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Comparison of techniques for handling missing
covariate data within prognostic modelling
studies: a simulation study
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Abstract

Background: There is no consensus on the most appropriate approach to handle missing covariate data within
prognostic modelling studies. Therefore a simulation study was performed to assess the effects of different missing
data techniques on the performance of a prognostic model.

Methods: Datasets were generated to resemble the skewed distributions seen in a motivating breast cancer
example. Multivariate missing data were imposed on four covariates using four different mechanisms; missing
completely at random (MCAR), missing at random (MAR), missing not at random (MNAR) and a combination of all
three mechanisms. Five amounts of incomplete cases from 5% to 75% were considered. Complete case analysis
(CC), single imputation (SI) and five multiple imputation (MI) techniques available within the R statistical software
were investigated: a) data augmentation (DA) approach assuming a multivariate normal distribution, b) DA
assuming a general location model, c) regression switching imputation, d) regression switching with predictive
mean matching (MICE-PMM) and e) flexible additive imputation models. A Cox proportional hazards model was
fitted and appropriate estimates for the regression coefficients and model performance measures were obtained.

Results: Performing a CC analysis produced unbiased regression estimates, but inflated standard errors, which
affected the significance of the covariates in the model with 25% or more missingness. Using SI, underestimated
the variability; resulting in poor coverage even with 10% missingness. Of the MI approaches, applying MICE-PMM
produced, in general, the least biased estimates and better coverage for the incomplete covariates and better
model performance for all mechanisms. However, this MI approach still produced biased regression coefficient
estimates for the incomplete skewed continuous covariates when 50% or more cases had missing data imposed
with a MCAR, MAR or combined mechanism. When the missingness depended on the incomplete covariates, i.e.
MNAR, estimates were biased with more than 10% incomplete cases for all MI approaches.

Conclusion: The results from this simulation study suggest that performing MICE-PMM may be the preferred MI
approach provided that less than 50% of the cases have missing data and the missing data are not MNAR.

Background
Assessing the prognostic ability of clinical factors using
a Cox proportional hazards model is often performed
[1]. However, missing covariate data complicates the
analysis, but often occurs [1]. A review of published
prognostic studies [1] found that on average 13% of
cases had incomplete data (range 0 - 60%) in 39 studies
where this information could be obtained. In addition,
27% of values, on average, were missing within a single

variable (range 0 - 72%) in 55 studies [1]. Simply using
the cases with complete covariate data, i.e. performing a
complete case (CC) analysis, loses information and
hence efficiency, and may lead to biased regression coef-
ficients if the missingness is related to the outcome
[2,3]. Sophisticated likelihood based techniques can
explicitly handle missing covariate data in analyses of
survival (time to event) data (e.g. [4-6]). However, these
generally require problem-specific programs to be writ-
ten and hence may not be readily available.
Imputing the missing data poses a suitable alternative

that uses all the data and can be performed using easily
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accessible methods. Multiple imputation (MI), where
each missing value is replaced with a set of m (>1) inde-
pendent values [7] to give m separate complete datasets,
incorporates uncertainty of the missing data that cannot
be achieved with single imputation (m = 1). The m
completed datasets are analysed individually using stan-
dard statistical methods and the results combined into
one summary estimate using simple rules devised by
Rubin [7]. The parameter estimates of interest are aver-
aged and a variance estimate is obtained that incorpo-
rates both the within and between imputation
variability. There are many different techniques for per-
forming MI, but most approaches assume the missing
data to be at least missing at random (MAR), where the
probability of missingness is only associated with the
observed and not the unobserved data [8]. MI
approaches are generally based on an imputation model
from which plausible values for the missing data are
obtained. The imputation model should contain all vari-
ables to be subsequently analysed, which for prognostic
modelling studies includes the outcome and all potential
covariates, but also any variables that help to explain the
missing data [9]. The more compatible the imputation
and analysis models are, the more successful the MI
approach will be [10]. However, the use of MI in the
published medical literature remains limited [11].
Simulation studies provide a framework to compare

