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Background: Multicentre randomized controlled trials (RCTs) routinely use randomization and analysis stratified by
centre to control for differences between centres and to improve precision. No consensus has been reached on
how to best analyze correlated continuous outcomes in such settings. Our objective was to investigate the
properties of commonly used statistical models at various levels of clustering in the context of multicentre RCTs.

Methods: Assuming no treatment by centre interaction, we compared six methods (ignoring centre effects,
including centres as fixed effects, including centres as random effects, generalized estimating equation (GEE), and
fixed- and random-effects centre-level analysis) to analyze continuous outcomes in multicentre RCTs using
simulations over a wide spectrum of intraclass correlation (ICC) values, and varying numbers of centres and centre
size. The performance of models was evaluated in terms of bias, precision, mean squared error of the point
estimator of treatment effect, empirical coverage of the 95% confidence interval, and statistical power of the

Results: While all methods yielded unbiased estimates of treatment effect, ignoring centres led to inflation of
standard error and loss of statistical power when within centre correlation was present. Mixed-effects model was
most efficient and attained nominal coverage of 95% and 90% power in almost all scenarios. Fixed-effects model
was less precise when the number of centres was large and treatment allocation was subject to chance imbalance
within centre. GEE approach underestimated standard error of the treatment effect when the number of centres
was small. The two centre-level models led to more variable point estimates and relatively low interval coverage or
statistical power depending on whether or not heterogeneity of treatment contrasts was considered in the

Conclusions: All six models produced unbiased estimates of treatment effect in the context of multicentre trials.
Adjusting for centre as a random intercept led to the most efficient treatment effect estimation across all
simulations under the normality assumption, when there was no treatment by centre interaction.

Background

A multicentre randomized control trial (RCT) is an
experimental study “conducted according to a single
protocol but at more than one site and, therefore, car-
ried out by more than one investigator” [1]. Multicentre
RCTs are usually carried out for two main reasons.
First, they provide a feasible way to accrue sufficient
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participants to achieve reasonable statistical power to
detect the effect of an experimental treatment compared
with some control treatment. Second, by enrolling parti-
cipants of more diverse demographics from a broader
spectrum of geographical locations and various clinical
settings, multicentre RCTs increase generalizability of
the experimental treatment for future use [1].
Randomization is the most important feature of RCTs,
for on average it balances known and unknown baseline
prognostic factors between treatment groups, in addition
to minimizing selection bias. Nevertheless, randomiza-
tion does not guarantee complete balance of participant

© 2011 Chu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:chur@mcmaster.ca
http://creativecommons.org/licenses/by/2.0

Chu et al. BMC Medical Research Methodology 2011, 11:21
http://www.biomedcentral.com/1471-2288/11/21

characteristics especially when the sample size is moder-
ate or small. Stratification is a useful technique to guard
against potential bias introduced by imbalance in key
prognostic factors. In multicentre RCTs, investigators
often use a stratified randomization design to achieve
balance over key differences in study population (e.g.
environmental, socio-economic or demographical fac-
tors) and management team (e.g. patient administration
and management) at centre level to improve precision
of statistical analysis [2]. Regulatory agencies recom-
mend that stratification variables in design should
usually be accounted for in analysis, unless the potential
value of adjustment is questionable (e.g. very few sub-
jects per centre) [1].

The current study was motivated by the COMPETE II
trial which was designed to determine if an integrated
computerized decision support system shared by primary
care providers and patients could improve management
of diabetes [3]. A total number of 511 patients were
recruited from 46 family physician practices. Individual
patients were randomized to one of the two intervention
groups stratified by physician practice using permuted
blocks of size 6. The number of patients treated by one
physician varied from 1 to 26 (interquartiles = 7.25, 11,
15; mean = 11; standard deviation [SD] = 6). The primary
outcome was a continuous variable representing the
change of a 10-point process composite score based on
eight diabetes-related component variables from baseline
to a mean of 5.9 months’ follow-up. A positive change
indicated a favourable result. During the study, the possi-
bility of clustering within physician practice and its con-
sequence on statistical analysis was a concern to the
investigators. The phenomenon of clustering emerges
when outcomes observed from patients managed by the
same centre, practice or physician are more similar than
outcomes from different centres, practices or physicians.
Clustering often arises in situations where patients are
selective about which centre they belong to, patients in a
centre or practice are managed according to the same
clinical care paths, or patients influence each other in the
same cluster [4]. Intraclass (or intracentre) correlation
(ICC) is often used to quantify the average correlation
between any two outcomes within the same cluster [5]. It
is a number between zero and one. A large value indi-
cates that within-cluster observations are similar relative
to observations from other clusters and each observation
within cluster contains less unique information. This
implies that the independence assumption which many
standard statistical models are based on is violated. An
ICC of zero indicates that individual observations within
the same clusters are uncorrelated and different clusters
on average have similar observations.

Through a literature review, we identified six statistical
methods that were sometimes employed to analyze
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continuous outcomes in multicentre RCTs: A. simple
linear regression (two sample t-test), B. fixed-effects
regression, C. mixed-effects regression, D. generalized
estimating equations (GEE), E-1. fixed-effects centre-
level analysis, and E-2. random-effects centre-level
analysis. The first four methods use patient as unit of
analysis, yet address centre effects differently [6-8]. Sim-
ple linear regression completely ignores centre effects
that are likely to arise from two sources: (1) possible dif-
ferences in environmental, socio-economic or treatment
factors between centres, and (2) potential correlation
among patients within centres. Although stratified ran-
domization attempts to minimize the impact of centre
on standard error of the treatment effect by ensuring
that the treated and control groups are largely balanced
with respect to centre, failure to control for stratification
in analysis will likely inflate variance of the effect esti-
mate. The fixed-effects model treats each participating
centre as a fixed intercept to control for possible popu-
lation or environmental differences among centres. This
model assumes that study subjects from the same centre
have independent outcomes, i.e. the intraclass correla-
tion is fixed at zero. The mixed-effects model incorpo-
rates dependence of outcomes within a centre and treats
centres as random intercepts. Proposed by Liang and
Zeger [9], the generalized estimating equation (GEE)
model extends generalized linear regression with contin-
uous, categorical or count outcomes to correlated obser-
vations within cluster. Under a commonly used and
perhaps oversimplified assumption, that the degree of
similarity between any two outcomes from a centre is
equal, an exchangeable correlation structure can be used
to assess treatment effect in Model C and D. Though
the within- and between-centre variances (o 62 and o-bz)
are estimated differently in these two models. Method
E-1 and E-2 are routinely employed to combine infor-
mation from different studies in meta-analysis [10]. One
can also apply them to aggregate treatment effects over
multiple centres [11-13]. The overall effect is obtained
as the average within-centre effect differences over cen-
tre, using inverse-variance weighting.

