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Abstract

Background: In epidemiological studies, it is often not possible to measure accurately exposures of participants even
if their response variable can be measured without error. When there are several groups of subjects, occupational
epidemiologists employ group-based strategy (GBS) for exposure assessment to reduce bias due to measurement
errors: individuals of a group/job within study sample are assigned commonly to the sample mean of exposure
measurements from their group in evaluating the effect of exposure on the response. Therefore, exposure is estimated
on an ecological level while health outcomes are ascertained for each subject. Such study design leads to negligible
bias in risk estimates when group means are estimated from ‘large’ samples. However, in many cases, only a small
number of observations are available to estimate the group means, and this causes bias in the observed exposure-
disease association. Also, the analysis in a semi-ecological design may involve exposure data with the majority missing
and the rest observed with measurement errors and complete response data collected with ascertainment.

Methods: In workplaces groups/jobs are naturally ordered and this could be incorporated in estimation procedure
by constrained estimation methods together with the expectation and maximization (EM) algorithms for regression
models having measurement error and missing values. Four methods were compared by a simulation study: naive
complete-case analysis, GBS, the constrained GBS (CGBS), and the constrained expectation and maximization (CEM).
We illustrated the methods in the analysis of decline in lung function due to exposures to carbon black.

Results: Naive and GBS approaches were shown to be inadequate when the number of exposure measurements is
too small to accurately estimate group means. The CEM method appears to be best among them when within each
exposure group at least a ’moderate’ number of individuals have their exposures observed with error. However,
compared with CEM, CGBS is easier to implement and has more desirable bias-reducing properties in the presence of
substantial proportions of missing exposure data.

Conclusion: The CGBS approach could be useful for estimating exposure-disease association in semi-ecological
studies when the true group means are ordered and the number of measured exposures in each group is small. These
findings have important implication for cost-effective design of semi-ecological studies because they enable
investigators to more reliably estimate exposure-disease associations with smaller exposure measurement campaign
than with the analytical methods that were historically employed.
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Background
Measurement error problems are common in a variety of
fields. Long-term blood pressure, nutrient intake, or con-
centration of pollutants are just some example of variables
[1]. Measurement errors should be taken into account
in any inferential procedure. In fact, exposure measure-
ment error causes bias of parameter estimates and loss of
power for detecting relationships among variables [2]. In
epidemiological cohort studies of occupational and envi-
ronmental exposures, individual exposures are measured
with errors and often not available for all members of the
study, while health outcome measures are obtained for all
individuals without measurement error. In such settings, a
commonly employed approach is to derive exposure esti-
mates via a group-based strategy (GBS, also known as
semi-individual or semi-ecological study design). Individ-
uals are grouped according to shared attributes, such as
job title or work area, and assigned an exposure score, usu-
ally the mean of some concentration measurements made
on samples drawn from the group. This amounts to single
imputation of missing value, and is commonly used for all
the individuals in the group [3].
In some settings the use of a group-based strategy for

assigning exposure scores can result in a less biased esti-
mate of an exposure-disease association than the case of
using individual exposures measured with errors. How-
ever, it is often the case that there are only a few exposures
measured in each group. Unlike the case with large num-
ber of observations in each group, the GBS incurs severe
bias to the estimation.
Very often, groups of subjects are formed according

to the level of a certain attribute. Then, it is reasonable
to assume that the groups are also ordered in the same
(or opposite) way. This information could be incorpo-
rated in inference for more precise analysis [4]. In order
to incorporate the group ordering information, we use a
constrained method and thereby achieve an improvement
in estimation by correcting the reverse ordering possi-
bly appearing in sample group means. The GBS with this
correction will be referred to as the constrained group-
based strategy (CGBS). If this correction is incorporated
in the expectation-maximization (EM) algorithm, it will
be called the constrained EMmethod (CEM).
The following assumptions were made for the purposes

of our study: a normal exposure distribution (a log-
transformation for log-normally distributed exposures
was applied in the example), known constant error vari-
ance components (sensitivity study), no systematic error,
non-differential measurement error and no correlation
among errors. We also focus on the scenario in which
the disease under study is neither common nor extremely
rare. Throughout this paper, we define exposures as inten-
sity or concentration of substance, ignoring complica-
tions that arise from time-varying exposure patterns and

accumulation of dose due to long-term exposure. The
mechanism for missingness in exposure is ignorable.
Our aim is to examine the use of the constrained

method when groupmeans are ordered and the exposures
are mis-measured and not available completely in an epi-
demiological cohort. We discuss only simple linear and
logistic response models in this manuscript, but they can
be extended to models with several additional variables
with no measurement error. We consider two cases for
exposure: (1) observations for exposures are completely
available but measured with errors and (2) a large portion
of exposure data are missing while the other are mea-
sured with errors. Also, we assume that the distributions
of groups are severely overlapped, that is, the distance
among the population group means is small.