the performance of different approaches for handling
missing data with a variety of missing data mechan-
isms, as the true value is known. Several simulation
studies have investigated the effects of missing data
using different MI approaches, but these have primar-
ily imposed missingness only on the outcome variable
(e.g. [11,12]). These studies demonstrated that model
based imputation approaches for an incomplete out-
come variable were better than ad hoc imputation pro-
cedures and were fairly robust to some model
departures [13]. Furthermore, when a fully parametric
imputation model correctly fitted the data, it per-
formed better than alternative techniques such as pre-
dictive mean matching [14]. Conversely, fully
parametric methods performed worse when the impu-
tation model did not fit [15]. Few simulation studies
have considered missing covariate data (e.g. [3]), espe-
cially situations where missingness was imposed on
more than one covariate (e.g. [11,16]). Only a limited
number of these studies included survival as the out-
come and these have only considered a CC analysis [3]
or maximum likelihood based approaches (e.g. [17,18])
and not MI techniques. There remains a lack of evi-
dence about the effects of missing covariate data and
its handling on the performance of the survival models
and no consensus on the most appropriate MI techni-
ques to use with a survival outcome.

In addition, no definitive guidelines appear to exist on
the allowable proportion of missing data to validly apply
MI techniques [19]. With a single incomplete covariate
or outcome, Harrell [20] suggested using imputation
rather than a CC analysis with 5% missingness, although
Barzi and Woodward [21] suggested that a CC analysis
may still be suitable with up to 10% missingness. For
MAR data, MI performed well up to 25% missingness,
and adequately with 50% missingness [22]. However
with more than 60% missingness, the extreme levels of
uncertainty about the imputed values resulted in high
standard deviations and convergence problems of the
imputation procedure with MI [21]. With missing not at
random (MNAR) data, where the probability of missing-
ness is associated with the unobserved values [8], var-
iance estimates were affected when more than 5% of the
data were missing [22]. All of these findings relate to an
incomplete outcome or a single covariate and not to the
situation with multiple incomplete covariates, where the
missingness could relate to the level of an individual
covariate or to the proportion of cases that have incom-
plete data for at least one covariate.
This paper reports the results of an extensive simula-

tion study that aimed to assess the effects of applying
different standard approaches to handle missing data in
more than one covariate when fitting a Cox propor-
tional hazards model to the full set of covariates. This
simulation study investigated how the performance of
the model was affected by varying amounts of missing-
ness and different missing data mechanisms. We aimed
to determine the maximum allowable proportion of
missingness to validly apply these missing data
techniques.

Methods
Details of the simulation procedures used within this
simulation study are provided below. All simulations
were performed using the freely available R statistical
software [23], thus allowing all researchers access to any
suitable methods identified.
Generating the datasets
To reflect reality, a German breast cancer dataset [24]
formed the motivating example for generating the simu-
lated datasets; it assessed the prognostic ability of eight
covariates (Table 1) in relation to recurrence free survi-
val. The non-normally distributed continuous covariates
of lymph nodes (X2), progesterone receptor (PGR) level
(X3), oestrogen receptor (ER) level (X4) and tumour size
(X8) had varying degrees of skewness (2.87, 4.77, 3.07
and 1.77 respectively; Figure 1). Some covariates were
highly associated, e.g. age (X1) and menopausal status
(X6; r = 0.77) and X3 and X4 (r = 0.39); others were
moderately correlated, e.g. X2 and X8 (r = 0.33) and hor-
monal treatment (X5) and X6 (r = 0.28).
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For simplicity, the covariate data were generated using
an underlying multivariate normal distribution [25] with
the covariate means and covariance matrix obtained
from the German breast cancer study data after suitable
transformations (Table 1, Figure 1b). A log transforma-
tion was used for the continuous covariates X2 and X8

and a log (X + 1) transformation used for X3 and X4 to
avoid taking logs of zero. The generated covariate data
were back transformed onto their original scales, e.g.

using exponential transformations, prior to any analyses
being performed. A cut-point of 0.5 was used to obtain
the three binary covariates (X5, X6, X7) and the same
cut-points as in the original data were used for the cate-
gorical covariate (X8). Two dummy variables for X8

were created to indicate values of 21-30 mm or not and
>30 mm or not respectively. Continuous covariates were
truncated using their upper observed limits to produce
realistic values and reasonable estimates for the mean

Figure 1 a: Distribution of the covariates for the German breast cancer dataset; b: Distribution of the transformed continuous
covariates in the German breast cancer dataset.
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and standard deviations that were not too dissimilar
from the original dataset.
For each case a linear predictor was calculated as the

sum of the products of the generated covariate values
and the associated regression coefficient estimates
obtained from fitting the full Cox proportional hazards
model to the motivating dataset, such that:

LP X X X X X

X
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All continuous covariates were assumed to have a lin-
ear effect on the log relative hazard. An uncensored sur-
vival time was generated for each case assuming an
exponential distribution with a hazard rate of 0.00027,
which approximated the hazard seen in the breast can-
cer dataset, and their associated linear predictor [26]. A
censored time was also generated for each case using an
exponential distribution with a hazard rate of 0.0002 to
give approximately 35% censored observations. A smal-
ler censoring rate than that seen in the breast cancer
dataset ensured there were a sufficient number of events
to fit a prognostic model for all levels of missingness.
The required survival time was then defined for each
case as the minimum of the uncensored and censored
survival times and the event status determined
accordingly.
A sample size of 1000 cases was used for all simula-

tions, which represented the average sample size
observed in a literature review of 100 reported prognos-
tic factor studies [1].
Number of simulations
The whole simulation process was repeated 1000 times,
which enabled the smallest regression coefficient for X4

to be estimated with at least 20% accuracy and all
remaining regression coefficients estimated to within
10% accuracy of their true values [25]. The true values

were obtained from fitting a Cox proportional hazards
model to the motivating breast cancer data. Independent
random samples were generated using different starting
seeds that were separated by at least the sample size
[25].
Imposing missing data mechanisms
Missingness was imposed on four covariates: X3, X2, X5

and X8. A case was said to be incomplete if they had at
least one missing covariate, but each case could have up
to four covariates missing. Five overall rates of missing-
ness of 5, 10, 25, 50 and 75% per case were considered
to explore the effects with small, medium and large
amounts of missingness. A moderately independent
simulation strategy [25] was adopted, utilising the same
set of 1000 datasets each time but with different values
randomly deleted through using different starting seeds.
This approach strengthens the comparison between dif-
ferent methods as it eliminates any sampling variability
leaving all methods striving for exactly the same results,
whilst allowing variability to exist between simulated
datasets and amounts of missingness.
Data for four incomplete covariates (performance sta-

tus, albumin, grade and residual disease) from an ovar-
ian cancer study [27] provided empirical evidence of
realistic patterns and frequencies of missing data and
associations between the missingness of each covariate.
The amount of missingness imposed on each of the four
covariates, X3, X2, X5 and X8 were approximately 70%,
55%, 20% and 10%, respectively, of the overall amount
of cases with any missing data. Dependencies between
the missingness indicators for the incomplete covariates
were generated such that 35% of incomplete cases were
missing both X2 and X3, 10% were missing X5 and X2,
and 5% were missing X8 and X3.
Four multivariate missing data mechanisms were

imposed, since these are the least studied mechanisms,

Table 1 Data structure for the breast cancer dataset and associated means and standard deviations (SDs) after
suitable transformation

Covariate Variable Type Groupings/Measurement Label X Mean(SD)

Age Continuous Years Age X1 53.05(10.12)

Lymph nodes Continuous Number of LN X2 1.16(0.94)

Progesterone receptor Continuous fmol PGR X3 3.35(1.93)

Oestrogen receptor Continuous fmol ER X4 3.35(1.84)

Hormonal treatment Binary 1 = Yes,
0 = No

TRT X5 0.36(0.48)

Menopausal status Binary 0 = Pre,
1 = Post

MENO X6 0.58(0.49)

Tumour group Binary 0 = Grade I,
1 = Grade II/III

TG X7 0.88(0.32)

Tumour size Continuous variable categorised 1 = ≤20 mm,
2 = 21-30 mm,
3 = >30 mm

TS X8 3.27(0.46)

Note: Data from the breast cancer dataset for X2 and X8 were log transformed; X3 and X4 were transformed using log(X+1).
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yet the most appropriate to real life situations. The
mechanisms investigated were missing completely at
random (MCAR), MAR, MNAR [8] for all incomplete
covariates and a combined multivariate mechanism that
imposed a different mechanism on each incomplete cov-
ariate (Table 2). The MAR and combined mechanisms
involved both covariate-dependent and outcome depen-
dent mechanisms. Separate logistic regression models
for each incomplete covariate were used to model the
probability of the covariate being missing according to
the appropriate missing data mechanism (Tables 2 and
3). A probability of missingness for each incomplete
covariate was calculated for each case and compared
against a random value from the Uniform [0, 1] distri-
bution. The covariate value for a case was set to be
missing if their uniformly distributed value did not
exceed the calculated probability.
Analysis and outcomes of interest
A Cox proportional hazards model including all eight
covariates was fitted to each dataset. A linear relation-
ship was assumed for all continuous covariates as used
in the data generation process.
The outcomes of interest were the regression coeffi-