To date, only a few studies have been carried out to
compare the performance of statistical models in analyz-
ing multicentre RCTs using Monte Carlo simulation
[6,7,14], whereas many studies assessed the impact of
ICC in cluster randomization trials. Moerbeek et al [6]
compared the simple linear regression model, fixed-
effects regression and fixed-effects centre-level analysis
with equal centre size. Pickering et al [7] examined the
bias, precision and power of three methods: simple
regression, fixed-effects and mixed-effects regression
assuming block randomization of size 2 or 4 on a con-
tinuous outcome. In the presence of imbalance and
non-orthogonality, they found ignoring centres or
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incorporating them as random-effects led to greater pre-
cision and smaller type II error compared with treating
centres as fixed effects. Performance of the GEE
approach and centre-level methods were not
investigated in that work. Jones et al [14] compared the
fixed-effects and random-effects regression models to a
two-step Frequentist procedure as well as a Bayesian
model, in the presence of treatment by centre interac-
tion, and recommended fixed-effects weighted method
for future analysis of multicentre trials. The investiga-
tion was further expanded to assessing correlated survi-
val outcomes from large multicentre cancer trials. A
series of random-effects approaches were proposed to
account for centre or treatment by centre heterogeneity
in proportional hazards models [15,16].

A lack of definitive evidence on which models perform
the best in various situations led to this comprehensive
simulation study to examine the performance of all six
commonly used models with continuous outcomes. The
objective was to assess their comparative performance in
terms of bias, precision (simulation standard deviation
(SD) and average estimated SE), and mean squared
error (MSE) of the point estimator of the treatment
effect, empirical coverage of the 95% confidence interval
(CI) and the empirical statistical power, over a wide
spectrum of ICC value and centre size. We did not con-
sider treatment by centre interaction this study, partly
because clinicians and trialists have been making efforts
to standardize the conduct and management of multi-
centre trials via, for instance, uniform patient selection
criteria, staff training, and trial monitoring and auditing
to reduce heterogeneity of treatment effects among cen-
tres. Furthermore it is uncommon to find clinical trials
designed with sufficient power to detect treatment by
covariate interactions.

In this paper, we survey six methods to investigate the
effect of a treatment in multicentre RCTs in detail. We
outline the design and analysis of an extensive simula-
tion study, and report how model performance varies
with ICC, centre size and the number of centres. We
also present the estimated effect of the computer-aid
decision support system on management of diabetes
using different methods.

Methods

Approaches assessing treatment effects

We investigated six statistical approaches to evaluating
effect of an experimental treatment on a continuous
outcome compared with the control, for multicentre
RCTs. Assuming baseline prognostic characteristics are
approximately balanced between the treatment and con-
trol groups via randomization, we do not consider cov-
ariates other than centre effects in the models. The first
four approaches use individual patient as unit of
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analysis, while centre is the unit of analysis in the last
two approaches.

Simple linear regression (Model A)

This approach models the impact of treatment (X) on
outcome (Y) via regression technique (Equation 1). In
the context of a two-arm trial, this approach is the same
as a two-sample t-test [6].

Y = Bo + BiXjj + e, 1)

where Y;; is the outcome of the i-th patient in the j-th
centre, X;; stands for the treatment assignment (X;; = 1
for the treatment, X;; = 0 for the control), and e;; is the
random error assumed to follow a normal distribution
with mean 0 and variance o ez The intercept, 3, , repre-
sents the mean outcome for the control group in all
participating centres, and the slope 3; represents effect
of the treatment on the mean outcome.
Fixed-effects regression (Model B)
This model (Equation 2) allows a separate intercept for
each centre (fo;) as a fixed effect by restricting the
scope of statistical inference to the sample of participat-
ing centres in a RCT. Interpretation for 3; remains the
same as in Model A. Model A and B were fitted using
the linear model procedure Im( ) in R.

Yii = Boj + Xy e (2)

Mixed-effects regression (Model C)
Similar to Model B, the mixed-effects regression model
assumes that the intercept Bo; = By + b, follows a nor-

mal distribution N(f,, crg ), and is thus random effect.

In Equation 3, by; is the random deviation from the
mean intercept f3y, specific for each centre.

Yij = PBo +boj + B X +e (3)

Similar to the previous models, the within-centre
variability is reflected by 2. The variability of outcome
between-centre is captured by sz in Model C. The var-
iance and covariance of outcomes in the same or differ-
ent centres can be expressed as: Var(Y;)=oj +o;,
Cov(Yy;,Y;;) =0, Cov(Yj;,Y;y;)=0. The intraclass
correlation that measures the correlation among out-
o

2 2
O, +Gb

comes within centre is given by , assumed

equal across all centres. We fitted Model C in R via lin-
ear mixed-effects procedure ‘lme( )’ using the restricted
maximum likelihood (REML) method [17,18].
Generalized estimating equations (Model D)

The GEE method has gained increasing popularity
among health science researchers for its availability in
most statistical software. As opposed to the mixed-
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effects method that estimates treatment difference
between arms and individual centre effects, the GEE
approach models the marginal population-average treat-
ment effects in two steps: 1) it fits a naive linear regres-
sion assuming independence between observations
within and across centres, and 2) it estimates parameters
of the working correlation matrix using residuals in the
naive model and refit regression model to adjust stan-
dard error and confidence interval for within-centre
dependence [19]. As a result, the estimated impact of
treatment on the outcome in GEE model reflects the
“combined” within- and between-centre relationship.
GEE employs quasi-likelihood to estimate regression
coefficients iteratively, and a working correlation needs
to be supplied to approximate the within centre correla-
tion. When the working correlation is mis-specified, the
sandwich-based covariance estimator will lead to a
robust yet less efficient estimate of treatment effect in
GEE model [9]. Recently, statisticians found that var-
iance of the estimated treatment effect could be under-
estimated when the number of centres was small [20].
We therefore assessed the efficiency of GEE models
using procedure ‘gee( )’ in library(gee) in R. As in the
mixed-effects model, an exchangeable correlation struc-
ture was assumed in fitting Model D.

Centre-level fixed-effects model (Model E - 1)

The centre level model is a stratified analysis performed
on the mean difference in outcome between the treat-
ment and control arms within centre. The overall treat-
ment effect is estimated by a weighted average of
individual mean differences across all centres. The prin-
ciple of inverse-variance weighting is often used (Figure
1). This model is essentially a centre-level inverse-var-
iance weighted paired t-test (i.e. the treatment arm is
paired to the control arm in the same centre) to account
for within centre correlation [10]. In the absence of
intraclass correlation and under the assumption of equal
sampling variation at patient level, the inverse-variance

NN
weight reduces to U—Z for the j-th centre, which

tj + ¢j

can be further simplified as the size of centre n; = n,; +
g, given equal numbers of patients in two arms. Here
n, and n,; represent the number of patients in the treat-
ment and control group, respectively, in the j-th centre.
This form of the weighted analysis (without adjustment
for covariates) was discussed extensively by many
researchers [21-23]. We implemented Models E - 1
using the fixed-effects method for meta-analysis pro-
vided by the ‘metacont( )’ procedure in R.

