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Optimizing cost-efficiency in mean exposure
assessment - cost functions reconsidered
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Abstract

Background: Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The
present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure
assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified
budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost
models; this study extends the methodology to cover even non-linear cost scenarios.

Methods: Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value,
as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a
corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of
measurements according to a power function. Using these models, procedures for identifying the optimally cost-
efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios
combining different sizes of unit costs, cost function exponents, and exposure variance components.

Results: Explicit mathematical rules for identifying optimal allocation could be developed when cost functions
were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be
carried out using numerical methods.
For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as
many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting
subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-
subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the
optimal allocation and on the eventual size of the exposure data set.

Conclusions: The analysis procedures developed in the present study can be used for informed design of
exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting
and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however
impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios.

Background
Reliable exposure assessment is a vital concern in medi-
cal epidemiology and intervention research. In occupa-
tional as well as public health studies, exposure is often
monitored using equipment that allows data to be col-
lected at a high resolution for long periods and on
repeated occasions (e.g. [1-4]). A considerable emphasis
has been put on developing and applying methods for
analyzing sources of exposure variability in such data, in

terms of so-called variance components [5-8]. As an
example, variance components pertaining to, e.g. com-
panies, occupations, subjects, days within subjects, and
exposure samples within days have been determined for
a large number of airborne, dermal, and biomechanical
exposures in working life (e.g. [2,3,9-15]). These variance
components have been utilized as a remedy for identify-
ing targets for surveillance, intervention and prevention
[6,16,17], as well as for designing effective exposure
assessment strategies producing information at a desired
level of precision. While an extensive literature deals
with the consequences of random exposure variability to
bias and precision in exposure-outcome relationships
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[18-22], some attention has also been paid to the use of
variance components for estimating sampling needs in
studies examining compliance with exposure limits [6],
and in studies comparing groups [12] or conditions [13]
as in an intervention scenario. In the latter case, the
requirement for reliable exposure data can be expressed
as a need to obtain estimates of the mean exposure of
individuals or groups with a sufficient precision to arrive
at a confidence interval of acceptable size, or secure an
acceptable statistical power in a specified hypothesis
test. Generalized formulae are available for estimating
statistical efficiency, i.e. the relationship between the
precision of a mean exposure estimate, on the one hand,
and, on the other, the size of relevant variance compo-
nents, and the number of measurements at the corre-
sponding sampling stages [23,24]. The most frequently
applied measurement model is hierarchical and random
with two or three nested stages, for instance subjects
and days within subjects [2,25,26]; subjects, days within
subjects and samples within days [12,27]; or groups,
subjects within groups, and days within subjects [28]. A
few attempts have been made to apply more compli-
cated models, e.g. including crossed (non-nested) com-
ponents related to the distribution of measurement days
among subjects [29] or associated with methodological
variance [11]. Also, mixed models including fixed deter-
minants of exposure in addition to random effects are
in increasing use [13,30-33].
Some studies have been devoted particularly to under-

standing the effects on the precision of an estimated
group mean exposure of allocating measurement efforts
in different ways between and within subjects [12],
between occupational recordings and data processing
[11], or across time within a measurement day [34,35].
This had led to a number of principles for statistically
efficient exposure assessment, i.e. measurement strate-
gies that perform well at a specified investment of mea-
surement resources, or, equivalently, yield a specified
performance with comparatively small measurement
efforts [12,34]. As one trivial conclusion, more data gen-
erally leads to better statistical performance, and
furthermore, efficiency increases if measurements are
allocated to higher sampling stages in the hierarchical
model [23].
At the same time, more measurements inevitably

imply larger monetary costs. While budget constraints
are the pragmatic reality in most exposure assessments,
surprisingly few studies have addressed the issue of how
to design a measurement strategy so as to give the best
possible statistical efficiency at the available monetary
resources [36]. This endeavor is not equivalent to
addressing statistical efficiency per se, as introduced
above, since measurements at different stages may entail
different costs. For instance, increasing the number of

groups may be considerably more expensive than col-
lecting data from more subjects in an existing group;
and the process of identifying and approaching a new
subject may be more expensive than achieving more
measurements from a subject already in the sample
population. Also, different measurement instruments
yielding the same exposure variables may imply different
costs, in particular if the risk of measurement failures is
acknowledged [37]. Of the limited literature devoted to
efficiency and cost in data collection, some studies com-
pare a selection of measurement strategies in order to
identify the one superior in cost-efficiency [38-41]. A
few studies take on the more challenging task of deter-
mining the optimally cost-efficient strategy at a certain
budget, on the basis of specified costs for collecting data
at different stages, and specified sizes of the correspond-
ing variance components. The general significance of
examining cost-efficiency in data collection is illustrated
by previous studies appearing in a variety of research
areas, including occupational hygiene [38], environmen-
tal medicine [39,42,43], clinical chemistry [44], and
nutrition [45].
Basically, optimization in the case of exposure assess-

ment strives to identify data collection strategies at the
frontier of possible relationships between cost and sta-
tistical efficiency (figure 1).

an
ce

Va
ria

Possible, but less favorables2 *

FrontierN t ibl

Total costc*

Not possible

Figure 1 The notion of optimal cost-efficiency. The horizontal
axis illustrates the total cost associated with an exposure
measurement strategy, and the vertical axis shows the variance of
the resulting mean exposure. The frontier curve illustrates the
minimal obtainable variance at each level of spending, i.e. the best
possible statistical performance, e.g. s2μ*, at a particular total cost, e.
g. c*. Strategies above the frontier are, in principle, possible, but do
not yield an optimal performance. No strategies occur below the
frontier.
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Previous optimization studies have addressed hierarch-
ical models with two [45-47] or three [43,44,47] stages,
as well as the optimal allocation of measurements
between two alternative yet correlated instruments for
data collection [42,48,49]. All these studies have, how-
ever, assumed that the price of one measurement unit at
each stage is constant, implying that costs increase in a
linear fashion at that stage, proportionally to the num-
ber of samples. Only in an appendix of the paper by
Duan and Mage [42], an empirical example appears of
the quite likely case that costs may vary with the num-
ber of measurements; for instance that subjects recruited
late in a study may require more time for being per-
suaded, and thus entail larger labor costs, than subjects
signing up immediately. Also, in his textbook on sam-
pling strategies, Cochran [47] reports some non-linear
cost functions in other areas of data collection, and
additional examples appear in Groves [50]. In addition,
the cited cost-efficiency studies do not, in general, con-
sider whether the identified optimal strategies are feasi-
ble under the constraints dictated by a specified, yet
limited budget.
Thus, the present paper is devoted to deriving meth-

ods for optimizing exposure assessment strategies, in
terms of offering the best possible trade-off between
total costs and statistical efficiency. In contrast to pre-
vious literature, this study explores optimal cost-effi-
ciency even when cost functions are not linear and
budget constraints apply, and the study also identifies
alternative optimization procedures in those cases where
analytical closed-form solutions cannot be developed.
First, the paper presents a general theoretical model of

cost and efficiency when assessing exposure mean values
in occupational groups, including some theoretical
results based on that model. Then, the general model is
simplified, and procedures are derived for identifying
optimally cost-efficient exposure assessment strategies,
depending on the shapes of cost functions. These results
are illustrated by numerical examples. A general discus-
sion on the representativeness and sensitivity of the sug-
gested optimization procedures concludes the paper.

Methods
A framework for cost-efficient exposure assessment
Exploring cost-efficiency at an ordinal level only
requires a specification of the properties of the mathe-
matical function associating each exposure assessment
strategy with its stated statistical objective. If, however,
the goal of the cost-efficiency analysis is to compare or
optimize strategies in explicit, quantitative terms, speci-
fic functional forms need be identified that parameterize
objectives and costs. This is a necessary requirement
when aiming at the (occasionally more than one) strat-
egy that maximizes efficiency among the large selection

of possible assessment strategies entailing a particular
cost.
Thus, three major issues must be considered as part of

a quantitative analysis of cost-efficient resource con-
sumption: (1) why resources are used, i.e. the objective
of collecting data, (2) how much resources are required
to fulfil the objective, expressed in terms of unit-costs,
and (3) whether the intended strategy for resource con-
sumption is feasible. When examining cost-efficient
assessments of group mean exposure we thus need to
know (1) the relationship between the group mean and
the assessment strategy, as reflected by what is usually
referred to as the objective function, (2) the amount of
monetary resources required to realise a particular
assessment strategy, expressed by the cost function, and
(3) the amount of monetary resources at our disposal, as
reflected by the budget constraint.