cients, associated standard errors (SE) and the signifi-
cance of the covariates in the regression model. The
average regression coefficient estimates over all simula-
tions were assessed using the bias from the true value
[12], the percentage bias and the coverage [28]. The
effect of the missingness on the overall model perfor-
mance was assessed using the likelihood ratio chi-
square test [20], the model’s predictive ability using
Nagelkerke’s R2 statistic [20], the prognostic separation
D statistic [29] and the 2-year predicted survival
probability.
The bias introduced from maximising the partial like-

lihood estimator and not the full estimator when fitting
a Cox regression model [30] in addition to any bias due
to the data generation process impedes the detection of

any additional bias incurred due to the missing data and
its handling. Hence the average regression coefficient
estimates and associated empirical SE (i.e. the standard
deviation of the estimates across simulations) from per-
forming a large simulation study with no missingness
involving 20,000 replications formed the true values
against which the missing data simulations were
compared.
Missing data methods
A CC analysis, single imputation (SI) using predictive
mean matching [9] and five MI techniques, available
within the R statistical software, were investigated
(Table 4). All are suitable for imputing multivariate arbi-
trary missingness and are easily accessible. The MI tech-
niques included two data augmentation approaches [31],
one assuming a joint multivariate normal distribution
(NORM) and one using a general location model (MIX);
a regression switching approach (MICE) and the appli-
cation of predictive mean matching after regression
switching (MICE-PMM) [9]. The final MI approach
(aregimpute) fitted separate flexible additive imputation
models to each incomplete covariate [20].
For all imputation approaches, the imputation model

included all eight covariates in addition to the survival
time and event status, indicating whether a case had the

Table 2 Specification of the missing data mechanisms to be imposed

Mechanism X3 (PGR) X2 (LN) X5 (TRT) X8 (TS)

MCAR b0 b0 + ln(OR)MX3 b0 + ln(OR)MX2 b0 + ln(OR)MX3

MAR ln(0.8)X4 ln(3)X1 ln(0.7)ln(t) ln(7)X7

MNAR ln(1.3)X3 ln(0.6) X2 ln(8)X5 ln(0.9)X8

COMBINED ln(0.7)ln(t) +
ln(0.3)X5

ln(3)X1 ln(0.9)X8

Note: A logistic regression model was used to model the probability of missingness for each incomplete covariate. The entries in the table represent the
variables associated with the missingness of each incomplete covariate. For MAR, MNAR, and the combined mechanism, the terms given are extra to those for
the MCAR mechanism, e.g. the MAR mechanism for X2 is

logit p X  is missing ln OR M ln 3 X2 X3 1         0 ,
where b0 is the intercept, estimated by solving the above equation using the specified probabilities of missingness for X2 and X3 and the average covariate value
of X1, MX3 is the missingness indicator for covariate X3, which equals 1 if an observation is missing and 0 if the value is observed and OR is odds ratio for the
relationship between the missingness of X2 and X3, and is obtained from Table 3. The coefficients for the variable associated with the mechanism were modified
from relationships with missing data seen in another study [27] to provide significant associations. All continuous variables including survival (t) were
standardised by dividing by the standard deviation. When the mechanisms included other covariates subjected to missingness, the original complete data were
used.

Table 3 Odds ratios (OR) to be specified in the missing
data mechanisms given in Table 2

Mechanism OR Missingness (%)