Centre-level random-effects model (Model E - 2)

A random-effects approach is used to aggregate mean
effect differences not only across all participating centres
but also across a population of centres represented by
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the sample. This model factors heterogeneity of treat-
ment effect among centres (i.e. random treatment by
centre interaction) into its weighting scheme and cap-
tures within- and between-centre variation of the out-
come. One should not confuse this method with the
mixed-effects model using patient-level data (Model C).
For Model E-2, the underlying true treatment effects are
not a fixed single value for all centres, rather they are
considered random effects, normally distributed around
a mean treatment effect with between-centre variation.
Model C, on the other hand, treats centres as random
intercepts and postulates the same treatment effect
across all centres. Model E-2 does not serve as a fair
comparator to the alternatives listed here which assume
no treatment by centre interaction. Preliminary investi-
gation suggested E-2 could outperform E-1 in some
situations; we therefore included E-2 in the study to
advance understanding of these models. Details of cen-
tre level models are provided in Figure 1. Model E - 2
was carried out using DerSimonian-Laird random-effects
[24] method using the ‘metacont( )’ procedure in R. The
confidence interval for Model E - 2 was constructed
based on the within- and between-centre variances.

Study data simulation

We used Monte Carlo simulation to assess performance
of statistical models to analyze parallel group multicen-
tre RCTs with a continuous outcome. We simulated
outcome, Y, using the mixed-effects linear regression
model (Model C): Yj; = By + by; + B1.X;; + e for the i-th
patient in the j-th centre, where X;;(= 0, 1) is the
dummy variable for treatment allocation (i = 1..m;, j =
1... J). We generated random error, e, from

1\](0,0-e2 =1). We set the true treatment effect (B,) to

be 0.5 residual standard deviation (o,), an effect size

suggested by the COMPETE II trial. This corresponds

to a medium effect size according to Cohen’s criterion

[25]. To simulate centre effects, we employed the rela-
2

O - To

ol +o}

tionship between ICC and o :ICC =

fully study the behaviour of candidate models at various
ICC levels, we considered the following values of ICC
for completeness: 0.00, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50 and 0.75. This in turn set the
corresponding sz values to be 0, 1/99, 1/19, 1/9, 3/17,
1/4, 1/3, 3/7, 7/13, 2/3, 9/11, 1 and 3. However, we
focused interpretation of the results on lower values of
ICC as they were more likely to occur in practice
[26-28].

The original sample size was determined to be 84 per
arm using a two-sided two-sample t-test (Model A) to
ensure 90% power to detect a standardized effect size of
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Figure 1 A schematic of fixed- and random-effects centre-level models.

57 + heterogeneity

0.5 at 5% type I error rate. We increased the final sam-
ple size to 90 (Power increases to 91.8%) per arm to
accommodate more combinations of the number and
size of participating centres. We assumed patients were
randomly allocated to two groups with a ratio of 1:1,
the most common and efficient choice. We generated
data in nine scenarios (Table 1) to assess model perfor-
mance in three designs: (a) balanced studies where
equal numbers of patients are enrolled from study cen-
tres and the numbers of patients in the two arms are
the same (fixed by design); (b) unbalanced studies where
equal numbers of patients are enrolled from study cen-
tres but the numbers of patients in two arms within
centre may be different due to chance yet remain 1:1
allocation ratio; and (c) unbalanced studies where the
numbers of patients enrolled vary among centres, and
block randomization of size 2 or 4 is used to reduce
chance imbalance. For designs (a) and (b), we consid-
ered three combinations of centre size and number of
centres: ] = 45 centres, 4 patients per centre; ] = 18 cen-
tres, 10 patients per centre; and ] = 6 centres, 30 patients
per centre. Design (c) mimicked a more realistic sce-
nario for multicentre RCTs. For the first setup of design

(c), we grouped 180 patients to 17 centres. It was con-
structed so that the centre composition and degree of
allocation imbalance were analogous to the COMPETE
II trial but at a smaller sample size: the number of
patients per centre varying from 1 to 28; quartiles = 5,
10, 15; mean = 11; SD = 8; percentage of unbalanced
centres between 47% and 70% depending on block size.

To compare results from various models in analyzing
the COMPETE II trial, and assess accuracy and precision
of the effect estimates, we included an additional scenario
in design (c) to imitate this motivating example more clo-
sely, with respect to sample size and centre composition
(scenario 9). We generated treatment allocation (X1) and
outcome (Y) for 511 patients in 46 centres, where the
number of patients per centre was set exactly the same as
observed in the COMPETE II trial (Table 2). In particu-
lar, three centres recruiting only one patient was simu-
lated. Analogously to COMPETE 1I, a fixed block size of
6 was used to assign patients to treatments. The same
simulation model was employed as in previous scenarios
yet a separate set of parameters based on results of the
COMPETE II trial were used (Table 3): By = 1.34, ;=
126, 62 =1, o2 =7,1CC = 0.125.
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Table 1 Catalogue of simulation designs

Design Scenario  Number of Centre size ICC
centres
Balance 1 45 4
2 18 10
3 6 30
Chance 4 45 4
imbalance
5 18 10 0-0.75
6 6 30
Blocking 7 17 1,1,455,5,88,
(size = 2) 10, 10, 10
Blocking 8 17 10, 15, 15, 20, 25,
(size = 4) 28
Blocking 9 46 Same as Table 2 0.125
(size = 6)

ICC: Intraclass (intracentre) correlation.

We generated 1000 simulations for each of the 13 ICC
values under each of the first eight scenarios and 1000
simulations for the specified ICC value for the ninth
scenario. Separate sets of centre effects were simulated
for each scenario and each simulation 1-1000. We chose

Table 2 Centre composition of the COMPETE Il trial

Number of patients per centre

Number of Centres

1 3
2 0
3 1
4 4
5 1
6 1
7 2
8 3
9 4
10 3
11 5
12 3
13 2
14 0
15 3
16 3
17 0
18 2
19 2
20 1
21 0
2 1
23 1
24 0
25 1
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to simulate 1000 replicates so that the simulation stan-
dard deviation for the empirical power at a nominal
level of 90% in the absence of clustering was controlled
at 1%. This also ensured that standard deviations of the
coverage of the confidence interval and the empirical
power not exceed 1.6%.

Comparison of analytic models

We applied six statistical models to each simulated data-
set. For each model, we calculated the bias, simulation
standard deviation (SD), average of estimated standard
error (SE) and mean squared error (MSE) of the point
estimator of treatment effect (i.e. 1), empirical coverage
of the 95% confidence interval around f; and the
empirical statistical power. We constructed confidence
intervals based on t-test for Models A - C, and Wald
interval based on normal approximation for Models D
and E. We estimated bias as the difference between the
average estimate of f3; over 1000 simulated datasets and
the true effect. The simulation or empirical SD was cal-
culated as the standard deviation of the estimated f;s
across simulations, indicating precision of the estimator.
We also obtain average of the estimated SEs from 1000
simulations to assess accuracy of variance estimator
from each simulation dataset. The overall error rate of
the point estimator was captured by the estimated MSE,
enumerated by the average squared difference between
the estimated f3; and true value across the 1000 datasets.
Furthermore, we reported performance of the interval
estimators in each model. The empirical coverage was
estimated as the proportion of 95% confidence intervals
that covered the true B, and the empirical power was
the proportion of confidence intervals that rejected a
false null hypothesis, i.e. zero lies outside CI. All data-
sets were simulated and analyzed in R version 2.4.1 [29].