The objective function - precision of the mean
For a hierarchical three-stage balanced data set (sub-
jects, occasions within subject, samples within occasion),
the group mean exposure, μ, can be estimated using a
“mean of means” approach [23] as:

μ =
1
ns

∑
i

(
1
nd

∑
j(i)

(
1
nq

∑
k(ij)

xk(ij)))

Where xk(ij) is an individual exposure sample, collected
from subject i on occasion j; ns is the number of sub-
jects included in the data set; nd is the number of dis-
tinct measurement occasions, for instance days, per
subject; and nq is the number of samples, or quanta, per
measurement occasion. Accordingly, averaging is made
across quanta within each occasion, then across occa-
sions within each subject, and finally across subjects.
A general formula for determining the variance of this

group mean exposure estimate, s2μ, has been proposed
and applied by several authors [12,23,44,47]. This objec-
tive function takes the form:

s2μ(ns,nd,nq) =
[
s2BS +

s2BD
nd

+
s2WD

nd · nq

]/
ns (1)

s2BS, s
2
BD, and s2WD are the variances between subjects,

between measurement occasions within each subject, and
between quanta within occasions, respectively. The size
of a quantum can be defined as convenient, and previous
studies have used quanta of, for instance, one minute
[34,51], one work cycle [11,13,52,53], several consecutive
work cycles [12,54], and one hour [55]. Thus, equation
(1) gives an estimate of the precision of a group mean
exposure resulting from a particular measurement strat-
egy in terms of subjects, occasions and quanta, in a set-
ting with known components of exposure variability.
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The cost function
While all cost functions suggested in the literature have
been linear, the cost associated with collecting nqquanta
on each of nd occasions for each of ns subjects can be
assessed even in a non-linear case, provided that infor-
mation is available on the “capability” to recruit subjects,
that is, the amount of resources needed for recruiting
any specific number of subjects, and the equivalent cap-
abilities for setting up measurement occasions within
each subject and collecting quanta within each occasion.
Assume first that these three capabilities are all homo-

geneous of degree k, in the sense that if all resources are
multiplied by a certain factor, x (x > 1), output will
increase by xk. This is a common assumption in eco-
nomics addressing non-linear production capabilities.
For example, if k = 1 and resources allocated to the pro-
cess of recruiting subjects are doubled, then the number
of subjects recruited will also double; this is simple pro-
portional linearity. In the case of k = 0.5, doubled
recruitment resources would lead to an increase in the
number of recruited subjects by a factor 21/2 =

√
2.

Assume further that the resources needed for setting up
nd measurement occasions, each containing nqquanta,
do not depend on the subject from whom data are col-
lected, and the resources needed to collect nq quanta on
a particular measurement occasion for a particular sub-
ject are independent of occasion and subject.
The first of these two assumed capability properties

allows cost functions for recruiting subjects, cs, setting
up measurement occasions within each subject, cd, and
collecting measurement quanta within each occasion, cq,
to be expressed as: cs(ns) = πs · nα

s ; cd(nd) = πd · nβ

d; and

cq(nq) = πq · nγ
q,

where the π-values are the costs for obtaining one
measurement unit at each stage of data collection, so-
called unit costs, and a, b and g are parameters, all lar-
ger than 0, describing the shape of a power relationship
between the number of measurement units and costs.
The relationship between the value(s) of π and the

exponents a, b and g can be illustrated by examining
the cost functions. If, for instance, a = 1, the cost of
recruiting ns subjects is cs(ns) = πs ⋅ns, i.e. the cost
increases in direct proportion to the number of subjects.
In this case, πs is the one-unit cost (cs (1) = πs), as well
as the marginal cost of recruiting any additional subject
(∂cs/∂ns = πs). If a ≠ 1, πs is still the one-unit cost, but
the marginal cost is now ∂cs

/
∂ns = πs · α · nα−1

s . Thus, if
a > 1, the marginal cost of including an additional sub-
ject increases with the number of subjects, while it
decreases when 0 <a < 1.
The second capability property assumed above implies

that the total cost of collecting a data set including ns
subjects each observed for nd occasions, each containing

nq quanta can be stated as cs (ns) + ns cd (nd) + ns nd cq
(nq), which equals:

c(ns,nd,nq) = πs · nα
s + πd · ns · nβ

d + πq · ns · nd · nγ
q (2)

This cost function presents a generalisation of pre-
viously suggested linear cost functions [43,44,46] by per-
mitting both linear and non-linear relationships between
the sample size at different stages of data collection and
the cost of obtaining data. With (a, b, g) = (1,1,1), equa-
tion (2) takes the customary linear form used in pre-
vious studies. Notably, equation (2) only expresses the
variable costs associated with measurement; possible
fixed costs, which do not depend on the number of
samples, need to be added to give the total cost of col-
lecting the data set, but will not affect the optimization
procedures developed below [41,43].

The general optimization problem
If a data collection is allowed to consume a total budget
R (after possible reduction by fixed costs), combinations
of ns, nd and nq that optimize the output, i.e. minimize
the resulting variance of the estimated mean exposure,
can be retrieved by solving the following optimization
problem:

Minimize s2μ(ns,nd,nq) =
[
s2BS +

s2BD
nd

+
s2WD

nd · nq

]/
ns

with respect to ns, nd, nq; subject to the constraint:

c(ns,nd,nq) = πs · nα
s + πd · ns · nβ

d + πq · ns · nd · nγ
q ≤ R,

ns ≥ 1;nd ≥ 1;nq ≥ 1.

Due to the non-linear property of this three-variable
equation system, explicit solutions for optimization can
be derived only in exceptional cases. Moreover, solu-
tions to a three-variable problem are difficult to illus-
trate graphically. Therefore, the following analysis will
be limited to cases in which the number of quanta, nq,
within each measurement occasion is not a choice vari-
able. This situation occurs for instance when exposure
is assessed for complete days, or when the within-day
schedule of data sampling cannot or should not be
manipulated for reasons of logistics or feasibility.

The two-variable reduction
Given a predetermined number of sampled quanta
within each measurement occasion, the general optimi-
zation problem above is reduced to the two-variable
problem of identifying optimal values of ns and nd. This
allows graphical illustrations of the problem and its
solutions. It also opens for further simplification into
one-variable optimisation problems, which in many
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cases can be solved explicitly, as shown in the results
section.
The two-variable problem takes the form:

Minimize s2μ(ns,nd) =

[
s2BS +

s2BD + s2μWD

nd

]/
ns (3)

with respect to ns, nd; subject to the constraint:

c(ns,nd) = πs · nα
s + πd · ns · nβ

d + ns · nd · cq ≤ R,

ns ≥ 1;nd ≥ 1.
(4)

In these equations, the terms s2μWD = s2WD/nq and

cq = πq · nγ
q have been substituted into the three-variable

expressions of mean exposure variance (equation (1))
and cost (equation (2)), respectively. This notation
emphasizes that the specific variance of an exposure
estimate obtained at one measurement occasion, s2μWD,
and the cost of collecting data within each occasion, cq,
are no longer allowed to vary.
In principle, the two-variable problem can be solved

by applying constrained optimization techniques, i.e. by
employing the problem’s Lagrange function (e.g. [56]).
As an alternative, the budget constraint, equation (4),
can be substituted into the objective function, equation
(3), so as to get a new objective function, which
expresses the variance s2μ(ns,nd) as a function of only
one variable, be it either ns or nd. This approach relies
on the prerequisite that any solution to the optimization
problem entails that the entire budget R is consumed.
In that case, the budget constraint (equation (4)) can be
replaced by an equality:

c(ns,nd) = πs · nα
s + πd · ns · nβ

d + ns · nd · cq = R (4a)

Isolating ns or nd from equation (4a), followed by sub-
stitution into equation (3), yields a one-variable objec-
tive function, s2μ(ni), with i = s or i = d. This function
can be examined using standard methodologies for iden-
tifying and illustrating possible local minima within a
specified choice set. The resulting optimal value of
either ns or nd can then be entered into the budget con-
straint to get the optimal value of the other variable.