for: for: 5 10 25 50 75

X2 MX3 101.12 45.5 15.68 5.50 2.17

X5 MX2 42.04 20.78 7.41 3.00 1.51

X8 MX3 45.14 14.23 5.44 1.92 0.92

Note: MXi is the missingness indicator for covariate Xi, which equals 1 if an
observation is missing and 0 if the value is observed.
OR represents the odds of having two variables with missing observations,
and was calculated using the proportion of missing values for each variable
and the degree of overlap between variables for each of the five overall
amounts of missingness to be imposed.
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event or was censored at the time of analysis [9]. A
logarithmic transformation was used for survival time
and the incomplete continuous covariates to make the
assumption of normality more applicable [9]. All
imputed values were rounded to plausible values, where
necessary. Twenty imputations were performed for each
MI approach to provide a relative efficiency of at least
96% [7] compared to having an infinite number of
imputations for the five amounts of missingness to be
imposed from 5% to 75%.
Combining estimates of the outcomes of interest after MI
and over all simulations
Estimates of the outcomes of interest after MI were
combined following proposed guidelines [32]. Rubin’s
Rules [7] were used to combine each of the regression
coefficient estimates, the prognostic separation D statis-
tic and the predicted survival estimates after a comple-
mentary log-log transformation. An overall MI p-value
from the Wald test for assessing the significance of each
covariate in the regression model was also determined
using Rubin’s Rules [7]. An overall significance estimate
for the likelihood ratio statistic was obtained using the
method for combining X2 statistics [33]. The median
and inter-quartile ranges of the m Nagelkerke’s R2 sta-
tistics [32] were calculated for each of the simulated
datasets. Any deficiencies in the model performance
measures and approaches for combining these estimates
after MI should be similar across missing data methods
and therefore still allow a valid and worthwhile compari-
son. After performing all 1000 simulations, the out-
comes of interest were summarised, in general using the
average value over all simulations or using the median
value, where appropriate.

Results
The results from performing MI using MICE, NORM
and MIX were indistinguishable for all mechanisms and
therefore only the results using MICE are presented.
Firstly, the results from imposing a multivariate MAR
mechanism are reported for all missing data methods.
Results from imposing a multivariate MAR mechanism
Regression coefficient estimates from the Cox proportional
hazards model
The regression coefficient estimates obtained from per-
forming different missing data methods with increasing
amounts of MAR missingness are shown in Figure 2.
The regression coefficient estimates after performing a
CC analysis remained within the limits for unproble-
matic estimates [12] of ± 0.5SE for all levels of missing-
ness and were generally closer to the true value for all
covariates than after using SI or MI (Figure 2). For SI
and most MI approaches, the regression coefficient esti-
mates were more than 0.5SE away from the true value
for the two incomplete continuous covariates (X2 and
X3) and X4, the covariate highly correlated with X3,
when 25% or more of the cases had at least one covari-
ate missing. For X2 and X3, the percentage bias
exceeded the allowable 10% with 50% missingness using
MICE-PMM without transformations but with only 25%
missingness for all other MI approaches. The regression
coefficient estimate for X4 was extremely close to zero
and therefore the percentage bias was not meaningful
for this covariate. The percentage bias remained within
10% for the remaining five covariates, except for X5

with 50% missingness using all MI approaches and for
X1 and X6 with 75% missingness using MICE-PMM
without transformations.

Table 4 Summary of the missing data methods investigated

Method Label Method Description Library used within R
statistical software

Number of
iterations

CC Complete case analysis: Analyses only cases with complete data for all covariates -

SI Single imputation performed using PMM ’pmm’ function in ‘mice’ 20

MI-NORM Multiple imputation (MI) using data augmentation approach [31] with a multivariate
normal assumption for all variables

’norm’ [41] 100

MI-MIX MI using data augmentation approach using a general location model ’mix’ [42] 100

MI-MIX-no
truncating

MI using data augmentation approach using a general location model, but imputed
values are not truncated to within plausible range

’mix’ [42] 100

MI-MICE MI using regression switching imputation [9]. Linear model are used for continuous
covariates and logistic model for binary covariates and dummy variables for
categorical covariates

’mice’ [43] 20

MI-MICE-PMM MI using MICE with PMM ’pmm’ function in ‘mice’
[43]

20

MI-MICE-PMM-no
transformation

MI using MICE with PMM without transforming the incomplete covariates ’pmm’ function in ‘mice’
[43]

20

MI-Aregimpute MI using flexible additive imputation models [20] with PMM ’aregImpute’ function in
‘Hmisc’ [44]

1

Key: PMM = predictive mean matching; MI = multiple imputation
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For the highly skewed continuous covariates X2, X3

and X4, the least biased regression coefficient estimates
were produced when MI was performed using MICE-
PMM without transformations. In contrast, more bias
was seen for the regression estimates for X1, X5, and X6

using this approach. When the imputed values were not
truncated to within a plausible range (MIX-no truncat-
ing), all regression coefficient estimates tended to be
slightly more extreme than with all other MI
approaches.
SE of the regression coefficient estimates
The average SE estimates for the incomplete covariates
from all MI approaches were similar and fell between
the estimates from CC analysis and those obtained after
SI (Figure 3). Applying SI or MI did not affect the aver-
age SE for the complete covariates, but the estimates
after performing a CC analysis were considerably
increased, reflecting the decrease in sample size
analysed.
Coverage of the true value
Figure 4 shows the coverage of the regression coefficient
estimates for the different missing data methods in rela-
tion to an increasing percentage of MAR missingness.
The coverage of the true value within the confidence
limits constructed after performing a CC analysis
remained around the nominal 95% level for all amounts
of missingness (Figure 4). The underestimated SE with
SI resulted in much shorter confidence intervals than
with the other missing data methods and poorer cover-
age especially for the incomplete covariates and also X4.
Even with 10% missingness, the coverage for the regres-
sion coefficient estimates associated with X2 and X3 was
around 90% using SI.
The coverage using the different MI approaches