Results

Analysis of COMPETE Il trial data

We applied all six models to the COMPETE II data and
reported results in Table 3. Approximately equal num-
bers of patients were randomized to the intervention
and control groups within each family doctor, leading to
253 and 258 patients in the intervention and control
group, respectively. Among 46 family physicians, 11
physicians (24%) treated equal numbers of patients in
two arms, 24 physicians (52%) treated one more patient
in the intervention or control arm, 10 physicians (22%)
managed 2 more patients in either arm, and one physi-
cian (2%) managed 3 more patients in one arm com-
pared with the other.

All baseline characteristics were roughly balanced
between arms [3]. The analyses using patient-level data
produced similar estimates for 8, and the effect size was
around 0.5 times the corresponding residual standard
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Table 3 Estimates of intervention effects in COMPETE Il trial
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Model Estimate of SE 95% ClI Variance component
intervention effect

A: Simple linear regression 1.270 0.246 (0.787, 1.753) gez =7.712

B: Fixed-effects regression 1.291 0.231 (0.836, 1.745) 0'62 =6.682

C: Mixed-effects regression 1.263 0.230 (0811, 1.714) g; =6.678
o, =1.069

D: GEE 1.263 0.193 (0.884, 1.641)

E - 1: centre-level 1.397 0219 (0.967, 1.826)

Fixed-effects model

E - 2: centre-level 1.397 0219 (0.967, 1.826)

Random-effects model

SE: standard error; Cl: confidence interval; Gez : within-centre variance; sz : between-centre variance; ICC: intraclass (intracentre) correlation.

deviation. The standard error of the estimated S,
reduced from 0.25 (Model A) to 0.23 (Models B, C)
then 0.19 (Model D) when centre effects were adjusted,
leading to narrower Cls around estimated ; in Models
B - D. The intraclass correlation was estimated 0.138 in
Model C and 0.124 in Model D. The two centre-level
analyses returned slightly larger estimates of f3; than
those from the individual patient-level models. In fact
the minimal variance between physicians indicated no
noticeable heterogeneity between physicians (1> = 0, I* =
0), resulting in same estimates from E-1 and E-2. Zero
was not contained in the 95% confidence intervals,
therefore all models led to the conclusion that the
experimental intervention significantly improved patient
management over usual care based on the change of
composite process score.

Balanced design with equal centre size

Properties of point estimates

Table 4 summarizes descriptive statistics of the point
estimator of treatment effect in Models A - E for three
values in the lower range of the spectrum of ICC, in the
balanced design. The point estimates of 3; were unbiased
in all six models for all ICC values. Upon review, it was
surprising that the point estimates in Model A, ignoring
stratification and clustering, were invariant of ICC, and
that the same estimates were returned by four patient-
level models for each simulation. In fact, when treat-
ments are allocated in same proportion in all centres,
centre has no association with the treatment allocation,
hence adjusting for centre effect or not has little impact
on point estimate of the treatment - response relation-
ship given a continuous response variable. For this
reason, different ways to incorporate between-centre
information (Models B-D) led to same estimates of treat-
ment contrast in a balanced design. Same point estimates
led to same empirical SD and overall error rate (measured
by MSE) of the estimator in Models A - D regardless of
ICC. Across different ICC values and scenarios 1-3,

Models B and C yielded accurate estimates of the standard
error of ﬁ’l that approximated the empirical SD and the
true standard deviation, 0.149, calculated using the best
linear unbiased estimator of the simulation model, i.e.
Model C [18]. From Table 4 we found that the standard
error of ﬁl, in Model A increased with ICC in each sce-
nario, deviating from the corresponding empirical SD. The
standard error could be slightly underestimated in Model
D when the number of centres was small (Table 4 scenario
2 and 3 comparing empirical SD and average SE). This
agreed with previous work concerning small sample prop-
erties of the GEE model [20].

The centre-level analyses produced larger empirical SE
and MSE for ﬁl compared with the patient-level ana-
lyses given small or moderate centre sizes (Table 4).
The difference reduced as centre size increased. When
only a few patients were enrolled per centre, the fixed-
effects centre-level point estimator in Model E - 1 had
large sampling variation that was severely underesti-
mated at all ICC values. The random-effects model (E-
2) based on DerSimonian-Laird method on the other
hand seemed to yield valid SE for ﬁl that was on aver-
age greater than SEs from the patient-level models. The
average estimate of SE for ﬁl over all simulations in
Model E - 2 was always larger than estimates of SE in
Models B and C, followed by the SE estimated in Model
E - 1 across different combinations of centre size and
number of centres. In this study, although datasets were
generated so that the treatment effects were homoge-
neous among centres (i.e. no treatment by centre inter-
action), random-effects analysis using centre-level data
outperformed the fixed-effects analysis when the centre
size was small, for Model E - 2 took into account the
observed “heterogeneity” due to imprecise estimation of
the centre mean difference and the associated standard
error.

Properties of interval estimates
The empirical coverage of confidence intervals (Cls) and
the statistical power in balanced studies are displayed in
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Table 4 Properties of point estimates of the treatment
effect from Models A - E in scenarios 1 to 3
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with Models B and C. This is likely caused by underesti-
mation of the standard error in Models D and E-1, and