Methods
In this section, we provide models, a brief review for the
GBS when the number of observed exposures is large and
the group means are far apart, isotonic regression, and
the implication of using the isotonic regression. For the
considerations described in Background, we attempt to
improve the existing methods by introducing CGBS in the
specific case of the GBS and CEM that incorporate the
group ordering information.

Models
We assume that the true exposure for the gth group is
normally distributed with fixed population group mean
μg , g = 1, 2, · · · ,G, and common variance σ 2. These
mean exposures are assumed to be ordered according to
groups, i.e., μ1 ≤ μ2 ≤ · · · ≤ μG, which is reason-
able if the subjects in the higher indexed group experience
more exposure on the average. Given this ordering infor-
mation, we postulate a classical exposure measurement
error model as follows:

Wgi = μg + γgi + ηgi = Xgi + ηgi, (1)

where Wgi represents the observed exposure on the ith
subject in the gth group, Xgi represents the true expo-
sure on the subject; μg is the gth group mean exposure,
g = 1, · · · ,G; γgi ∼ N (0, σ 2

b ) is a random effect due to
subject i, i = 1, · · · , ng in group g; ηgi ∼ N (0, σ 2

η ) is amea-
surement error occurring when evaluating the amount of
exposure. We assume ηgi are mutually independent. Also,
Xgi and ηgi are assumed to be independent as usual. For
the association between exposure and response, we con-
sider simple linear and logistic regression models given,
respectively, by

Ygi = β0 + β1Xgi + εgi,
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where β0 and β1 are the intercept and the slope parame-
ters and εgi ∼ N (0, σ 2

ε ), and

P[Ygi = 1|Xgi]≡ p(Xgi;β) = �(β0 + β1Xgi),

where Ygi is a binary variable for the health outcome and
�(t) = exp(−t)/[ 1 + exp(−t)].

GBS
As mentioned earlier, GBS assigns the same amount of
exposure (sample mean) to all the subjects in the same
group. Let Wg be the average of the observed measure-
ments for group g. Then, the conditional expectation of
the true exposure given the observed group mean in this
case is E[Xgi|Wg]= Wg + (m − 1)(Wg − μg), where
m = cov(Xgi,Wg)/var(Wg). If the number of subjects
in each group is sufficiently large, then Wg ≈ μg and
so E[Xgi|Wg] can be well approximated by Wg . Thus, in
this case, a quasi-Berkson error model [5] can be postu-
lated between the assigned sample mean (Wg) and true
exposures (Xgi), i.e.

Xgi = Wg + egi, E[ egi|Wg]= 0. (2)

While the performance of this approximation depends
on the sample size, it works well even with a moderate size
of sample. This postulation is analogous to the Berkson
error model in the sense that the conditional expecta-
tion of the true exposure given the observed exposure is
exactly the same as the observed exposure. However, it is
not a true Berkson error model because the group mean
(Wg) is not independent of the error (egi). Further, the
conditional expectation of responseYgi given the observed
sample mean value,Wg for the linear models is

E[Ygi|Wg]= β0 + β1E[Xgi|Wg]

and for logistic regression models, by using the approxi-
mation to probit regression model when the disease is not
rare,

E[P(Ygi = 1|Xgi)|Wg]≈ �
(
β

′
0 + β

′
1E(Xgi|Wg)

)

≈ E
[
�[ c(β0 + β1Xgi)] |Wg

]

where c, the correcting factor for the approximation
between logistic and probit models, β

′
0 and β

′
1 are func-

tions of the conditional mean E(Xgi|Wg) and variance
V (Xgi|Wg), especially β

′
1 = β1√

c2β2
1V (Xgi|Wg )+1

, and �(t) is

the cumulative density function of the standard normal
distribution [6]. In conclusion, if the number of observed

values is large, E[Xgi|Wg]≈ Wg , and when V (Xgi|Wg) ≈
σ 2
b is small, then there is no bias for linear and negligi-

ble bias for logistic models [5]. However, as the number
of observed values gets smaller, the approximation by
using the GBS results in more severe bias. Our goal is
to search for an improved method by incorporating the
group ordering information.