remained around the nominal 95% level irrespective of
the amount of missingness for all covariates except the
highly skewed covariates of X2, X3 and X4 (Figure 4).
The coverage for X2 and X4 fell below 90% with 75%
missingness for all MI approaches, except using MICE-
PMM without transformations for X2, which still had
coverage of 93% with 75% missingness. The coverage for
X3, the covariate with a highly skewed distribution and
the most missingness imposed, fell below 90% with 50%
missingness using MICE-PMM without transformations
and the ’aregImpute’ function, but fell below 90% with
only 25% missingness for all other MI approaches.
Significance of covariates in the prognostic model
The significance of the covariates in the prognostic
model after applying different missing data methods to
increasing percentage of MAR missingness is displayed
in Figure 5. After performing a CC analysis, all covari-
ates in the model became less significant irrespective of
their completeness, due to the reduction in sample size.
The borderline X8 dummy variable representing group 3

(>30 mm) became non-significant at the 5% level with
25% or more missingness, and the covariates X5 and X7

became non-significant with 50% or more missingness
(Figure 5).
With MI and SI, none of the covariates changed their

significance in the model at the 5% level (Figure 5).
However, the binary covariate X5 and the dummy vari-
able for X8 representing group 3 (>30 mm) became bor-
derline significant with increasing amounts of
missingness.
Model performance measures
Figure 6 provides the estimates of the model perfor-
mance measures for the different missing data methods
applied to increasing levels of MAR missingness. The
likelihood ratio statistic remained highly significant for
all missing data methods and levels of missingness (Fig-
ure 6a). However, discrepancies appeared between the
MI approaches with 50% missingness. Of the MI proce-
dures, applying MICE had the least effect on the signifi-
cance of the likelihood ratio statistic, whereas MIX
without truncating to plausible values reduced the sig-
nificance of the model the most. Estimates of both the
Nagelkerke’s R2 statistic and the prognostic D statistic
tended to worsen similarly for SI and all MI approaches
as the amount of overall missingness increased, although
slightly better R2 estimates were seen with MICE-PMM
without transformation and the ’aregImpute’ function
(Figure 6b and 6c). The overall predicted survival prob-
abilities at 2 years were relatively unaffected by the
methods used to handle the MAR data or the amount
of missingness imposed (Figure 6d).
Results from imposing other missingness mechanisms
No apparent differences from the above results for a
multivariate MAR mechanism were seen in the results
after imposing a multivariate MCAR or combined miss-
ing data mechanism. The similarity of results for the
multivariate MAR mechanism and the combined
mechanism may have occurred because the MNAR
mechanism was imposed on the covariate with the smal-
lest amount of missingness and hence this mechanism
had the least effect on the overall results.
The results from imposing a multivariate MNAR

missing data mechanism, however, showed some discre-
pancies from those seen with a MAR mechanism. The
regression coefficient estimates for X3 and X4, were
further from the true value when a MNAR mechanism
was imposed than with a MAR mechanism, but esti-
mates for X2 and X5 were slightly closer (Figure 7). The
regression coefficient estimates for X3 and X4 were
more than 0.5SE away from the true value [12] with
25% or more MNAR missingness using any MI
approach, but only with 50% or more MAR missingness
using MICE-PMM without transformations. The
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Figure 3 Average standard error (SE) estimates for different missing data methods for increasing percentage of MAR missingness
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Figure 4 Coverage of the regression coefficient estimates for different missing data methods for increasing percentage of MAR
missingness.
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Figure 5 Significance of the covariates in the prognostic model for different missing data methods and increasing percentage of MAR
missingness.
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coverage for X2, X3 and X4 was worse after MI using a
MNAR mechanism than a MAR mechanism (Figure 8).