The one-variable substitution approach
The core challenge in the substitution approach outlined
in the previous section is to identify that exposure
assessment strategy in the choice set defined by the
budget constraint for which the objective function, i.e.
equation (3) with substituted ns or nd, has its minimal
value. This can, in principle, be accomplished by deter-
mining the derivative of the objective function and find-
ing its roots.

Figure 2 illustrates four principally different cases of
how the objective variance function may look as a func-
tion of invested resources. At the lower boundary of the
choice set, all resources are spent on one unit of ni, and
at the upper boundary on as many ni as allowed by the
budget, ni,max. Thus, if i = s, these two boundaries cor-
respond to allocating as many measurement occasions
as possible to one subject, and obtaining measurements
at one occasion from as many subjects as possible.
As a general procedure, the optimal ni for a given

budget can be found by comparing the performance
obtained: (1) at the lower boundary of the choice set, i.e.
using ni = 1, (2) at the upper boundary of the choice set,
i.e. with ni = ni,max, and (3) entering values of ni, if any,
in the interior of the choice set, 1 ≤ ni ≤ ni,max, for
which s2μ

′(ni) = 0.
Thus, examining the properties of the objective func-

tion, s2μ(ni), at the boundaries of the choice set is an
appropriate first step for identifying the optimal alloca-
tion of resources. Provided that the objective function
has one unique minimum, i.e. that the objective function
is convex (I1, E1 and E2 in figure 2), a necessary, but
also sufficient, condition for the optimum to be internal

Variance, s2 (ni)

I2

E1
E2

I2

I1

Number of measurements
ni* ni,max1 ni°

Figure 2 Principally different cases of local extremes of the
one-variable objective variance function. The boundaries of
possible resource investment, i.e. the choice set, are given by ni = 1
and ni = ni,max. In I1, the variance function has a local minimum at
ni = ni*; this is an interior optimal solution with minimal variance.
For I2, the variance function also has an interior zero derivative, at ni
= ni°, but this solution maximizes the variance and is therefore not
useful. In cases E1 and E2, the local extreme of the variance
function lies below and above the choice set, respectively. In these
cases, minimal variance is obtained at the lower (E1) and upper (E2)
choice set boundary.
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(case I1) is that s2μ
′(ni = 1) < 0 and s2μ

′(ni = ni,max) > 0.
The exact location of the internal minimum can then be
retrieved in a second step. The basic shape of the objec-
tive function can be determined by examining its sec-
ond-order derivative. If this derivative is positive, the
function is convex; if not it is concave (case I2), and the
optimal strategy will be at one of the choice set
boundaries.
If a convex objective function does not have an internal

minimum, as in cases E1 and E2 in figure 2, the optimal
strategy is represented by the boundary of the choice set.
In case E1, which occurs if s2μ

′(ni = 1) > 0, the optimal
strategy is to set ni = 1, that is, collect data from only one
subject (if i = s), or having only one measurement occasion
per subject (if i = d). Case E2 is characterized by a decreas-
ing objective function at ni = nmax, i.e.s

2
μ

′(ni = ni,max) < 0.
In this case, if i = s, the best choice will be to measure as
many subjects as possible and hence only one occasion
per subject, or, if i = d, to collect data for as many occa-
sions as possible from only one subject.

Results
Below, procedures for determining optimal sampling
strategies are developed using the one-variable substitu-
tion approach described above. Procedures will be strati-
fied according to the sizes of a and b, which determine
the shape of the cost function (equation (4a)), and
hence the form of the substituted objective
function,s2μ(ni). For each combination of a and b, the
objective function is examined, and the boundaries of
the choice set determined. Procedures for determining
whether the objective function is convex (cases I1, E1
and E2 in figure 2) or concave (case I2) are described
where needed. For convex functions, explicit rules are, if
possible, developed for when (case I1) and when not
(cases E1, E2) the optimal measurement allocation
occurs within the choice set. Finally, procedures for
identifying an optimal sampling strategy inside the
choice set (case I1) are described.

Case A: a = 1, b = 1
In this case, the marginal costs of including another
subject or measurement occasion are both independent
of the number of previously included subjects and occa-
sions. Thus, the cost function is linear at both of these
stages.
Case A; substitution and objective function
With a = b = 1, the budget constraint (equation 4a) can
be expressed as:

nd =
R − πs · ns
(πd + cq) · ns (5)

Substituting this expression for nd in equation (3)
gives the corresponding objective function:

s2μ(ns) =
s2BS
ns

+
(s2BD + s2μWD) · (πd + cq)

R − πs · ns
(6)

Taking the derivative with respect to ns yields:

s2μ
′(ns) = − s2BS

n2s
+
(s2BD + s2μWD) · πs · (πd + cq)

(R − πs · ns)2 . (7)

Setting A = (s2BD + s2μWD) · πs · (πd + cq), equation (7)
can be expressed as:

s2μ
′(ns) = − s2BS

n2s
+

A

(R − πs · ns)2 .
(7a)

This one-variable objective function is convex in ns,
since the derivative of equation (7a) is positive for all ns
in the choice set.
Case A; boundaries of the choice set
With a = b = 1, the choice set boundaries in terms of ns

are ns = 1 and ns = ns,max =
R

πs + πd + cq
; the latter

obtained by setting nd = 1 in the budget constraint,
equation (4a), and solving for ns.
At ns = 1, equation (7a) takes the form:

s2μ
′(ns = 1) = −s2BS +

A
(R − πs)2

. Thus, a positive deriva-

tive at ns = 1 occurs when:

s2BS <
A

(R − πs)2
(8)

This gives a necessary and sufficient condition that the
optimal allocation of measurements is obtained with ns

= 1, and hence with nd = nd,max =
R − πs

(πd + cq)
measure-

ment occasions per subject.

At the other boundary, ns = ns,max =
R

πs + πd + cq
, the

derivative of the objective function is:

s2μ
′(ns = ns,max) =

(A − s2BS · (πd + cq)2) · (πs + πd + cq)2

R2 · (πd + cq)2

This derivative is negative only when the first term in
the numerator is negative, i.e.A − s2BS · (πd + cq)2 < 0, or
rearranged:

s2BS >
(s2BD + s2μWD) · πs

(πd + cq)
(9)

This is the necessary and sufficient condition for the
optimal allocation being to choose the maximal

Mathiassen and Bolin BMC Medical Research Methodology 2011, 11:76
http://www.biomedcentral.com/1471-2288/11/76

Page 6 of 18



affordable number of subjects, ns,max =
R

πs + πd + cq
, and

measure on one occasion for each of these. Notably,
condition (9) is independent of the budget R. Also,
unless s2BS is zero, the condition is always valid if πs = 0,
that is if the recruitment of subjects does not lead to
any costs. Under case A, this implies that all measure-
ment occasions entail the same cost, πd+cq, irrespective
of how they are allocated between subjects. Thus, in this
highly simplified case [38,39], the optimal strategy is
always to measure on one occasion from each of as
many subjects as allowed by the budget.
Case A; optimization inside the choice set
Setting the derivative of the variance function (7a) equal
to zero yields:

ns =
R · sBS

A1/2 + sBS · πs
(10)

If this optimal value of ns is an interior solution, i.

e.1 ≤ ns ≤ R

πs + πd + cq
, the corresponding number of

measurement occasions per subject can be obtained by
substitution of equation (10) into equation (4a):

nd =
A1/2

sBS · (πd + cq)
(11)

Thus, in this case the optimal number of measure-
ment occasions per subject does not depend on the
budget R.
The explicit solution derived above for the optimal set

(ns, nd) can lead to non-integer values of one or both num-
bers. Since both are, by nature, discrete, a post-hoc proce-
dure may be necessary in which integer sets of (ns, nd)
close to the mathematically derived solution are entered
into the budget constraint (equation (4)) to check that they
are affordable, and into the objective function (equation
(3)) to evaluate their statistical performance. For instance,
if an interior ns determined by equation (10) is not an

integer, the nearest larger and smaller integers are identi-
fied, and for each of those, at least two associated integer
values of nd are determined that are larger and smaller
than the value of nd derived by equation (11). The resulting
affordable sets of (ns, nd) are then examined to identify the
one resulting in the smallest mean exposure variance.
Table 1 summarizes the derived procedures for opti-

mizing cost efficiency in case A, together with proce-
dures for the other cases, as derived below.