ICC = 0.01 ICC = 0.05 ICC = 0.20 is associated with an apparent increase of power in the
Model Mean Ave. MSE Mean Ave. MSE Mean Ave. MSE first three scenarios. For Model D, the coverage dropped
effect SE effect SE effect SE to below 90% when the number of centres reduced to
(5D) (5D) (5D) six in scenario 3. The coverage of Model E - 1 was too
Scenario 1 - balanced design, 45 centres each with 4 subjects low to be useful when studies were conducted at many
A 049 0149 0022 0499 0152 0021 0497 0167 0023 smaller centres (scenario 1). However, coverage
(0.148) (0.146) (0.151) . . .
increased gradually with centre size and approached
B ?(‘)4&68) 0.148 0022 %419496) 0.148 0021 %‘1957” 0.149 0023 959 when there were 30 patients per centre (scenario
' ‘ ‘ 3). Model E-2 presented similar coverage pattern to E-1,
C 049 0147 0022 0499 0.148 0021 0497 0.149 0.023 lth h th 1 to 95%. Models B d
0.148) 0.146) ©0157) although the coverage was closer to 95%. Models B an
o . 0
D 04% 0146 0022 0499 0146 0021 0497 0147 oop3 C largely maintained nominal power of 91.8% regardless
(0.148) (0.146) (0.151) of ICC value. Power of Model A decreased dramatically
= 0496 0066 0244 0491 0066 0206 0506 0065 0200 as ICC departed from 0, indicating that the model failed
(0494) (0454) (0.447) to adjust for between-centre variation or within-centre
£ 0499 0172 0027 0497 0170 0027 0494 0170 0026 correlation in the outcome measure. The nominal type
(0.163) (0.166) (0.162) II error rate (8%) was maintained in Models D and E -
Scenario 2 - balanced design, 18 centres each with 10 subjects 1 in scenarios 1 - 3. Model E - 2 generally had lower
A 0490 0150 0022 0504 0152 0024 0498 0166 0021 power to detect the true treatment effect due to a larger
(0.149) (0.155) (0.145) standard error that reflects both the within-centre varia-
B 0490 0149 0022 0504 0.149 0024 0498 0149 0021 bility and treatment by centre interaction. Interestingly,
(0.149) (0.155) (0.145)
C 0490 0.148 0022 0504 0.148 0024 0498 0.149 0.021 . .
(0.149) 0.155) 0.145) Table 5 Coverage of the 95% interval estimate of the
treatment effect and statistical power of Models A - E in
D 0490 0.142 0022 0504 0.143 0024 0498 0.142 0021 scenarios 1 to 3
(0.149) (0.155) (0.145)
E1 0490 0130 0032 0501 0130 0032 0498 0130 0029 Icc = 0.01 Icc = 005 IcC =020
(0.178) (0.180) 0.171) Model Cover. Power Cover. Power Cover. Power
E2 0492 0154 0027 0503 0155 0027 0498 0153 0025 of I of I of €I
(0.164) (0.165) (0.158) Scenario 1 - balanced design, 45 centres each with 4 subjects
Scenario 3 - balanced design, 6 centres each with 30 subjects A 0.952 0.901 0953 0912 0973 0.862
A 0496 0149 0022 0492 0152 0022 0504 0.164 0023 B 0.947 0.905 0.945 0924 0.951 0.899
©.149) (0149 ©.151) c 0947 0907 0944 0924 0951 0899
B 049 0149 0022 0492 0149 0022 0504 0.149 0.023
(0.149) (0.149) ©0.151) D 0.941 0911 0936 0931 0933 0.902
C 049 0.149 0022 0492 0.149 0022 0504 0.149 0.023 £ 0.286 0902 0.294 0920 0320 0912
(0.149) (0.149) (0.151) E-2 0933 0.810 0.921 0818 0.938 0.821
D 0496 0130 0022 0492 0130 0022 0504 0149 0023 Scenario 2 - balanced design, 18 centres each with 10 subjects
(0149) 0149 015D A 0955 0899 0941 0903 0973 0881
E-1 0497 0144 0023 0491 0.144 0024 0508 0.144 0.024
B 0.954 0.906 0935 0.906 0.954 0916
(0.153) (0.154) (0.156)
E-2 0497 0163 0023 0491 0.163 0023 0507 0.161 0023 < 0951 0908 0935 0906 0954 0916
(0.151) (0.151) (0.153) D 0929 0.909 0.902 0919 0.940 0924
SD: empirical standard deviation; Ave. SE: average estimated SE; MSE: mean E-1 0.845 0.904 0.835 0917 0.857 0.924
squared error; ICC: intraclass (intracentre) correlation. ) 0921 0.868 0.905 0886 0938 0875
Scenario 3 - balanced design, 6 centres each with 30 subjects
Table 5. Models B and C produced similar coverage A 093 0905 0949 0901 096 0888
close to the nominal value of 95% over different ICC B 0348 0.907 0.947 0.506 0.952 0918
values and centre composition. Model A provided con- € 0948 0907 0946 0906 0952 0918
servatively high coverage increasing with ICC, illustrat- D 0860 0915 0854 0931 0867 0929
ing that for moderate to large ICC values, CIs in Model  E-1 0939 0918 0931 0910 0926 0927
A were abnormally wide due to overestimated SE for 0952 0.867 0.949 0.846 0953 0.880

ﬁl. The empirical coverage of Cls from Model D or E -
1 on average was farther down from 95% compared

Cover. of ClI: coverage proportion of 95% confidence interval; ICC: intraclass
(intracentre) correlation.
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this power rose as the number of centres reduced and
approached 88% in scenario 3.

Overall, Models B and C had very close performance
that outweighed other models in balanced design. Mod-
els C and D converged to a solution in all simulations.

Design with equal centre size and chance imbalance
Properties of point estimates

Performance of different models in multicentre studies
of equal centre sizes, 1-to-1 allocation ratio and chance
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imbalance is displayed in Table 6 and 7. Similar results
were observed as in the balanced design, though a few
differences emerged. The unbalanced allocation of
patients into treatment arms due to pure within-centre
variation introduced chance imbalance (in both direc-
tions) into treatment - response relationship, hence
ignoring centre effects completely (as in Model A) led
to unbiased yet less efficient estimates for large ICC
values. Model B could be less precise than Model A
given small to moderate ICC values, a phenomenon

Table 6 Properties of point estimates of the treatment effect from Models A - E in scenarios 4 to 6

ICC = 0.01 ICC = 0.05 ICC = 0.20

Model Mean Ave. MSE Mean Ave. MSE Mean Ave. MSE
effect SE effect SE effect SE
(SD) (SD) (SD)

Scenario 4 - chance imbalance, 45 centres each with 4 subjects

A 0.502 0.150 0.021 0511 0.154 0.024 0494 0.166 0.028
(0.146) (0.154) (0.168)

B 0.506 0.172 0.026 0510 0.172 0.030 0496 0.172 0.032
(0.162) (0.174) (0.180)

C 0.502 0.149 0.021 0511 0.152 0.024 0496 0.159 0.027
(0.145) (0.155) (0.165)

D 0.501 0.146 0.021 0511 0.149 0.024 0496 0.155 0.027
(0.146) (0.155) (0.165)

E-1 0492 0.122 0.275 0.504 0.126 0.296 0481 0.127 0.232
(0.525) (0.544) (0.482)

E-2 0.506 0.265 0.075 0515 0.269 0.081 0490 0.260 0.081
(0.274) (0.284) (0.285)

Scenario 5 - chance imbalance, 18 centres each with 10 subjects

A 0495 0.150 0.022 0498 0.153 0.023 0497 0.166 0.028
(0.148) (0.150) (0.169)

B 0494 0.157 0.024 0498 0.157 0.023 0.500 0.157 0.026
(0.156) (0.152) 0.161)

C 0495 0.150 0.022 0498 0.151 0.022 0499 0.153 0.025
(0.148) (0.149) (0.159)

D 0494 0.142 0.022 0498 0.144 0.022 0499 0.148 0.025
(0.148) (0.150) (0.159)

E-1 0488 0.130 0.042 0498 0.130 0.039 0.503 0.130 0.042
(0.206) (0.199) (0.204)

E-2 0490 0.163 0.031 0.501 0.162 0.030 0.501 0.164 0.032
0.177) 0.172) 0.178)