Constrained GBS
The isotonic regression is the weighted least-squares fit of
unconstrained mean estimates subject to a set of speci-
fied ordering constraints. In case of a simple linear order
considered here, the isotonic regression of w with weight
vector α = (α1, · · · ,αG)′ is defined as the solution to

Minμ

G∑
g=1

(wg−μg)
2αg subject to μ1 ≤ μ2 ≤ · · · ≤ μG.

For computing this isotonic regression, let

Av(i, j) = αiwi + αi+1wi+1 + · · · + αjwj

αi + αi+1 · · · + αj
, 1 ≤ i ≤ j ≤ G.

Then, as discussed in Robertson et. al. [7], the gth com-
ponent value of the isotonic regression is represented as

μ∗
g = max

l≤g
min
j≥g

Av(l, j), g = 1, · · · ,G, (3)

and can be easily obtained by the Pool-Adjacent-Violators
Algorithm (PAVA) (see Chapter 2 of [4] for details).
Table 1 shows an example. Let us assume that the

population means of five groups should be increasingly
ordered. But we observed reverse orderings between the
first two. With weight vector α = (4, 3, 5, 3, 4), the com-
ponents (μ∗) of group means (w) are corrected by iso-
tonization. In case of GBS, the observed groupmeans may
not be properly ordered if the sample sizes for exposures
are small. The reverse ordering in group mean estimates
could result in serious bias to the estimators of regres-
sion parameters. This type of bias could be avoided by
using the isotonic regression that satisfies the ordering
constraint for the population means. In the constrained

Table 1 An example of isotonic regression

Group 1 2 3 4 5

w 0.7755 0.6229 1.8207 2.2878 1.7054

α 4.0 3.0 5.0 3.0 4.0

μ∗ 0.7101 0.7101 1.8207 1.9550 1.9550
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GBS, we adjust the estimated group means to satisfy
the required ordering before the GBS is applied. In the
model setting here, the component values in the isotonic
regression will be used as exposure scores. By adding the
ordering information underlying exposure group means
in the estimation procedure, improvement of GBS could
be possible to a certain extent without any complicated
modification even when we have a small number of obser-
vations for the exposure in each group. This constrained
approach is referred to as CGBS. In CGBS, the mean
vector, μ = (μ1, · · · ,μG)′, is estimated by the isotonic
regression, μ∗, of w = (w1,w2, · · · ,wG)′ with a weight
vector composed of observed sample sizes.

Constrained Expectation andMaximization (CEM)
An EM method, introduced by Dempster et al. [8], is
used for findingMLEs of parameters where the missing or
latent variables are involved in the model. The EM algo-
rithm is an iterative procedure that performs an expec-
tation (E) step and maximization (M) step, alternately.
In E-step, the conditional expectation of complete log-
likelihood is computed based on the conditional distri-
bution of unobservable variables given observed data and
current estimates of parameters. In M-step, the expected
likelihood function obtained in E-step is maximized and
the current estimates of parameters are updated by the
new ones. As discussed in Wu [9], if the likelihood func-
tion is unimodal and satisfies some differentiability con-
ditions, EM algorithm produces a sequence of estimates
that converge to the actual MLE.
For constrained estimation (CEM), we impose the

ordering constraints on μi’s in this M-step. While we
can get closed form of constrained estimates in M-step
in the simple linear case with measurement error but
without missing in exposure, we usually need another iter-
ative procedure for the maximization in M-step. A simple
approach for the maximization in an M-step in our prob-
lem is to update estimates alternately betweenμ and other
set of parameters. In other words, we first find the con-
strained estimate of μ given current estimates of other
parameters, and then using the updated estimate of μ,
we maximize the expected log-likelihood with respect to
other parameters in a usual manner. Here, we briefly dis-
cuss how to find the constrained estimate of μ and other
parameters in our iterative procedure in M-step.

CEMwithmeasurement errors only in exposure
The EM method can be applied to measurement error
problems by treating unobservable true xgi as missing data
values [2]. If there is no information on measurement
error, a sensitivity analysis may be conducted for some
predetermined values of error variances. We anticipate
that the measurement error and the true variable distri-
butions might be specified as normal linear models. The

observed data likelihood is obtained by integrating the
completed data likelihood over all the unobserved x’s, and
then maximized for MLE. The complete data likelihood
for θ = (θ1, θ2, θ3) is

Lc(θ |y,w, x) =
G∏

g=1

ng∏
i=1

f (ygi|xgi; θ1)f (wgi|xgi; θ2)f (xgi; θ3).