Case B: a = 1, b≠1
Case B entails constant marginal costs in the recruit-
ment of new subjects but either increasing or decreasing
marginal costs for organizing measurement occasions.
Case B; substitution and objective function
In case B, the one-variable problem is most easily solved
if the objective function is rearranged so that ns is
expressed as a function of nd. From the budget con-
straint, equation (4a), ns is isolated as:

ns =
R

πs + πd · nβ

d + cq · nd (12)

The corresponding objective function is:

s2μ(nd) =
(πs + πd · nβ

d + cq · nd)
R

· (s2BS +
(s2BD + s2μWD)

nd
) (13)

And its derivative:

s2μ
′(nd) =

1

R · n2d
·
[
s2BS · (πd · β · nβ+1

d + cq · n2d)

+ (s2BD + s2μWD) · (πd · (β − 1) · nβ

d − πs)
] (14)

The objective function (equation (13)) is always con-
vex for b ≥ 2. For 1 <b < 2 it is convex if

s2BS
(s2BD + s2μWD)

> −(β − 2)
β

, and for b < 1, convexity

requires
s2BS

(s2BD + s2μWD)
< −(β − 2)

β
(proof, see appendix).

Table 1 Summary of equations, in terms of their numbers in the running text, for identifying the optimal exposure
assessment strategy

Combination of a and b

A: a = 1;b = 1 B: a = 1;b≠1 C: a≠1;b = 1 D: a≠1;b≠1

Budget restriction 5 12 16 NA

Objective variance function; independent variable 6; ns 13; nd 17; ns NA

Derivative of objective function 7 and 7a 14 18 and 18a NA

Condition for choosing lower choice set boundary 8 15 19 NA

Condition for choosing upper choice set boundary 9 NA NA NA

Internal ns 10 NA NA NA

Internal nd 11 NA NA NA

Equations express the budget restriction, the objective function, its derivative, the conditions for the lower and upper boundaries of the choice set to be optimal
solutions to the allocation of samples, and the interior solution to the optimization, if applicable. NA: no analytic solution available; numerical methods must be
applied (see text).
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If none of these inequalities are fulfilled, the optimal
measurement strategy will correspond to one of the
choice set boundaries.
Case B; boundaries of the choice set
The choice set boundaries in terms of nd are nd = 1
and nd = nd,max. The latter is found by setting ns = 1
in the budget constraint, equation (4a), and rearrange

to get: nβ

d,max +
cq
πd

· nd,max +
πs − R

πd
= 0. This equation

does not have a closed-form solution for nd. In this
case, nd,max can be determined numerically by calcu-
lating the cost, c(1, nd), when entering increasing
values of nd in the cost function, equation (4), at ns =
1, that is:

c(1, nd) = πs + πd · nβ

d + cq · nd
nd,max is then the largest value of nd for which c(1, nd)

≤ R. Figure 3 illustrates an example of this procedure,
for three different combinations of (πs, πd, cq) and two
different levels of b, which will reappear in the collec-
tion of numerical examples.
At nd = 1, the derivative of the objective function, i.e.

equation (14), is equal to:

s2μ
′(1) =

s2BS · (πd · β + cq) + (s2BD + s2μWD) · (πd · (β − 1) − πs)

R
,(14a)

which is positive under the following condition:

s2BS >
(s2BD + s2μWD) · (πs − πd · (β − 1))

πd · β + cq
(15)

Thus, for parameter sets obeying this inequality, the
optimal sample allocation is to measure for one occa-

sion on each of ns,max =
R

πs + πd + cq
subjects.

At the other boundary, nd = nd,max, the sign of the
derivative of the objective function must be obtained by
entering the numerically determined value of nd,max in
equation (14). A negative s2μ

′(nd,max) is then a necessary
and sufficient condition for the optimal measurement
strategy to be to choose one subject and measure record
from that subject on nd,max occasions.
Case B; optimization inside the choice set
The objective function, equation (13), cannot be mini-
mized using analytical methods, since s2μ

′(nd) = 0 (cf.
equation (14)) does not have a closed-form solution.
Thus, a possible interior optimum must be located by
entering all values of nd in the interval [1, nd,max] into
the objective function and locate the minimal result.
The corresponding optimal value of ns can be found by
entering the identified optimal value of nd in equation
(12).

Case C: a≠1, b = 1
In case C, all measurement occasions for a particular
subject can be organized at the same cost, while the
cost of recruiting additional subjects changes with their
numbers.
Case C; substitution and objective function
In case C, the one-variable problem is most easily solved
if the objective function is rearranged to express nd as a
function of ns. Isolating nd in the budget constraint,
equation (4a), gives

nd =
R − πs · nα

s

(πd + cq) · ns (16)

And hence the objective variance function in terms of
ns is:

s2μ(ns) =
s2BS
ns

+
(s2BD + s2μWD) · (πd + cq)

R − πs · nα
s

(17)

Taking the derivate with respect to ns yields:

s2μ
′(ns) = − s2BS

n2s
+
(s2BD + s2μWD) · πs · (πd + cq) · α · nα−1

s

(R − πs · nα
s )2

(18)

Setting A = (s2BD + s2μWD) · πs · (πd + cq), this can be
expressed as:

500

400

500

;a
.u

.

200

300

nd max=458al
 c

os
t, 
c(

1,
n d

)

0

100

d,max

To
ta

Number of measurement occasions, nd
1 10 20 30 40 50 60 70 80 90

Figure 3 Numerical determination of the upper boundary of
the choice set in case B (a = 1, b≠1). For six different
combinations of unit costs and size of the exponent b, the maximal
possible number of measurement occasions, i.e. nd,max, for a single
subject is identified under a budget constraint of 500 (arbitrary
units). Squares, rhomboids, and triangles: (πs, πd, cq) = (2, 10, 10), (11,
5.5, 5.5), and (20, 1, 1), respectively. Open and closed symbols: b =
0.50 and b = 1.50, respectively. The value of nd,max in each scenario
is indicated by an enlarged symbol.
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s2μ
′(ns) = − s2BS

n2s
+

A · α · nα−1
s

(R − πs · nα
s )2

(18a)

It is straightforward to verify that this function is con-
vex in ns and, hence, has one unique minimum.
Case C; boundaries of the choice set
The choice set boundaries in this case are ns = 1 and ns
= ns,max. The latter is found by setting nd = 1 in the
budget constraint, equation (4a), and solving for ns. This

leads to the equation: nα
s,max +

πd + cq
πs

· ns,max − R

πs
= 0,

which does not have a closed-form solution. Thus, simi-
lar to the determination of nd,max in case B above, ns,max

must be determined by entering increasing values of ns
in the cost function c(ns, 1) = πs · nα

s + (πd + cq) · ns until
reaching the largest value of ns for which c(ns, 1) ≤ R.
At the boundary ns = 1, the derivative of the objective

function, c.f. equation 18a, is: s2μ
′(1) = −s2BS +

A · α

(R − πs)2
.

A necessary and sufficient condition for choosing ns = 1,

and hence nd =
R − πs

πd + cq
(cf. equation (16); if necessary

truncated to the nearest smaller integer), is derived by
rearranging the inequality s2μ

′(1) > 0 to give:

s2BS <
A · α

(R − πs)2
(19)

At the other boundary, ns,max, the sign of the deriva-
tive of the objective function must be determined
numerically by entering the ns,max identified above into
equation (18a). If the sign is negative, ns,max is the opti-
mal number of subjects, and each should be recorded
for one occasion.
Case C; optimization inside the choice set

In case C, the equation s2μ
′(ns) = 0 (cf. equation (18a))

has no closed-form solution. Thus, an interior solution
to the optimization must be identified by entering all ns
in the interval [1, ns,max] into the objective function, i.e.
equation (17), and locate the minimal variance. After
having identified the optimal ns, the corresponding nd
can be found by solving equation (16).

