAI  Hospital-acquired infections
VAP  Ventilation-associated pneumonia
Eidm  Extended illness-death model
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