(4)

While we use f (·|·) for conditional densities, they can
be identified based on their arguments. Integrating over
the cases with unobserved x’s will give the observed data
likelihood:

Lo(θ |y,w, x)=
G∏

g=1

ng∏
i=1

∫
f (ygi|xgi; θ1)f (wgi|xgi; θ2)f(xgi; θ3)dxgi

Let lc(θ ; y,w, x) = ln Lc(θ ; y,w, x) − C where C is the
constant term in log Lc(θ ; y,w, x). The E-step involves
formulation of the quantity Q(θ |θ(t)) such that

Q(θ |θ(t)) = Eθ(t) [ lc(θ ;Y,W,X)|y,w] (5)

where the expectation is with respect to the conditional
density f (xgi|wgi, ygi; θ(t)). The conditional pdf of Xgi given
ygi and wgi is given by

f (xgi|ygi,wgi; θ) = f (ygi|xgi; θ1)f (wgi|xgi; θ2)f (xgi; θ3)∫
f (ygi|xgi; θ1)f (wgi|xgi; θ2)f (xgi; θ3)dxgi .

When we maximize Q(θ |θ(t)), we may often encounter
the problem of evaluating expectations that do not have
a closed form. Then, a Monte Carlo method can be used
in various ways. Also, in order to avoid the identifiabil-
ity problem commonly arising from measurement error
models, we assume σ 2

η is known.

CEMwithmeasurement errors andmissing in exposure
Methods for data with complex structure such as mea-
surement errors, missingness and outliers were reviewed
by Wu [10]. The EM method is used for estimation
when measurement error or missingness is involved in
responses [11]. Observations containing the cases with
missing values in exposure can also be accommodated by
the EM algorithm. If there are any constraints on mean
exposures, we may use the constrained EM method that
reflects such constraints in maximization procedure.
Let {(Y ∗,W ∗,X∗); n∗

g number of missing exposures} be
a subdata where Y ∗ is observed, but W ∗ is all
missing with the true value X∗ while {(Y ,W ,X); ng
number of observed exposures} denotes those without



Kim et al. BMCMedical ResearchMethodology 2012, 12:135 Page 5 of 10
http://www.biomedcentral.com/1471-2288/12/135

any missing value. Then, as we defined earlier, the com-
plete data log-likelihood for θ is given by

lc(θ ; y,w, x, y∗,w∗, x∗) = lc1(θ ; y,w, x) + lc2(θ ; y∗,w∗, x∗).

where lc is the log-likelihood with complete data, lc1 is
the log-likelihood with observed exposures, and lc2 is the
log-likelihood with the missing exposures. Thus, it follows
that

Q(θ |θ(t)) =Eθ(t) [ lc(θ ;Y,W,X,Y∗,W∗,X∗)|y,w, y∗]
=Q1(θ |θ(t)) + Q2(θ |θ(t))

where Q1(θ |θ(t)) = Eθ(t) [ lc1(θ ;Y,W,X)|y,w] and
Q2(θ |θ(t)) = Eθ(t) [ lc2(θ ;Y∗,W∗,X∗)|y∗]. Note that
Q1(θ |θ(t)) is exactly the same as the conditional expec-
tation obtained in E-Step in the case with measurement
error only. Based on observations having missing val-
ues in exposure, the second term of Q(θ |θ(t)) for linear
regression model is expressed as

Q2(θ |θ(t)) = − 1
2

⎛
⎝ G∑

g=1
n∗
g

⎞
⎠ (ln σ 2

η + ln σ 2
b + ln σ 2

ε )

− 1
2σ 2

ε

G∑
g=1

n∗
g∑

i=1
Eθ(t) [ (Y ∗

gi − β0 − β1X∗
gi)

2|y∗
gi]

− 1
2σ 2

η

G∑
g=1

n∗
g∑

i=1
Eθ(t) [ (W ∗

gi − X∗
gi)

2|y∗
gi]

− 1
2σ 2

b

G∑
g=1

n∗
g∑

i=1
Eθ(t) [ (X∗

gi − μg)
2|y∗

gi] . (6)