Case D: a≠1, b≠1
In case D, neither ns nor nd can be expressed as a func-
tion of the other on basis of the budget constraint.
Thus, a one-variable problem cannot be formulated in
explicit terms, and, consequently, no analytical expres-
sions can be developed, neither for the derivative of the
objective function, nor for boundary conditions, nor for
possible interior solutions. Therefore, the optimal choice
of the number of subjects and measurement occasions
has to be identified by means of a numerical procedure,
such as the following:

(1) For ns = 1, the cost function, equation (4), is

c(1, nd) = πs + πd · nβ

d + nd · cq.
In this function, increasing nd -values are entered, up

to largest possible value, nd,max, for which c(1, nd) ≤ R;
(2) The values (ns, nd) = (1, nd,max1) are entered into

the objective function, equation (3), i.e.

s2μ(1, nd,max 1) = s2BS +
s2BD + s2μWD

nd,max 1
, and the resulting value

is noted.
(3) These two steps are repeated for ns = 2, corre-

sponding to the cost
functionc(2, nd) = πs · 2α + 2 · (πd · nβ

d + nd · cq), thus

obtaining the value of s2μ(2, nd,max 2)

(4) Subsequent values of s2μ(ns,nd,max ns) are derived
using this same procedure for stepwise increasing ns,
until reaching the largest possible ns allowed by the
budget.
(5) By inspecting the set of values of s2μ(ns,nd,max ns),

which all entail costs as close as possible to the budget
constraint R, the combination of ns and nd offering the
smallest variance can be identified.
Figure 4 illustrates the numerical procedure for identi-

fying the maximal possible value of nd at increasing
values of ns, and the resulting variance of the exposure
mean. Since the values of ns and nd are discrete, and
hence even the corresponding total cost c(ns, nd), it may
happen that the optimal measurement strategy does not
consume the entire budget R. For instance, the optimal
strategy (ns, nd) = (5, 12) identified in figure 4 only uti-
lizes 98.3% of the allowed resources.

Numerical examples
Using the procedures developed above, optimal sam-
pling strategies were identified for 225 scenarios repre-
senting different combinations of costs and variance
components, and different marginal costs of recruiting
new subjects and organizing more measurement occa-
sions, as expressed through a and b (table 2). Unit costs
πs, πd and cq were selected to illustrate large, medium
and small costs of recruiting subjects relative to obtain-
ing measurements on each of them, and the sets of var-
iance components s2BS, s

2
BD and s2μWD represent large,

medium and small between-subjects to within-subject
variance ratios. Parameter values were chosen so that
the total cost of assessing the exposure of one subject at
one occasion (cf. equation (4)) as well as the resulting
mean exposure variance (cf. equation (3)) takes the
same numerical value (22) in all scenarios. In all scenar-
ios, the budget R was constrained at 500 (arbitrary
units). In median, the 225 strategies utilized 97.9% of
the allowed budget (5th-95th percentile range: 92.3% to
100.0%).
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As illustrated in table 2, the optimally cost-efficient
strategy in many scenarios is to obtain data on one
occasion from as many subjects as possible. In particu-
lar, this applies when s2BS is “large” relative to s2BD and
s2μWD (table 2c), and even when s2BS is similar to (s2BD
+s2μWD) if πs is also equal to or smaller than (πd+cq)
(table 2b). In these cases, the principle of measuring
from as many subjects as possible is valid irrespective of
whether cost functions are linear or not, i.e. irrespective
of the sizes of a and b.
Considerable deviations from the principle of collect-

ing data from as many subjects as possible do, however,
occur; the most extreme examples appearing when s2BS
is “small” relative to s2BD and s2μWD and πs is “large”
compared to (πd+cq) and a is “large” (bottom right cor-
ner of table 2a). The combination of a “small” variance
between subjects and “large” costs associated with
recruiting subjects also leads to the optimal sampling
strategy being particularly sensitive to non-linearities in
costs. Thus, with (s2BS, s

2
BD, s

2
μWD) = (2, 10, 10) and

(πs, πd, cq) = (20, 1, 1), a linear cost function implies an
optimal sampling strategy of (ns, nd) = (13, 9) (table 2a),
while the deviations of a and b from 1 illustrated in
table 2 result in optimal strategies (ns, nd) ranging from

(5, 12) to (49, 5), and corresponding variances s2μ
between 0.12 and 0.73. In contrast, with (s2BS, s

2
BD,

s2μWD) = (20, 1, 1) and (πs, πd, cq) = (2, 10, 10) (table
2c), the most extreme non-linear cost functions lead to
sampling strategies, (ns, nd) = (24, 1) and (ns, nd) = (17,
1), which do not deviate much from the optimal strategy
in the linear case, (ns, nd) = (22, 1), and only result in
moderate differences in variance.
While not illustrated in table 2, a larger total budget

leads to a wider occurrence of the optimal strategy
being to collect data on one occasion per subject. Thus,
with a budget of 500, 135 of the 225 scenarios illu-
strated in table 2 imply that data should be collected
according to this principle; if the budget is increased to
1000, this count increases to 139. However, in 3 cases
the optimal strategy changes in the opposite direction, i.
e. into collecting data on more than one occasion per
subject. This was caused by irregularities due to the
effect of ns and nd needing to be integers. With a
decreasing budget, one-occasion-per-subject optima get
rarer, as expected, but irregularities occur more often.
Even if non-linearities in cost functions may not affect

the principle of how to allocate measurements at many
combinations of unit costs and variance components,
the size of a is always important to the eventual size of
the data set, and therefore to the precision of the even-
tual mean exposure estimate. In contrast, the size of b is
only important if the optimal strategy implies, or is close
to implying, measurements from more than one occa-
sion per subject, that is when s2BS is “small” relative to
s2BD and s2μWD (table 2a), but even when s2BS is similar
to (s2BD+s

2
μWD) if πs is also larger than (πd+cq) (table

2b). This is an expected result, since the cost of setting
up measurement occasions is independent of b at nd =
1 (cf. equation (4)). Thus, when analyzing whether an
intended exposure assessment strategy, constrained by
budgets, will lead to a sufficient statistical performance,
access to a valid estimate of a is generally more impor-
tant than knowing the exact size of b.
While the size of b is not always important to size of

the optimal data set, the best statistical performance at
any specific combination of (s2BS, s

2
BD, s

2
μWD) and (πs,

πd, cq) will always be obtained with small sizes of a and
b; in table 2 exemplified by (a, b) = (0.50, 0.50). This is
a reasonable result, since small a and b entail small
marginal costs of including more subjects and more
measurement occasions.
Although not illustrated in table 2, the effects on sta-

tistical performance of deviating from the optimal
choice of (ns, nd), but still using the entire budget, were
also investigated. In certain cases, deviations did not
lead to any particular reduction of performance. For
instance, with (s2BS, s

2
BD, s

2
μWD) = (2, 10, 10), (πs, πd,

cq) = (20, 1, 1), and (a, b) = (0.75, 0.75), the optimal
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Figure 4 Numerical procedure for determining the optimal
exposure assessment strategy in case D (a≠1, b≠1). For
increasing values of ns as indicated inside the open symbols in each
curve, the maximal number of measurement occasions, i.e. nd,maxns,
allowed by a budget of 500 (arbitrary units) is identified, as marked
by open symbols. The resulting statistical performance, i.e. s2μ(ns, nd,
maxns), is shown above each curve. In the illustrated case, (ns, nd) =
(5, 12) was the optimal allocation.The illustration refers to a scenario
with (s2BS, s

2
BD, s

2
μWD) = (2, 10, 10), (πs, πd, cq) = (20, 1, 1), and (a, b)

= (1.50, 1.50).
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Table 2 Optimal sampling strategies (ns, nd) and the resulting mean exposure variance s2μ (cf. equation (3)) at
different combinations of variance components (s2BS,s

2
BD,s

2
μWD; sections a-c), unit costs (πs, πd, cq), and exponents α

and β describing the shape of the relationship between costs and number of measurements (cf. equation (4))

a. (s2BS, s
2
BD, s

2
μWD) = (2, 10, 10)

a: 0.50 0.75 1.00 1.25 1.50

(ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ

(πs, πd, cq) b
(2, 10, 10) 0.50 (14, 2) 0.86 (14, 2) 0.86 (10, 3) 0.87 (13, 2) 0.92 (9, 3) 0.96

0.75 (24, 1) 0.92 (13, 2) 0.92 (9, 3) 0.96 (12, 2) 1.00 (8, 3) 1.08

1.00 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (11, 2) 1.09 (10, 2) 1.20

1.25 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

1.50 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

(11, 5.5, 5.5) 0.50 (17, 3) 0.51 (15, 3) 0.58 (11, 4) 0.64 (7, 7) 0.69 (5, 10) 0.80