Scenario 6 - chance imbalance, 6 centres each with 30 subjects

A 0.499 0.149 0.023 0.502 0.153 0.022 0510 0.164 0.027
(0.153) (0.150) (0.165)

B 0499 0.150 0.024 0.501 0.151 0.022 0.507 0.152 0.023
(0.155) (0.150) (0.151)

C 0499 0.149 0.024 0.503 0.150 0.022 0.507 0.151 0.023
(0.153) (0.149) (0.151)

D 0498 0.129 0.024 0.503 0.131 0.022 0.508 0.134 0.023
(0.154) (0.150) (0.151)

E-1 0498 0.146 0.025 0.502 0.146 0.024 0.507 0.146 0.025
(0.159) (0.156) (0.157)

E-2 0498 0.165 0.025 0.502 0.164 0.023 0.507 0.167 0.024
(0.157) (0.153) (0.154)

SD: empirical standard deviation; Ave. SE: average estimated SE; MSE: mean squared error; ICC: intraclass (intracentre) correlation.
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Table 7 Coverage of the 95% interval estimate of the
treatment effect and statistical power of Models A - E in
scenarios 4 to 6

ICC = 0.01 ICC = 0.05 ICC = 0.20
Model Cover. Power Cover. Power Cover. Power

of Cl of Cl of Cl
Scenario 4 - chance imbalance, 45 centres each with 4 subjects
A 0.954 0910 0.949 0918 0.942 0.845
B 0.966 0.846 0.946 0.822 0.931 0810
C 0.954 0912 0.945 0917 0934 0.870
D 0.948 0924 0934 0.926 0.934 0.878
E-1 0411 0.782 0417 0.793 0424 0.745
E-2 0.897 0468 0.900 0.501 0.887 0468
Scenario 5 - chance imbalance, 18 centres each with 10 subjects
A 0.954 0.898 0.949 0.900 0.942 0.843
B 0.946 0.874 0.959 0.891 0.937 0.891
C 0.952 0.898 0951 0.904 0939 0.895
D 0922 0916 0932 0911 0910 0.900
E-1 0.776 0.868 0.794 0.890 0.791 0.895
E-2 0.905 0810 0918 0.834 0918 0.839
Scenario 6 - chance imbalance, 6 centres each with 30 subjects
A 0.950 0.897 0953 0.905 0.961 0.860
B 0.949 0.892 0.954 0.907 0.961 0916
C 0.950 0.897 0.952 0.905 0.959 0910
D 0.856 0911 0.879 0918 0.874 0.908
E-1 0922 0.904 0.931 0.921 0931 0913
E-2 0.944 0.831 0.951 0.867 0.955 0.857

Cover. of Cl: coverage proportion of 95% confidence interval; ICC: intraclass
(intracentre) correlation.

previously reported by Pickering and Weatherall [7]. As
in the balanced design, the fixed- and random-effects
models performed comparably for various ICC values,
largely because the fixed and random intercepts for
study centres cancelled out in estimating effect contrast
when we fit Models B and C, and had little impact on
the estimation of the fixed effect contrast across centres.
However, the fixed-effects model produced larger
empirical standard deviation and average standard error
in scenario 4, a study being composed of many centres
each managing a few patients. Adjusting for between-
centre variation as random effects in Model C or using
population-averaged analysis in Model D allowed to
borrow information across centres and resulted in
greater precision.

Properties of interval estimates

Similar results were observed relative to the balanced
design. Patient - level models A - C guaranteed nominal
coverage of confidence intervals at different ICC values,
whereas the other models were likely to produce lower
coverage under certain conditions. Among all models,
Models C and D achieved the best empirical power that
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was closest to the nominal value of 91.8% across differ-
ent centre sizes. When centre size was small and the
number of centre was large (scenario 4), power for
Models C and D also decreased with ICC, a pattern that
was less obvious in scenarios 5 and 6. Models C and D
achieved convergence in analyzing all simulated datasets.

Design with unequal centre sizes and chance imbalance

The properties of point and interval estimates in the sce-
narios 7 and 8 (with unequal centre sizes and chance
imbalance) were close to results in the previous two
designs. In particular, the comparative performance of
six models lay in the middle ground between scenarios 2
and 5, as the level of imbalance between two treatments
was no more than half of the block size within centres.
As similar results were observed for block sizes 2 and 4,
summary statistics based on block size 4 were plotted in
Figure 2, 3, 4 and 5. Results suggested that unequal cen-
tre size had little impact on model performance, yet it
was associated with slight enlargement of the empirical
variance of ﬁ'l in Model E - 1. To summarize, although
all six models produced unbiased point estimates, the
fixed- and mixed-effects models using patient-level data
provided the most accurate estimates of the standard
error of Bl given large ICC values, hence should be used
in the analysis of multicentre trials when the ICC was
nontrivial or unknown to control type I and type II error
rates. For studies consisting of a large number of centres
with only a few patients per centre, adjusting for centre
as mixed effects produced most precise point estimate of
treatment effect, hence were more preferable. The infor-

mation sandwich method appeared to slightly
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Figure 2 Empirical standard deviation (SD) across 1000
simulations by ICC for scenario 8 (block size = 4).
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Figure 3 Average of standard error (SE) across 1000
simulations by ICC for scenario 8 (block size = 4).

_

underestimate the actual variance when patients were
recruited from 17 centres in scenarios 7 or 8. Due to
varying centre sizes, Model D did not converge for all
simulated datasets (number varied between 1 and 93 out
of 1000 simulations) after 2000 iterations, when ICC was
less than or equal to 0.1 or greater than 0.4 for block size
of 2 or 4. Such datasets were excluded for all models and
extra data were simulated to attain a total number of
1000 simulations for any ICC value. In most cases, the
non-convergence of GEE occurred due to a non-positive
definite working correlation matrix.

o
= ] +
- pp——————
/+7+_+\+/+
%’%ft:;L R?ik‘ié:,\x—,.x«x— X mmm e ey
B Rty R VAR SN SR VAt v e e \v4
. Y=8ly B0 V-
o | 8/0 \0\0/ \0_0/070 o
o o
[
o
[
>
o
o
3 N
o7l a Ao N
\  AmATTTA ~
A-A \A/A/ A A
~
S 7 — Model A
~% Model B
- Model C
—- Model D
© 4~ Model E-1
o 7 -¥- Model E-2
T T T T T
0.0 0.2 0.4 0.6 0.8
ICC
Figure 4 Coverage of 95% Cl by ICC for scenario 8 (block size
= 4).
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Figure 5 Empirical power by ICC for scenario 8 (block size = 4).