The conditional distribution (Xgi|ygi,wgi) fol-
lows N (mx(ygi,wgi; θ), vx(θ)) where mx(ygi,wgi; θ) =
β1σ 2

b σ 2
η (ygi−β0)+(σ 2

ε σ 2
η )wgi+σ 2

ε σ 2
η μg

β2
1σ 2

b σ 2
η +σ 2

ε (σ 2
b +σ 2

η )
and vx(θ) =

σ 2
ε σ 2

b σ 2
η

β2
1σ 2

b σ 2
η +σ 2

ε (σ 2
b +σ 2

η )
. Also, the conditional distribution

(X∗
gi,W ∗

gi|y∗
gi) follows a bivariate normal distribu-

tion with mw∗(y∗
gi; θ), ρx∗w∗(θ), vx∗(θ), and vw∗(θ),

where mx∗(y∗
gi; θ) = mw∗(y∗

gi; θ) = σ 2
ε μg+β1σ 2

b (y∗gi−β0)

σ 2
ε +β2

1σ 2
b

,

ρx∗w∗(θ) =[ σ 2
ε σ 2

b
σ 2

ε σ 2
b +σ 2

ε σ 2
η +β2

1σ 2
b σ 2

η

]
1
2 , vx∗(θ) = σ 2

ε σ 2
b

σ 2
ε +β2

1σ 2
b
,

and vw∗(θ) = σ 2
ε σ 2

b +σ 2
ε σ 2

η +β2
1σ 2

b σ 2
η

σ 2
ε +β2

1σ 2
b

.

The second term Q2(θ |θ(t)) for logistic regression
model is given by

Q2(θ |θ(t)) = − 1
2

⎛
⎝ G∑

g=1
n∗
g

⎞
⎠ (ln σ 2

η + ln σ 2
b )

+
G∑

g=1

n∗
g∑

i=1

{
y∗
giEθ(t) [ ln p(X∗

gi;β)|y∗
gi]

+(1 − y∗
gi)Eθ(t) [ ln(1 − p(X∗

gi;β))|y∗
gi]

}

− 1
2σ 2

η

G∑
g=1

n∗
g∑

i=1
Eθ(t) [ (W ∗

gi − X∗
gi)

2|y∗
gi]

− 1
2σ 2

b

G∑
g=1

n∗
g∑

i=1
Eθ(t) [ (X∗

gi − μg)
2|y∗

gi] . (7)

In order to maximize Q(θ |θ(t)), we need a Newton
method as a part of each EM procedure. However, our
investigations indicate that it does not take too long time
to reach a convergence criterion. Asmentioned earlier, the
conditional expectations here do not have closed form of
expressions, and thus we rely on aMonte Carlo method to
evaluate them. For details of estimation procedure, read-
ers are referred to the Additional file 1: Supplementary
material of this paper.

Simulation study and results
Simulations were conducted to examine attenuation in
regression coefficient estimates in linear and logistic mod-
els with group-based exposure assessment and a disease
with expected risk of about 10%. We considered a cohort
with time-invariant exposure that segregates into five
exposure groups. We further assumed that disease risk
depended only on exposure intensity, not its duration. For
each group, we generated ny = 30 sets of complete obser-
vations (exposure with measurement error and response)
from the specified underlying model described in Section
“Methods”. In order to allow missingness for exposure, a
sample of nx = 10 or 20 exposure measurements were
taken from the complete set of data (ny = 30) for each
group. Here, the true regression coefficients were set to
β0 = −2 and β1 = 0.3 as the intercept and slope param-
eters for both regression models. For both models, the
exposures were assumed to be normally distributed with
means μg = 0.2 + (g − 1)δ, g = 1, · · · , 5. We consider
two cases: δ = 0.3 and 0.5. In order to see the impact of
the between-subject variability, we investigated the results
for different values of σ 2

b = 0.3, 0.6, and 0.9. Three levels
of measurement error variance were considered, that is,
σ 2

η = 0.25, 0.5, and 0.75. The empirical bias and
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mean square error (MSE) were evaluated based on 200
replications for each case.
We perform four estimation methods. The first method,

named ‘naive’, is to analyze the complete data ignor-
ing exposure measurement errors. The second approach
(CEM) is the constrained EM algorithm developed for
accommodating missing observations and measurement
errors. The third method is to use the GBS and CGBS
methods that assign a score (group mean for GBS or con-
strained group mean for CGBS) to each group and fit
a standard regression model to the data. In implement-
ing the Monte Carlo CEM methods, we used the naive
estimates as initial values for parameters. We present the
empirical bias andMSE in (Additional file 2: Tables S1 and
S2) for linearmodel and in (Additional file 2: Tables S3 and
S4) for logistic model, respectively. Evidently, the results
demonstrate that substantial bias is incurred if missing-
ness and measurement error are not properly treated. The
CEM adjusted fairly well the bias if there is no miss-
ing. The CGBS is better than the GBS overall. When the
portion of observed exposure data is small and they are
exposed to severe measurement error, the CGBS performs
much better than the other methods.
Specifically, in the linear model case (Additional