0.75 (22, 2) 0.55 (14, 3) 0.62 (10, 4) 0.70 (6, 7) 0.81 (6, 6) 0.89

1.00 (39, 1) 0.56 (18, 2) 0.67 (9, 4) 0.78 (8, 4) 0.88 (6, 5) 1.00

1.25 (39, 1) 0.56 (32, 1) 0.69 (14, 2) 0.86 (7, 4) 1.00 (6, 4) 1.17

1.50 (39, 1) 0.56 (32, 1) 0.69 (13, 2) 0.92 (6, 4) 1.17 (5, 4) 1.40

(20, 1, 1) 0.50 (49, 5) 0.12 (27, 7) 0.18 (14, 12) 0.26 (8, 23) 0.36 (6, 28) 0.45

0.75 (52, 4) 0.13 (21, 9) 0.20 (13, 12) 0.28 (8, 19) 0.38 (6, 23) 0.48

1.00 (80, 2) 0.15 (26, 5) 0.23 (13, 9) 0.32 (8, 14) 0.43 (6, 17) 0.53

1.25 (74, 2) 0.16 (27, 4) 0.26 (13, 7) 0.37 (8, 10) 0.50 (6, 12) 0.61

1.50 (134, 1) 0.16 (29, 3) 0.30 (12, 6) 0.44 (9, 6) 0.59 (5, 12) 0.73

b. (s2BS, s
2
BD, s

2
μWD) = (11, 5.5, 5.5)

a: 0.50 0.75 1.00 1.25 1.50

(ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ

(2, 10, 10) 0.50 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

0.75 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

1.00 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

1.25 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

1.50 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

(11, 5.5, 5.5) 0.50 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (12, 2) 1.38 (9, 2) 1.83

0.75 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (12, 2) 1.38 (9, 2) 1.83

1.00 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (9, 2) 1.83

1.25 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (8, 2) 2.06

1.50 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (8, 2) 2.06

(20, 1, 1) 0.50 (134, 1) 0.16 (44, 2) 0.38 (19, 4) 0.72 (11, 6) 1.17 (7, 14) 1.68

0.75 (134, 1) 0.16 (43, 2) 0.38 (18, 4) 0.76 (11, 5) 1.20 (7, 12) 1.70

1.00 (134, 1) 0.16 (42, 2) 0.39 (19, 3) 0.77 (11, 4) 1.25 (7, 9) 1.75

1.25 (134, 1) 0.16 (40, 2) 0.41 (18, 3) 0.81 (10, 5) 1.32 (7, 7) 1.80

1.50 (134, 1) 0.16 (53, 1) 0.42 (20, 2) 0.83 (11, 3) 1.33 (7, 5) 1.89

c. (s2BS, s
2
BD, s

2
μWD) = (20, 1, 1)

a: 0.50 0.75 1.00 1.25 1.50

(ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ (ns, nd) s2μ

(2, 10, 10) 0.50 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

0.75 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

1.00 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

1.25 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

1.50 (24, 1) 0.92 (23, 1) 0.96 (22, 1) 1.00 (20, 1) 1.10 (17, 1) 1.29

(11, 5.5, 5.5) 0.50 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (10, 1) 2.20

0.75 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (10, 1) 2.20

1.00 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (10, 1) 2.20
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strategy is to choose (ns, nd) = (21, 9), resulting in a var-
iance of 0.20 (cf. table 2a). However, all strategies with
ns in the range between 15 and 32, and corresponding
values of nd,maxns ranging from 15 to 4 as allowed by the
budget, resulted in variances of 0.22 or less, except for
the strategy (30, 4) which gave a variance of 0.23
because it only managed to utilize 92% of the available
budget. In other cases, performance was more sensitive
to non-optimal choices of (ns, nd). Again using (s2BS,
s2BD, s

2
μWD) = (2, 10, 10) and (a, b) = (0.75, 0.75), the

optimal strategy with (πs, πd, cq) = (2, 10, 10) is now (ns,
nd) = (13, 2), resulting in a variance of 0.92 (table 2a).
In this case, all strategies allowed by the budget besides
the nearest neighbour, (ns, nd) = (12, 2), gave variances
of 1.09 or more, i.e. at least 18% larger than the
optimum.

Discussion
As illustrated by the numerical examples in table 2, a
large ratio of between-subjects to within-subject var-
iance generally implies that the optimal allocation prin-
ciple is to collect data on one occasion from as many
subjects as allowed by the budget. This also applies
when between-subjects and within-subject variances are
of similar size, unless the unit cost of recruiting subjects
is large relative to that of setting up measurement occa-
sions. In these cases, non-linearity in the cost functions
does not influence the optimal allocation principle; only
the eventual size of the data set allowed by budgets.
However, at a large relative recruitment cost combined
with a small between-subjects to within-subject variance
ratio, and in particular if the total budget is also small,
the optimal sampling strategy may consist in approach-
ing only a few subjects on several occasions each, and
the strategy is very sensitive to non-linearities in cost
functions. Non-linearities in subject recruitment costs
always have a clear influence on the size of the optimal
data set, while non-linearities in costs for setting up
measurement occasions are important only in cases

when the optimal strategy includes multiple measure-
ments per subject.

Representativeness
Statistical model
The present study investigated a hierarchical, nested
measurement model with three stages as used in a
majority of previous studies of the effects of random
measurement error on statistical properties and effi-
ciency in exposure assessment (e.g. [2,12,26-28]). Even
though the application exemplified in the paper refers to
subjects, measurement occasions within subjects, and
measurement units within occasions, the generic results
are applicable also to other sources of exposure variabil-
ity that can be described by a hierarchical model. This
includes the case of data processing and analysis adding
“post-sampling” costs and also some methodological
variance to each collected exposure sample, thus modi-
fying the sizes of cq (equation (4)) and s2μWD (equation
(3)), respectively. Also, the present study addressed, as
most other studies, the case of balanced data sampling,
i.e. that the same number of measurement units are col-
lected during each of the same number of occasions
from each subject [23]. While the assumption of a
balanced, hierarchical model facilitates mathematical
derivation of optimal measurement strategies, cost-effi-
ciency needs to be investigated even for more compli-
cated models, for instance designs including crossed
components [11,29]. In particular, the effects of unba-
lancedness, which is probably a very frequent incident
in epidemiologic research, need to be addressed in
further studies. Unbalancedness has been shown both
mathematically [23,57] and empirically [58] to reduce
statistical efficiency, and will thus also influence cost-
efficiency.
During the last decade, powerful statistical techniques

have been developed to analyse exposure variability and its
determinants using so-called mixed-effect modelling
[30-33,59]. While mixed model analyses have

Table 2 Optimal sampling strategies (ns, nd) and the resulting mean exposure variance s2μ (cf. equation (3)) at differ-
ent combinations of variance components (s2BS,s

2
BD,s

2
μWD; sections a-c), unit costs (πs, πd, cq), and exponents α and β

describing the shape of the relationship between costs and number of measurements (cf. equation (4)) (Continued)