In scenario 9, as a result of mimicking the particular
centre composition of the COMPETE 1I trial, on average,
three centres out of 46 contained no patients in one of
the treatment groups per simulation. These centres were
removed from the fixed-effects model (Model B), as no
comparison patients in the same centre were available.
About six centres out of 46 recruited less than two
patients per treatment arm for each simulation. These
centres were dropped from the centre-level analyses, as
the standard error for treatment difference per centre
could not be obtained as input variables for ‘metacont( ).
Performance of six models in scenario 9 was similar to
that in scenarios 7 and 8, although point estimates from
all models appeared to be marginally biased toward the
null (Table 8). Estimates from patient-level models were
more precise and closer to 0.230, the best linear unbiased
estimate of standard error based on the simulation
model. Once again, the standard error was slightly biased
upward in Model A and marginally biased downward in
Model D. This resulted in wider and conservative interval
estimates from Model A and slightly narrower intervals
from Model D. Models B and C performed comparably,
probably because on average only three centres each con-
taining one patient were dropped from Model B, which
did not affect the variance estimation much. Models C
and D achieved convergence for all 1000 simulations in
this scenario.

Discussion

In this paper, we investigated six modelling strategies in
a Frequentist framework to study the effect of an experi-
mental treatment compared to the control treatment in
the context of multicentre RCTs with a continuous
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Table 8 Properties of point and 95% interval estimates
calculated from Models A - E based on 1000 simulated
datasets in scenario 9 - unbalanced, 46 centres, same
centre composition as the COMPETE Il trial

SCENARIO 9

Model Mean effect Ave. MSE Cover. Power
(SD) SE of Cl

ICC=0.125

A 1.254 0.249 0.056 0.965 0.999
(0.236)

B 1.253 0.236 0.058 0.952 1
(0.240)

C 1.253 0.235 0.056 0.949 0.999
(0.237)

D 1.253 0.230 0.056 0.944 0.999
(0.237)

E-1 1.256 0.207 0.165 0.787 0.991
(0.405)

E-2 1.257 0.261 0.073 0.935 0.995
(0.270)

SD: empirical standard deviation; Ave. SE: average estimated SE; MSE: mean
squared error; Cover. of Cl: coverage proportion of 95% confidence interval;
ICC: intraclass (intracentre) correlation.

outcome. We focused on three designs with equal or
varying centre sizes and a treatment allocation ratio of
1:1 in the absence of treatment by centre interaction.
Results of this simulation study showed that, when the
proportion of patients allocated to the experimental
treatment was the same in each centre or subject to
chance imbalance only, models using patient-level and
centre-level data yielded unbiased point estimates of
treatment effect across a wide spectrum of ICC values.
Ignoring stratification by centre or within-centre corre-
lation did not bias the estimated treatment effects even
when ICC was large. In fact, Parzen et al showed that
mathematically the usual two-sample t-test, naively
assuming independent observations of the response
within centre was asymptotically unbiased in this con-
text [30].

The simulation study also indicated that these models
produced different standard errors of ﬁl , and the proper-
ties of interval estimates were affected by several factors:
whether and how centre effects were incorporated in ana-
lysis, the combination of centre size and number of parti-
cipating centres, and the level of non-orthogonality of the
observed data. Treating centre as a random intercept
resulted in the most precise estimate, and nominal values
of coverage and power were attained in all circumstances.
The fixed-effects model had extremely similar perfor-
mance compared with the mixed-effects model in
balanced design, but was slightly less efficient when the
number of centres was large (J > 20) in an unbalanced
design. Pickering and Weatherall observed the same pat-
tern in their simulation study comparing three patient-
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level models with small ICC values [7]. The GEE model
using information sandwich covariance method tended to
underestimate the standard error across centre effects
when the sample of centres was small, a property noticed
by researchers [20,31]. This resulted in higher statistical
power. That is, the treatment effect estimate was more
likely to be significant with a smaller standard error, but
was associated with a lower coverage of the conference
interval. Marray et al suggested that at least 40 centres
should be used to ensure reliable estimate of standard
error in the context of cluster randomized trials [32]. Our
simulation results suggested that such cut value was also
applicable to multicentre RCTs. Failure to control for cen-
tre effects in any form resulted in inflation of standard
error, falsely high interval coverage and sizable drop of
power, as ICC increased. Parzen et al quantified the
impact of correlation among observations within centre
on the variance of ﬁl in Model A as 1/(1-ICC) [30]. Alter-
natively, one may consider a variant of robust variance
estimation or a GEE model with an independent working
correlation to control for the impact of ICC on variance
estimation using t-test. Centre-level models generally pro-
duced larger standard errors, lower coverage or power
than the patient-level models. Centre-level random-effects
model incorporated variability of the treatment effect over
centres, and was not a fair comparator to other models.
Interestingly, this model seemed to fare better than the
centre-level fixed-effects model in terms of precision and
coverage even though the simulated datasets contained no
treatment by centre interaction. Despite that the random-
effects centre-level model may be a reasonable alternative
for patient-level models when the number of patients per
centre is large (>30), centre-level models cannot adjust for
patient-level covariates, a potential fatal drawback in the
presence of patient prognostic imbalance.

Statisticians have different viewpoints on treating cen-
tre effects and treatment by centre interaction as fixed
or random effects when analyzing multicentre RCT's
[12,13,21,33]. Our simulation results demonstrated the
advantage of treating centres as random intercepts in
the absence of treatment by centre interaction. When
many centres enrol a few patients and allocation is
unbalanced, the random intercept models can give more
precise estimates of the treatment effect than the fixed
intercept models, because they recover inter-centre
information in unbalanced situations. For instance, in a
multicentre RCT consisting of 45 centres each recruiting
4 patients, the empirical variance of the estimator of the
treatment effect resulting from the fixed-effects model
was 24.8% and 26.0% greater than that from the ran-
dom-effects model when the ICC was 0.01 and 0.05,
respectively. In the sentence alluded to, we need to
compare the empirical variance of 0.162* with the value
of 0.145% for ICC = 0.01, and 0.174 to 0.155" for ICC =



Chu et al. BMC Medical Research Methodology 2011, 11:21
http://www.biomedcentral.com/1471-2288/11/21

0.05 (Table 6 scenario 4). We therefore take the same
position as Grizzle [33] and Agresti and Hartzel [12]
that, “Although the clinics are not randomly chosen, the
assumption of random clinic effect will result in tests
and confidence intervals that better capture the variabil-
ity inherent in the system more realistically than clinical
effects are considered fixed”.