file 2: Table S1), when the between-group contrast is small
(δ = 0.3), the naive estimate is seriously biased, but CEM
method (with full measurements) has shown significant
improvement. For example, the between-subject variabil-
ity and the measurement error are moderate (σ 2

b = 0.6;
σ 2

η = 0.5), the CEM estimate adjusts bias (0.9%) whereas
the bias of naive estimates is about 40%. However, when
the number of observed exposure data is nx = 10, in the
same comparison, the bias of CGBS estimate is smaller
than that of CEM estimate (2.8% vs. 5.1%). In the same set-
ting, when measurement error is increased to σ 2

η = 0.75,
all the estimators get more biased. But, the CGBS per-
forms better than the others (3.0% vs. 20.4%(GBS) and
7.9%(CEM)). If the between group contrast is increased,
the estimators get less biased for all methods but the
pattern of bias among the estimation methods is similar
to that of the case with the small between-group con-
trast. As the between-subject variability increases, the bias
of GBS and CGBS estimates increases, whereas the bias
of CEM estimate decreases. For example, in (Additional
file 2: Table S2), with δ = 0.5 and nx = 10 measurements,
and the measurement error are moderate (σ 2

η = 0.5), as
the between-subject variability increases from σ 2

b = 0.3
to 0.9, the bias of CGBS estimate increased from 2.0%
to 2.7%, whereas the CEM estimate decreased from 5.4%
to 3.7%.
In the logistic regression (Additional file 2: Table S3),

when the between-group contrast is small (δ = 0.3), the
naive estimate is highly biased, whereas CEM method
(with full measurements) adjusts the bias significantly. For

example, the between-subject variability and themeasure-
ment error are moderate (σ 2

b = 0.6; σ 2
η = 0.5), the CEM

estimate adjusts bias (0.5%), whereas the bias of naive
estimates is about 44%. However, when the number of
observed exposure data is nx = 10, in the same com-
parison, the bias of CGBS estimate is much smaller than
that of CEM estimate (5.1% vs. 23.1%). In the same set-
ting, If we increase measurement error to σ 2

η = 0.75, all
the estimates get worse. However, the CGBS shows better
performance compared with the other methods (5.7% vs.
25%(GBS) and 27%(CEM)). As the between-group con-
trast increases (Additional file 2: Table S4), the estimates
are generally getting less biased. For example, when nx =
20, σ 2

b = 0.6, and σ 2
η = 0.5, the bias of CEM estimate with

δ = 0.5 is 5.5% whereas the bias when δ = 0.3 is 7.3%.
In the same comparison, the bias of CGBS estimate when
δ = 0.5 is 11.8% whereas its bias with δ = 0.3 is 26%.
For both linear and logistic models, the MSE decreases

as we increase the between-group contrast. The MSEs for
the CEM estimators were generally smaller than those for
the GBS and CGBS when the number of observed expo-
sure is not too small. However, with small number of
observations, the CGBS performs better than the CEM.
Also, MSE gets larger if we increase the measurement
error variability.

Application to respiratory symptoms and exposure
to carbon black
A number of repeated cross-sectional studies with mea-
surements of respiratory health of employees in the Euro-
pean carbon black manufacturing industry, in relation to
exposure to carbon black dust, were conducted [12]. In the
second survey, exposure to respiratory dust in 19 factories
in 7 European countries (Great Britain, France, Germany,
Holland, Italy, Spain and Sweden) was determined among
1870 workers, resulting in 3290measurements [13]. There
were 8 job categories within 19 factories, and workers
from each job title in each factory were selected randomly
for monitoring of exposures. In addition, repeated expo-
sure measurements on the same worker were collected
at random intervals to allow estimation of the between-
and within- worker variances. Respiratory dust measure-
ments were log- transformed to satisfy the assumption
of normality. Lung function tests were carried out by the
company medical officers, or their delegates, with a prop-
erly maintained Vitalograph S Model dry wedge bellows
spirometer calibrated with a 1 l syringe. The spirometer
was calibrated by external specialists at the start of each
data collection period and at 2 week intervals through-
out the surveys. Values for forced expiratory volume in 1
second (FEV1) among others were estimated directly from
the traces.
Exposuremodels were fitted with both homogenous and