1.25 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (10, 1) 2.20

1.50 (39, 1) 0.56 (32, 1) 0.69 (22, 1) 1.00 (15, 1) 1.47 (10, 1) 2.20

(20, 1, 1) 0.50 (134, 1) 0.16 (53, 1) 0.42 (22, 1) 1.00 (12, 2) 1.75 (8, 3) 2.58

0.75 (134, 1) 0.16 (53, 1) 0.42 (22, 1) 1.00 (12, 2) 1.75 (8, 3) 2.58

1.00 (134, 1) 0.16 (53, 1) 0.42 (22, 1) 1.00 (12, 2) 1.75 (8, 2) 2.63

1.25 (134, 1) 0.16 (53, 1) 0.42 (22, 1) 1.00 (12, 2) 1.75 (8, 2) 2.63

1.50 (134, 1) 0.16 (53, 1) 0.42 (22, 1) 1.00 (12, 1) 1.83 (8, 2) 2.63

In all cases, the available budget R was set at 500. The determination of the boldface strategy in section a was illustrated in figure 4.
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predominantly been used to identify exposure targets for
effective prevention and intervention, they also represent a
challenging opportunity to develop exposure assessment
strategies that are both “cheap” and statistically efficient.
As an example, several occupational studies have proposed
or implemented the idea of estimating full-shift job expo-
sures by combining observed or self-reported time propor-
tions of tasks in the job with task exposures from a data
base [60-65]. In some studies, the task-based estimates
appeared easy to obtain and, at the same time, well corre-
lated with “true” job exposures (e.g. [66]), while other stu-
dies indicate that task-based procedures can also be
grossly inefficient [64,65]. Some attention has been given
to developing mathematical principles for assessing the
statistical performance of task-based exposure modelling
[34,67], but no studies have so-far, to our knowledge,
addressed if task-based assessment can, indeed, be cost-
efficient as compared to direct measurement of job expo-
sures, and if so, on which conditions. A similar concern
can be raised with respect to other techniques for combin-
ing exposure information from different sources into a
“hybrid” estimate of some exposure metric [68]. The
approach can be statistically informative [68], but might
also entail costs to the extent that the trade-off between
efficiency and resource consumption is disadvantageous as
compared to measuring “true” exposures directly.
Statistical performance criterion
The present study addressed the objective of obtaining a
precise estimate of the exposure mean value in a group
of subjects (cf. equation (3)), the reason being that pre-
cision of the mean is a decisive factor for the usefulness
of exposure surveys, and for statistical power in studies
comparing conditions and groups. Other measures of
statistical performance will, however, be of interest in
other types of epidemiologic research, and thus need
attention in future cost-efficiency research. A particu-
larly important example is the size of bias and/or preci-
sion in a regression of outcome on exposure [19-22].
Since both bias and precision can, under a number of
assumptions, be expressed as mathematical functions of
variance components and the number of measurements
[18], it might be possible to develop closed-form solu-
tions to the problem of finding optimally cost-efficient
measurement strategies, but this has not so-far been
pursued. Another example that an exposure assessment
strategy may have another purpose than producing a
satisfying group exposure mean is standard surveillance
of compliance with occupational exposure limits (OEL).
First, the assessment focuses on individuals rather than
groups, and second, the strategy needs assure that both
the individual mean and the probability that single
exposure values exceed the OEL is determined with a
satisfying certainty [16,17]. Still another relevant mea-
sure of statistical performance for several purposes is

the size of the standard reliability coefficient (ICC), i.e.
the relationship between exposure variability in data sets
with and without (random) measurement error [41].
Obviously, both for regression metrics, exceedance,

and ICCs, optimally cost-efficient exposure assessment
strategies may deviate from those driven by the objective
of obtaining precise exposure means, as illustrated by
two studies on optimal measurement allocation in relia-
bility studies [69,70].
A particularly challenging situation comes up if the

exposure assessment strategy has two simultaneous, yet
conflicting objectives. For instance, the researcher may,
at the same time, wish to get a precise estimate of a
group mean exposure, but also a good estimate of expo-
sure variance components between and within workers.
This is a likely scenario if the specific exposure variabil-
ity of the addressed occupational group is a priori insuf-
ficiently known, and the exposure data collection is
viewed as an opportunity to get updated data on this
variability, together with a documentation of the group
mean exposure. Determination of variance components
requires, as a minimum, duplicate samples at each stage
of the measurement model [5], and this may often not
be an optimally cost-efficient strategy if the objective is
to get a precise group mean (cf. table 2a-c; cases with
nd = 1). Thus, the researcher faces the decision of
whether a certain loss in information on the group
mean is an acceptable “price” of getting some informa-
tion on exposure variability. While the numerical trade-
off between these two types of information, conditional
on a restricted budget, may be resolved in future
research, the final decision of which sampling allocation
to prefer is an issue beyond mathematical procedures.
Recruitment capabilities and cost functions
While presenting a novel approach in allowing recruit-
ment capabilities and, as a consequence, the correspond-
ing cost functions to be non-linear, the present study
only addressed the case when non-linearities can be
expressed using homogeneous functions. This type of
non-linear production capabilities is often assumed in
economics research, but other types of mathematical
relationships may, obviously, be appropriate. Even cost
functions that do not follow monotonous mathematical
rules may apply, as illustrated by the example in Duan
and Mage [42], where the basic shape of the cost func-
tion changes with the number of measurements, and by
some examples in Cochran’s excellent textbook [47].
We claim a strong need to bring forward more empiri-
cal evidence to suggest the appropriate shape of cost
functions in exposure assessment; and if power relation-
ships are, indeed, supported, to indicate reasonable sizes
of the exponents a and b. Hypothetically, the recruit-
ment of subjects could entail increasing marginal costs
(a>1), as if additional time has to be devoted to
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persuading initially reluctant participants, but also
decreasing costs (a<1), as if the first subjects are hard to
recruit but their skeptic colleagues, taking after them,
will then readily participate. Also, both increasing and
decreasing marginal costs for organizing measurement
occasions can be envisaged, as if a measurement equip-
ment wears down over time and needs to be in place
longer to provide a certain amount of data (b >1), or if
a subject gets more and more accustomed to measure-
ment preparations and thus less time consuming (b <1).
As a tentative conjecture, however, considerable devia-
tions of a from 1 are more likely to occur than devia-
tions of b. In addition to the need for empirical data
describing the shape of cost functions, information is
also required concerning the size of unit costs for mea-
suring at different stages; very little data has been
reported in occupational or environmental epidemiology
[37,43]. This stands in a striking contrast to the abun-
dance of data on variance components for a multitude
of occupational and environmental exposures, showing
that the size of and relationship between exposure vari-
abilities at different stages of measurement, e.g. subjects
and occasions within subjects, differ widely between set-
tings and exposure agents [3,9-11,25,71,72].
In the present study, optimization procedures were

developed using a total cost model including only vari-
able cost components (equation (4)). Other studies have
addressed even fixed costs, i.e. costs that do not depend
on the number of measurements [41,43]. While fixed
costs are, under a constrained budget, decisive to the
resources left for allocating measurements, they cancel
out in the course of the mathematical differentiation
associated with the optimization procedure, and thus
will not affect the eventual optimal allocation strategy
[43]. It is, however, important to notice that the optimi-
zation procedures in the present paper all refer to bud-
gets where possible fixed costs have already been
accounted for.
Analytical vs. numerical optimization
A complete closed-form mathematical solution to cost-
efficiency optimization was possible only when cost
functions were linear, i.e. (a, b) = (1, 1), and in this case
the allocation algorithms were consistent with previous
studies [43,44,46,47]. When either a or b deviated from
1, neither the choice set boundaries nor an internal
optimum could be explicitly determined, and if both
deviated together, all optimization steps had to be per-
formed using numerical methods. This suggests that
explicit, formal expressions defining cost-efficient mea-
surement allocations may only be obtainable if both cost
functions and expressions of statistical performance are
mathematically very simple. Thus, numerical optimiza-
tion procedures might be the only alternative if, for
instance, the objective (in casu variance) function

contains not only nested components [11,29], or if the
cost model does not express a straight-forward relation-
ship with the number of measurements [42]. This points
to the idea of basing all optimization on numerical
methods and ignore explicit solutions even in those
cases where they do exist. However, we believe that
mathematical expressions as developed in this paper
may still be helpful as a screening tool for deciding
whether the optimal strategy needs further (numerical)
consideration, or whether it is merely situated at the
boundary of the choice set, as in those frequent cases
where as many subjects as possible should be measured
on one occasion each (cf. table 2).