Discussion
Using a real dataset to provide a suitable structure for
simulating the datasets, as in this study, simplifies the
data generation procedures, avoids arbitrary choices and
can aid the generalisability of the results. The simulated
data were not an exact replica of the original, but pro-
vided sufficiently strong similarities to the original data
to not warrant using more complicated semi-continuous
distributions for PGR level (X3), and ER level (X4).
Approximating the patterns of missingness seen in an

incomplete dataset provided a realistic framework for
simulating the missing data. The levels of missingness
imposed reflected those seen in a review of prognostic
modelling studies [1]. The effects of using MI when fit-
ting prognostic models were unknown. Therefore this
simulation study restricted the modelling process to
including all covariates in the prognostic model and
assuming linear relationships for all continuous covari-
ates, both in the generation of the survival times and in
the fitting of the prognostic model. Extensions of this
research could include investigating the possible
approaches for performing variable selection and fitting
fractional polynomials after MI (e.g. [34]).

Figure 6 Model performance measures for different missing data methods for increasing percentage of MAR missingness. a) Likelihood
ratio test, b) Nagelkerke R2 statistic, c) Prognostic separation D statistic and d) Predicted 2-year survival from Cox model.
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In this simulation study, performing a CC analysis
with any multivariate missingness produced less biased
regression coefficient estimates with better coverage
rates than using SI or MI. However, this benefit was at
the expense of larger standard errors and hence loss of
efficiency due to the reduction in the sample being ana-
lysed [8]. This loss in efficiency affected the significance
of the covariates in the prognostic model of the mar-
ginal prognostic covariates, making them appear non-
significant with 25% or more missingness when in fact
they were prognostically important. It is advisable to use
a CC analysis only when fitting a Cox proportional
hazards model with a reasonably small amount of miss-
ing data. Previous evidence [2,3] suggested that impos-
ing univariate MAR missingness associated with
outcome would result in biased regression coefficient
estimates when using CC analysis. Demissie et al [3]
found large biases when the MAR mechanisms were
associated with longer survival times or event status and
the covariates had large hazard ratios for survival, but

not with a hazard ratio of 1 or when the missingness
was associated with shorter survival times. Relatively
unbiased results were found in our simulations with
multivariate MAR missingness where the missingness of
X5, the binary covariate with 20% of the total missing-
ness, was associated with shorter survival times and the
hazard ratio for X5 in the prognostic model was 0.7.
Biased regression estimates may be more evident with
more missing covariate data that is highly dependent on
the outcome, especially longer survival times and event
status, and with large hazard ratios.
With multivariate missing covariate data, using SI is

not recommended with more than 10% missingness, due
to its underestimation of the variability and correspond-
ing detrimental effect on the coverage rates.
The results from performing simulations based on the

German breast cancer dataset showed some bias, espe-
cially with over 25% missingness, for all mechanisms
and MI approaches. The average SEs for all MI
approaches and mechanisms were similar. They fell

Figure 7 Comparison of the regression coefficient estimates for the different MI methods after imposing MAR and MNAR
mechanisms.
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between the inflated estimate from the CC analysis and
the underestimated SE from SI, as expected from pre-
vious research [8,35]. The coverage was unaffected and
remained around the nominal 95% level for all mechan-
isms and covariates, except for the skewed covariates.
Tang et al [36] also found that the coverage may be
poorer after MI for highly skewed data. Better coverage
rates were seen using MICE-PMM without transforma-
tions or the ‘aregImpute’ function than with the other
MI approaches and also when a MAR mechanism was
imposed rather than a MNAR mechanism.
Researchers have suggested that MI approaches are

fairly robust to departures from normality due to the
separation of the imputation and analysis phases
[12,13,37]. Any deficiencies in the assumptions and
implementation of the imputation model will only affect
the incomplete component of the dataset and not the
whole sample [38]. Having skewed continuous data and
an outcome of survival time as in this simulation study
may have affected the performance of the methods
under investigation, especially those which assumed an
underlying normal distribution for the continuous cov-
ariates, e.g. NORM, MIX and MICE. This study high-
lighted the problems that can exist when the imputation
and analysis models differ and the model assumptions
may not be fully satisfied. The bias seen in this simula-
tion study even when the MAR mechanism assumption
was correct may be an artefact of the transformations
used in the imputation process [39]. Not only are the
incomplete covariates transformed for imputation and
then back-transformed prior to analysis, but the survival