heterogeneous between-subject variances among groups
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to check the assumption of the homogenous between-
subject variability for all groupings. Comparison with
Bayesian information criterion values in mixed-effect
modelling indicated that there was no evidence for hetero-
geneous between-subject variability in the data [14]. We
used a subset (1414 workers) of the original data in which
each subject within a group had exposure measurement
and health outcomes were determined on every subject
with one exposure measurement.
Figure 1 shows the means of log-exposures are ordered

among the groups defined by job categories while there
is an exception. In the presence of this ordering infor-
mation, estimates of the slope parameter were obtained
for different numbers of exposure data, nx = 10, 20, 50,
selected randomly from each group of data. These esti-
mates are listed in Table 2 to demonstrate the effect of the
number of incomplete observations on the performance
of analytical methods. For this, the mean estimates and
their standard errors were evaluated from 200 randomly
selected samples of size nx. However, in the case of no
missing observations, the standard error of β̂1 was com-
puted based on the empirical information matrix in the
context of Meilijson [15]. In the case of GBS or CGBS,
the variance estimate for the response depends not only
on model and measurement error variances but also on
the variability of exposure and the slope of the regression
function. This is because such methods treat responses in
the same group as if they were observed at the groupmean
exposure. Thus, the standard errors from those methods

are inflated. Thus, we suggest to use the standard errors
from CEM for general inference.
Furthermore, our simulation study indicates that the

estimation by CEM is more reliable if data do not contain
missing observations. Thus, we suggest in this example to
use β̂1 = −0.1589 as the best estimate of β1. Although
GBS gave the estimated value incidentally closer to the
suggested estimate than CGBS did, CGBS estimates can
be expected to be more precise in general as shown in
our simulation study. This argument becomes more clear
when we compare estimates obtained from data sets con-
taining missing observations.We see that CGBS estimates
are stably closer to the suggested estimate regardless of
the level of missingness.More specifically, with small sam-
ple size, say nx = 10, GBS yielded estimate that is closer
to naive analysis with little adjustment for measurement
error compared with CGBS and CEM. This can be antic-
ipated because GBS retains predominantly classical error
structure in such case. Recall CEM estimators are more
precise than CGBS estimators in simulations if there are
no missing observations but less precise then CGBS esti-
mators if a substantial portion of observations is missing
in each group. The results also support the forementioned
fact in the sense that those CGBS estimates are stably
closer to the suggested “best” estimate in all cases with
missing observations. Since the data set used here is the
case of small intervals (δ̂ = 0.36) and large measurement
errors (σ 2

η = 0.92), this interpretation may apply limitedly
to that particular situation.

Figure 1Mean of log-exposures to respiratory dust by exposure category.
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Table 2 Application to respiratory symptoms and exposure to carbon black

G = 8, ny = (245,240,129,224,157,192,174,53), δ = 0.36

s2b s2η Naive(se) GBS(se∗) CGBS(se∗) CEM(se)

nx = full 0.41 0.92 -0.0408(0.019) -0.1593(0.059) -0.1709(0.059) -0.1589(0.014)

∗ inflated standard error due to GBS approach

GBS CGBS CEM(se)

nx = 50 -0.1501 -0.1725 -0.1456(0.023)

nx = 20 -0.1270 -0.1637 -0.1371(0.025)

nx = 10 -0.1004 -0.1600 -0.1338(0.025)

Grouping with job category: Estimate of β1 (with standard error in parentheses) G: number of groups; nx : number of exposures per group; s: estimate variance of the
between group distribution of log-transformed exposures; s2b : estimate variance of the between worker distribution of log-transformed exposures; GBS: group-based
strategy; CGBS: constrained group-based; Monte Carlo EM (CEM).

Discussion
Measurement error is concerned with bias problem
occurring to the estimates of regression coefficients when
the exposures are measured inaccurately or available
through the recording of imperfect surrogates. If we, in
addition to measurement error for observed exposure,
have missing values for many exposure measurements
possibly due to excessive cost or lack of data in retrospec-
tive analyses, data analyses themselves face challenges that
can not be overcome by standard approaches.
Natural orderings are found in many practical applica-

tion. In a bioassay problem illustrated in Robertson et. al.
[7], a pharmaceutical researcher may want to test if treat-
ment effects are ordered according to dosage levels. In
our example, jobs are categorized as administration area
worker, laboratory assistant/electrician, fitter/welder, pro-
cess/conveyor operator, and warehouse packer/shipping
or cleaning (not office). The population means of car-
bon black exposure among these job categories could
be ordered increasingly (from administration in office to
cleaning outside). Although there is one exception pos-
sibly due to randomness, this ordering trend is justified
by exposure data as shown in Figure 1. If this ordering
information is ignored, the analysis would result in serious
bias. We demonstrated that incorporating ordering infor-
mation on group means in estimation procedure brought
a significant improvement. Although we focused on lin-
ear and logistic regression models, it would be possible to
extend this argument to more general models.
In environmental epidemiology, when we cannot