Our results have some implications for the design of
multicentre RCTs in the absence of treatment by centre
interaction. First, regardless of the pre-determined allo-
cation ratio, permutated block randomization (of rela-
tively small block sizes) should be used to maintain
approximate balance or orthogonality (i.e. same treat-
ment allocation proportion across centres [7]) between
treatments and centres, so that their individual effects
can be evaluated independently. Variable block sizes can
be used to strengthen allocation concealment. Second,
for a given sample size, the number of patients rando-
mized in majority of centres should be sufficiently large
to ensure reliable estimate of within-centre variation.
Third, it is essential for investigators to obtain a rough
estimate of ICC for within-centre responses, through lit-
erature review or a pilot study. To reach nominal power
of 80% or 90% (in the absence of clustering), centre
effects should be taken into consideration in sample size
assessment. When centre effects are included without
treatment by centre interaction, the analysis becomes
more powerful than a two-sample t-test. One method to
assess sample size is to start with a two sample t-test
for continuous outcomes (ignoring centre effect) then
multiple the original estimated error variance by an var-
iation inflation factor of 1/(1-ICC). This factor would
have the effect of increasing the required sample size.
Ignoring centre effects results in the larger sample size
in the absence of interaction. Sample size determined
using information sandwich covariance of GEE model
could lead to slight loss of power, when the number of
centres is small (240) and no proper adjustment is done.
Lastly, there is no particular reason to require equal
numbers of patients being enrolled in all participating
centres and this is seldom the case in practice. Through-
out the simulations, we observed similar results for stu-
dies of equal and varying centre sizes. In the study, we
considered three scenarios representing the particular
centre composition of the COMPETE II trial. For dis-
cussion on potential impact of enrolment patterns on
the point and interval estimates of treatment effect,
readers can refer to the publications on random enrol-
ment verse determined enrolment, and relative efficiency
between equal and unequal cluster sizes in the reference
list [34,35].

The current ICH E9 guideline recommends that
researchers investigate treatment effect using a model
that allows for centre differences in the absence of
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treatment by centre interaction [1]. However, it is
implausible or impractical to include centre effects in
statistical modelling or stratify randomization by centre,
when it is anticipated from the start that trials may have
very few subjects per centre. As it is acknowledged in
the document, these recommendations are based on
fixed-effects models. Mixed-effects models on the other
hand may also be used to explore the centre and centre
by interaction effects, especially when the number of
centres is large [1]. Our simulation results indicated that
when a considerable number of centres contains only a
few patients, adjusting for centre as a fixed effect may
lead to reduced precision (depending on distribution of
patients between arms) compared with the naive unad-
justed analysis. Our work complements the ICH E9
guideline, by studying the impact of intraclass correla-
tion on the assessment of treatment effects - a challenge
that is seldom discussed, although routinely faced by
investigators in reality. Our investigation suggests that,
(1) ignoring centre effects completely may cause sub-
stantial overestimation of the standard error, faulty
increase of coverage of the confidence interval and
reduction of power; and (2) mixed-effects models and
GEE models, if employed appropriately, can produce
accurate and precise effect estimates, regardless of the
degree of clustering. We recommend consider these
methods in developing future guidelines.

When the number of patients per centre is very small,
it is not practical to include centre as a fixed effect to
analyze patient-level data, as centre effects cannot be
reliably estimated, and precision of the treatment effect
will be compromised. In fact for extremely small cen-
tres, all patients may be allocated to the same treatment
group, and such centres will be ignored by the fixed-
effects model [36-39]. The alternatives include
collapsing all centres to perform a two-sample t-test,
collapsing smaller centres to create an artificial centre
and treating it as a fixed effect, and exploring other
models discussed above. The mixed-effects model uti-
lizes small centres more efficiently by “borrowing” infor-
mation from larger centres. The GEE approach models
the average treatment difference across all centres and
adjusts for centre effects through a uniform correlation
structure. This is an intuitively more efficient model
which unfortunately does not always converge when the
number of patients per centre was highly variable (simu-
lation scenarios 7 and 8). In the current study, non-con-
vergence problems were more likely to arise for very
small or large ICC values (less than 0.1 or greater than
0.4 for block size 2 or 4) due to non-positive definite
working correlation matrices, and the frequency could
be as big as 10% after 2000 iterations. Conversely, con-
vergence problems did not occur for the mixed-effects
models in any scenarios. Our results show that analysis
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of trials consisting of very small centres (i.e. those con-
taining less than 2 patients per arm) using centre-level
models may not be an optimal strategy, because the
within-centre standard deviation of treatment difference
cannot be estimated for such centres, and consequently
these very small centres are excluded from the analysis.

Results of two large empirical studies and one sys-
tematic review of cluster RCTs in primary care clinics
suggested that most ICC values on physical, functional
and social measures were less than 0.10 [26-28]. The
estimated ICC in the COMPETE II trial using GEE and
linear mixed-effects model, on the other hand, was
0.124 and 0.138, respectively. We chose to include rare
yet possible large ICC values (0-0.75) in this simulation
to examine the overall trend of model performance by
ICC, and for the purpose of completeness and generaliz-
ability. Readers should anticipate the ICC values likely
to emerge from their studies when interpreting these
results. Throughout the work, we quantified correlation
among subjects within centre using ICC, the most com-
monly used concept to assess clustering in biomedical
literature. As indicated in previous sections, ICC reflects
the interplay of two variance components in multicentre
data: the between-centre variance and within-centre var-
iance. These variance components are relatively easy to
interpret for analysis of continuous outcomes using lin-
ear models. For analysis of binary or time-to-event data
from multicentre trials using generalized mixed and
frailty models, interpretation of centre heterogeneity can
present challenges because random effects are linked to
the outcome via nonlinear functions [40]. Reparameteri-
zation of the probability density function may be used
to assess the impact of within- and between-centre var-
iance. Interested readers can refer to Duchateau and
Janssen [40] for more details.

A major limitation of the study is that it did not
address model performance when the treatment by cen-
tre interaction exists. The interactions may be due to
different patient populations or variable standard of
care. Interested readers may read Moerbeek et al [6] for

formulas of variance of Bl in different models and

Jones et al [14] for simulation results. Future studies
addressing interaction effects in multicentre RCTs are
needed. Datasets in the current paper were generated
based on a moderate treatment effect reflected by the
standardized mean difference between the treatment
and control group. More or less prominent treatment
effects are also likely to occur in clinical studies and
similar findings are expected. The current study investi-
gated on continuous outcomes in two groups from a
Frequentist perspective. The models discussed above
can be naturally extended to compare three or more
treatments. Agresti and Hartzel [12] surveyed different
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methods to evaluate treatments for binary outcomes in
multicentre RCTs. Non-parametric approaches and
Bayesian methods are also available to obtain treatment
contrast. Interested readers can refer to Aitkin [41],
Gould [11], Smith et al [42], Legrand et al [16], and
Louis [43], to name a few.

Conclusions

We used simulations to investigate the performance of
six statistical approaches that have been advocated to
analyze continuous outcomes in multicentre RCTs. Our
simulation study showed that all six models produced
unbiased estimates of treatment effect in individual
patient randomization multicentre trials. Adjusting for
centre as random effects resulted in more efficient effect
estimates in all scenarios over a wide spectrum of ICC
values and various centre compositions. Fixed-effects
model performed comparably to the mixed-effects
model under most circumstances but lost efficiency
when many centres contained a relatively small number
of patients. The GEE model underestimated standard
error of the effect estimates when a small number of
centres were involved, and did not always converge
when the centre size was variable for very large or small
ICC values. Two-sample t-test severely overestimated
standard error given moderate to large ICC values. The
relative efficiencyof statistical modelling of treatment
contrasts was also affected by ICC, distribution of
patient enrolment, centre size and the number of
centres.
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