Sensitivity
The basic cost model
One important result of the present investigation was
that for many combinations of unit costs and variance
components, non-linear cost functions did not change
the general principle stated by a linear model: to mea-
sure from as many subjects as possible on one occasion
each (cf. table 2). Thus, under these particular circum-
stances, the principle of how to optimize exposure
assessment was not sensitive to the cost model, even if
the eventual size of the data set allowed by budget con-
straints was influenced by non-linearities in subject
recruitment costs. At other combinations of variance
components and unit costs, in particular when between-
subject variability was small compared to within-subject
variability and subject recruitment costs at the same
time were large compared to costs for setting up mea-
surement occasions, non-linearities did, however,
strongly affect both the optimal allocation principle and
the eventual statistical performance. While, as men-
tioned above, examples of small between- to within-sub-
ject ratios of variance are abundant in the literature,
relative sizes of unit costs are largely unknown, and thus
we do not consider it justified so-far to form an opinion
on the actual occurrence of such sensitive scenarios.
Uncertainties in input parameters
The procedures developed in the present study for iden-
tifying optimal exposure assessment strategies, whether
analytical or numerical, rely on known values of unit
costs, exponents in the cost function, and variance com-
ponents. However, in a specific epidemiologic study, all
of these inputs need be based on estimates associated
with some degree of uncertainty. Thus, the derived
“optimal” exposure assessment strategy will, in itself, be
uncertain. Similar to the issue of cost function sensitiv-
ity discussed above, the principle of how to optimize
exposure assessment seem, however, to be very robust
to changes in unit costs and variance components when
between-subject variability is large compared to within-
subject variability and subject recruitment costs are
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small or similar to costs for setting up measurement
occasions (table 2). Even the size of the eventual data
set is robust to changes in exposure variability, as long
as recruitment costs are small (table 2). If, however,
recruitment unit costs are large, both the allocation and
size of the optimal strategy is highly sensitive to the size
of variance components, especially if recruitment costs
accelerate with the number of subjects (a>1).
Even when closed-form solutions are available for esti-

mating the optimal choice of subjects and measurement
occasions (equations (10) and (11)), a corresponding
analytical expression of the uncertainty of these esti-
mates may not be readily available. Optimization using
numerical procedures evidently precludes any explicit
mathematical representation of uncertainty. Thus, sys-
tematic analyses of the stability of optimized strategies
to fluctuations in input variables need to be performed
by numerical methods. Different approaches may then
be viable, including Monte Carlo procedures (e.g. [73]),
which will, however, require estimates of the distribu-
tions of input variables; and large-scale resampling from
empirical distributions as in bootstrapping [74]. Boot-
strapping has been used successfully to address uncer-
tainty in several occupational studies addressing
exposure sampling efficiency [27,53,75], and is especially
useful in cases when analytical methods are unavailable
[12] or when assumptions underlying the analytical
models are probably violated [35,54]. Bootstrap-based
analysis of uncertainty has also been used successfully in
health economics [76]. However, bootstrapping requires
access to - preferably large - empirical data sets that can
be used to represent the distributions of necessary vari-
ables. In the case of cost-efficiency optimization, this
implies that extensive data, not available at present, are
needed on unit costs, exponents in the cost function,
and exposure variance components.
Deviations from the optimal strategy
For pragmatic reasons, exposure assessments in working
life will rarely be carried out as planned (e.g. [37]).
Thus, an intended optimal strategy may, in effect, be
realized by collecting numbers of measurement units at
different stages that deviate from the optimal choice,
even if the total budget is still consumed. Presumably,
the most likely deviations to occur appear in the form
of slight departures from a completely balanced data set;
for instance that some measurement occasions fail for
some subjects but are compensated by more occasions
from others. As noted from the numerical examples
(table 2), statistical performance seems to be consider-
ably more sensitive to non-optimal strategies at some
combinations of variance components, unit costs and
cost function exponents than at others. However, this
result concerns only non-optimal strategies that are still
balanced. The effects of unbalanced reallocations of

measurements, which still consume the allowed budget,
need to be determined in future studies. When facing
scenarios that will be sensitive to deviations from the
optimal strategy, we suggest, however, preparing for
likely departures by designing an intentional
oversampling.

Comparing cost-efficiencies
Comparing measurement allocations
Some previous studies on cost-efficient data collection
have been devoted to comparing two or more alterna-
tive measurement strategies with respect to cost and
efficiency, rather than identifying an optimal strategy.
Thus, Armstrong compared the properties of two differ-
ent instruments for retrieving the same exposure data
[40,41], while Lemasters et al. [38] and Shukla et al. [39]
devoted their studies to comparing different allocations
of measurements using the same instrument. In the two
latter studies, probably none of the compared strategies
were optimal, but they were meant to represent feasible
strategies in terms of e.g. logistics and selection con-
straints. The comparison approach to cost-efficiency
analysis is considerably easier to deal with from a math-
ematical viewpoint than optimization as addressed in
the present paper. A mere comparison also allows for
both cost and output variance functions that cannot be
addressed by analytical optimization procedures.
Abstaining from optimization may thus represent a
pragmatic level of analysis in cases where the principal
objective is to decide for one of a number of possible
exposure assessment strategies rather than determining
an absolute optimum.
Comparing measurement instruments
While, as mentioned, some previous studies have
addressed the issue of comparing the cost-efficiency of
two alternative methods for obtaining the same expo-
sure variable(s) [40,41], no attempts have been made on
comparing two instruments in terms of their optimal
performance under a constrained budget. This is an
issue of obvious importance to a researcher or practi-
tioner facing a decision on investments in new equip-
ment or staff. For many occupational and environmental
exposures, several alternative measurement instruments
are available. For instance, working postures can be
recorded using self-reports, observations and direct
measurement tools [77,78]; i.e. methods associated with
different costs and different statistical performance
[79,80]. The procedures developed in the present paper
can be used to identify an optimal measurement strategy
for each method separately, including the resulting sta-
tistical performance, on which basis a comparison can
be made. In this case, it is particularly important to
acknowledge fixed costs with either method, since they
determine the budget left for optimization.
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Conclusion
In the present study, we demonstrated that non-linear-
ities in costs functions can have a significant influence
on the principle of how to optimally allocate measure-
ments between subjects and occasions within subjects.
This happens if costs for recruiting subjects are large
compared to costs for setting up measurement occa-
sions, and, at the same time, the between-subjects to
within-subject variance ratio is small. If, on the other
hand, the between-subjects variance is larger than or
similar to the within-subject variance, non-linearities do
not, in general, change the supremacy of measuring at
one occasion from each of as many subjects as allowed
by the budget. This principle applies in particular if the
budget is large. Irrespective of the extent of exposure
variability, however, non-linear subject recruitment costs
will affect the eventual size of the exposure data sample,
and hence the precision of the resulting exposure mean
value.
We noted a remarkable scarcity of empirical data on

appropriate approximations of cost functions in expo-
sure assessment, as well as on the sizes of costs pertain-
ing to different measurement stages, for instance
subjects and occasions within subjects.
Thus, in epidemiologic research requiring reliable

exposure mean values, we suggest that exposure assess-
ment strategies are discussed a priori, using the proce-
dures developed in the present paper on educated
estimates of relevant variance components, unit costs,
and cost function shapes. This should lead to informed
decisions on measurement strategies that pursue an
optimal use of monetary resources, with due considera-
tion as to whether the obtainable statistical performance
is sufficient.

Appendix
The conditions for the objective function to be convex if
b ≠ 1 (case B), can be derived as follows:
First, take the derivative of equation (14) with respect

to nd:

s2μ
′′(nd) =

1
R

·
[
s2BS · πd · β · (β − 1) · nβ−2

d

+ (s2BD + s2μWD) · (πd · (β − 1) · (β − 2) · nβ−3
d + 2 · πs · n−3

d )
]

This expression will always be positive for b ≥ 2, and
hence the objective function (equation (13)) convex. For
b < 2 sufficient conditions for convexity follow from the
inequality:

s2BS · πd · β · (β − 1) · nβ−2
d + (s2BD + s2μWD) · (πd · (β − 1) · (β − 2) · nβ−3

d + 2 · πs · n−3
d ) >

s2BS · πd · β · (β − 1) · nβ−2
d + (s2BD + s2μWD) · (πd · (β − 1) · (β − 2) · nβ−3

d ) >

s2BS · πd · β · (β − 1) · nβ−3
d + (s2BD + s2μWD) · (πd · (β − 1) · (β − 2) · nβ−3

d ) > 0.

This last inequality is equivalent to:

πd · (β − 1) · nβ−3
d ·

[
s2BS · β

(s2BD + s2μWD)
+ (β − 2)

]
> 0, i.e.:

(β − 1) ·
[

s2BS · β
(s2BD + s2μWD)

+ (β − 2)

]
> 0

This inequality is true if b-1 and
[

s2BS · β
(s2BD + s2μWD)

+ (β − 2)

]
are

both positive or both negative.

Both are positive if 1 < β < 2 and
s2BS

(s2BD + s2μWD)
> −(β − 2)

β
(A1)

Both are negative if β < 1 and
s2BS

(s2BD + s2μWD)
< −(β − 2)

β
(A2)

Thus, to summarize, the objective function is always
convex for b ≥ 2. For 1 <b <2 and b < 1, it is convex if
inequalities A1 and A2 apply, respectively.
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