directly measure the exposure where there is outcome
data, various methods are used to predict the unknown
exposure that are similar to group-based approach
employed in occupational epidemiology.
When land-use regression models or spatial patterns

of exposure are used to assign exposure to all resi-
dents of an area, measurement error can have features
of both classical-like and Berskon-like errors as discussed

in Szpiro et al. [16,17]. The Berkson-like component of
error arises because the exposure model does not account
for all sources of variation in true exposure. This is
similar to our work in that the quasi-Berkson error we
identified from the re-postulated model (2) is approx-
imately independent of the assigned exposures [5]. It
must be recalled, however, that quasi-Berkson error can
be assured only when group means are estimated pre-
cisely from a large sample. The contribution of our cur-
rent work is to consider a challenging situation where
we are dealing with a small number of observed expo-
sure measurements and between-group contrast is small
and the quasi-Berkson model cannot be reliable. The
analogy to work of Szpiro et al. [16] may be the case
where empirical exposure model is constructed on limited
data, as may well be commonly the situation in envi-
ronmental epidemiology. In our case, however, there is
no auxiliary variable to be used in modeling the true
exposure but instead we have the ordering information
among group mean exposures. Thus, the exposure prob-
lem is more related to that of estimation rather than
prediction. As a result, the expressions for Berkson-
like and classical-like error components in Szpiro et al.
[16] have different interpretations in our problem. In
fact, it is decomposed into within-group variability for
the true exposure and estimation error for mean expo-
sure. This is caused by the fact we used Wg instead
of Wgi’s. It should be noted that reducing estimation
error by incorporating the information on ordering of
groups contributes to reduction in the bias of the esti-
mated regression parameter arising from measurement
errors and small sample samples of exposures from highly
overlapped groups.

Conclusion
The constrained group-based (CGBS) is one of methods
that can accommodate the group ordering property. This
method assigns the ordered group means to exposure
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values instead of the naive group means. The simula-
tions show that estimates with the CGBS method are
improved significantly when the between-group contrast
is small, measurement error variance is large and there are
many missing observations. However, it should be used
carefully because the bias reduction was achieved with
some increased uncertainty (variance). The constrained
expectation-maximization (CEM) method appears to be
best when all or moderate number of exposures are
observed with measurement errors. On the other hands,
the CGBS has an advantage that it is easy to implement
with no serious loss compared with the CEM that requires
highly intensive computation. In fact, CGBS appears to
have more desirable bias-reducing properties in presence
of substantial proportion of missing values.
By incorporating group ordering information in GBS

or EM, we can conduct more precise analysis for data
sets that could be considered, otherwise, as too small a
sample. For example, thousands of measurements were
collected in the the analysis considered in the example we
discussed here. But, the analysis could have been possible
even with much less measurement efforts, say, as few as 10
measurements per exposure group (a total of 80 measure-
ments), with CGBS or CEM. If we are interested only in
bias reduction, this fact has an important implication for
cost-effective studies when groups are ordered in terms of
exposure mean. However, as we mentioned earlier, stan-
dard errors of GBS or CGBS estimates are inflated and it
is recommended to use those from the CEMmethod.
In conclusion, if groups are ordered according to expo-

sure level, a constrained group- based exposure assign-
ment can be an effective and versatile approach to esti-
mate the relationship between exposure and disease when
exposure data are not available for all subjects under study.
Although a large sample is typically required for precise
estimation, we showed that even smaller samples could
be used to obtain informative results in realistic settings
by incorporating order relation among group exposure
means. Note the availability of the ordering information
contributed to reducing bias and increasing precision.
However, if such partial information is not available or
irrelevant to the response due to the nature of the prob-
lem, this improvement cannot be expected. It should also
be noted that if the number of observed measurements
are not too small, the constrained EM approach may be
recommended as a general analytical approach to semi-
ecological study design. Finally, as a future study, we may
develop an efficient simulation procedure that can ana-
lyze comprehensively the impacts of relative variability
in the group means, subject-specific exposure variation,
and measurement error variance. Furthermore, we may
extend the proposed approach so that it can be applicable
to more complex data containing repeated measurements
and clusters.
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