times are also transformed in the imputation model and
then fitted using an alternative model. Imputing without
transformation can reduce the bias in the mean estimate
but distort other aspects of the distributional shape [39].
Log transformations were used for the continuous cov-
ariates in the data generation process. However, as the
simulated data were then truncated to resemble the real
data, applying the same transformations in the imputa-
tion process failed to satisfy normality. No other simple
power transformations sufficiently improved normality
or provided more plausible imputations.
The inclusion in the imputation model of survival

time after log transformation and event status may not
be the optimal choice to account for the censoring pro-
cess and thus may have also introduced bias into the
results. Using the Nelson-Aalen estimate of the cumula-
tive hazard of the survival time may be more appropri-
ate in future [40]. If the hazard rates for the survival
and censoring times differ then it may be sensible to
consider these times separately in the imputation model.
The MI procedures using MICE-PMM or the ’aregIm-

pute’ function, which rely on the distributional assump-
tions only to match complete and incomplete
responders, performed better for all missingness
mechanisms than the other MI approaches. This con-
firmed the results from Faris et al [15] that with incom-
plete skewed data, MICE-PMM would be preferred to
other MI Markov Chain Monte Carlo type approaches.
However, caution is needed when using the ’aregImpute’
function, especially when the missingness is highly
related to survival, as although the estimates for the

Figure 8 Comparison of coverage estimates for the different MI methods after imposing MAR and MNAR mechanisms.
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incomplete covariates may exhibit little bias, the esti-
mates for other prognostically important covariates may
display more bias than seen with other MI approaches.
Both MICE-PMM and the ’aregImpute’ function identify
suitable matches from the observed data and therefore
additional caution is required with small samples and
with covariates with rare events as there may be a lim-
ited number of available cases to be selected as imputed
values. With skewed data, values of a few cases have a
lot of leverage that may distort the imputations and
influence the results. Therefore it is essential to examine
the distributions of the covariates requiring imputation
to determine whether transformations are likely to pro-
vide reasonable estimates for the data to be analysed.
With MICE-PMM, transforming the continuous covari-
ates produced worse estimates than simply using the
covariate values on their original skewed scale. Our find-
ings suggest that if suitable transformations do not
improve normality it is better to use MICE-PMM with-
out transformations. With a fully observed normally dis-
tributed outcome and more normally distributed
incomplete covariates and hence compatible imputation
and analysis models, MICE-PMM may not remain the
best MI approach.
In this simulation study, truncating imputed values for

the continuous covariates to within the plausible range
produced less bias than allowing implausible values.
Schafer [31] suggested rounding values for the incom-
plete binary covariate to the observed values. In these
simulations, where only 20% of the total missingness
was imposed on the binary covariate, that approach did
not produce any more bias than using the correct distri-
butional assumption, e.g. fitting logistic regression mod-
els. Biases may be more apparent when the binary
covariate has an uneven split or greater missingness
[39].
From this simulation study, with incomplete skewed

data, MI using MICE-PMM without transformations
produced precise unproblematic estimates [12] within
the allowable 10% accuracy with up to 25% missingness,
but would not be recommended with 50% or more
missingness for any missing data mechanism. Further-
more, with a MNAR mechanism, MI performed poorly
with 25% or more overall missingness. Including vari-
ables in the imputation model that help to explain the
missingness or are highly associated with the incomplete
covariates themselves, can reduce the effect of an
MNAR missing data mechanism [8]. With less enriched
imputation models, and datasets where there is little
correlation between variables, the results from the
MNAR may be even more extreme than seen here.
Further research is required to assess whether alterna-
tive MI procedures or fully Bayesian approaches that
can model the skewness of the covariate distribution

and the missing data mechanism may be more appropri-
ate when there is more than 25% missingness.
The true performance of the various missing data

methods is likely to vary in relation to the underlying
distribution of the covariates, the correlations between
these variables as well as with different missing data
mechanisms and associations between the outcome and
the covariates with missing data. Therefore, the generali-
sability of the results from this simulation study, how-
ever rigorous, is limited due to reflecting the data from
a single real prognostic study and imposing a restricted
number of missing data mechanisms. Confirmatory
investigations are required to examine the extent to
which these findings are consistent across alternative
populations, distributions and clinical contexts.

Conclusions
For approximately 10% or less missingness, it remains
unclear whether the benefits of MI, including efficiency
and utilising all data, outweigh the simplicity of a CC
analysis. With increasing amounts of missingness, the
benefits of MI over a CC analysis become clearer. When
some data are skewed, as in this simulation study,
MICE-PMM may be the preferred MI approach pro-
vided that less than 50% of the cases have missing data
and the missing data are not MNAR.
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