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Abstract

of adjusting for changes in contextual factors over time.

Background: Recently, network meta-analysis of survival data with a multidimensional treatment effect was
introduced. With these models the hazard ratio is not assumed to be constant over time, thereby reducing the
possibility of violating transitivity in indirect comparisons. However, bias is still present if there are systematic
differences in treatment effect modifiers across comparisons.

Methods: In this paper we present multidimensional network meta-analysis models for time-to-event data that are
extended with covariates to explain heterogeneity and adjust for confounding bias in the synthesis of evidence
networks of randomized controlled trials. The impact of a covariate on the treatment effect can be assumed to be
treatment specific or constant for all treatments compared.

Results: An illustrative example analysis is presented for a network of randomized controlled trials evaluating
different interventions for advanced melanoma. Incorporating a covariate related to the study date resulted in
different estimates for the hazard ratios over time than an analysis without this covariate, indicating the importance

Conclusion: Adding treatment-by-covariate interactions to multidimensional network meta-analysis models for
published survival curves can be worthwhile to explain systematic differences across comparisons, thereby reducing
inconsistencies and bias. An additional advantage is that heterogeneity in treatment effects can be explored.

Background

Healthcare decision-making requires comparisons of
relevant competing treatments for a particular disease
state. In the absence of trials involving a direct compari-
son of interventions, an indirect comparison can provide
useful evidence for the treatment effects between com-
peting interventions [1-6]. Even when direct evidence is
available, combining consistent direct and indirect esti-
mates will result in more precise treatment effect esti-
mates [2-6]. In general, if the evidence base consists of
multiple randomized controlled trials (RCTs) with each
trial having at least one intervention in common with
another, this network of RCTs can be synthesized with
meta-analysis techniques: a network meta-analysis (or
mixed treatment comparison meta-analysis) [1-6].
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Traditional (network) meta-analyses for survival out-
comes are based on hazard ratios (HR) and rely on the
proportional hazards assumption, which is implausible if
the hazard functions of competing interventions cross.
Ouwens et al. (2011) and Jansen (2011) presented meth-
ods for (network) meta-analysis of survival data using a
multidimensional treatment effect as an alternative to
the synthesis of the constant HRs [7,8]. The hazard
functions of the interventions in a trial are modeled
using known parametric survival functions (e.g. Weibull
or Gompertz) or fractional polynomials and the differ-
ence in the parameters are considered the multidimen-
sional treatment effect, which are synthesized (and
indirectly compared) across studies. In essence, with this
approach the treatment effects are represented by mul-
tiple parameters rather than a single parameter.

For network meta-analysis it is important that tran-
sitivity (i.e. the consistency assumption) holds for the
treatment effect measure of interest [2,3,9]. Violations of
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the proportional hazards assumption will compromise
transitivity and can result in biased indirect and mixed
treatment comparisons of survival outcomes [8]. By
incorporating additional parameters for the treatment
effect as proposed with the methods by Ouwens et al.
and Jansen, the proportional hazards assumption is
relaxed and indirect comparisons are less likely to be
biased [7,8]. However, violation of the proportional
hazards assumption is not the only possible source of
bias. Since randomization of patients does not hold
across trials, there might be an imbalance in patient or
study level covariates across comparisons [4-6,9]. If these
covariates are effect-modifiers of the (time varying) HRs,
transitivity will be violated and the network meta-
analysis will result in biased estimates, despite modeling
a multidimensional treatment effect.

In this paper, the models proposed by Ouwens et al.
and Jansen are extended with treatment-by-covariate
interactions to adjust for confounding bias due to sys-
tematic differences in treatment effect modifiers across
comparisons. These models also have the advantage of
explaining heterogeneity in the treatment effects. The
method is illustrated with an example.

Methods

Multidimensional network meta-analysis models for
survival data

If AB trials and AC trials are comparable in terms of ef-
fect modifiers (i.e. covariates that affect the treatment ef-
fect) then an indirect estimate for the treatment effect of
C versus B (dgc) can be obtained from the estimates of
the effect of B versus A (d4p) and the effect of C versus
A (dac): dpc=dac - dap as such, transitivity holds
[2,3,6]. For an arm-based model with the outcome of
treatment x as a function of time, f,(t) where x=A4, B, or
C and t represents time, this consistency assumption
translates into:

(fe(t) = f5(8)) = (fe(t) — fa(t)) — (f3(2) — fa(t))

The hazard function is of central interest to
summarize survival or time-to-event data. The hazard
function describes the instantaneous event (e.g. death)
rate at any point in time. A random effects network
meta-analysis model for hazard rates by treatment arm
without assuming a particular distribution for the hazard
function over time can defined according to:

ln(h ) _ ) Hine b=A,B,C, ifk=">b
) =\ Wiy + Ok if k'alphabetically after’ b

8jpk~normal(dpk, 0*) = normal(dax — dap, 0%)

where /1, reflect the underlying hazard rate in trial j for
intervention k at time point £ y;, are the study j specific
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hazard rates at time ¢ with comparator treatment b. &
reflects the study specific constant log HRs of treatment
k relative to comparator treatment b and are drawn from
a normal distribution with the pooled estimates
expressed in terms of the overall reference treatment
A: dpg=dax—dap with dys=0. Variance o* reflects the
heterogeneity across studies. As an alternative to a non-
parametric baseline hazard function, the development of
the hazard rate over time can be described by parametric
functions, such as Weibull or Gompertz.

Two-dimensional treatment effects without covariates (Model 1)
Ouwens et al. and Jansen introduced network meta-analysis
models for parametric hazard functions [7,8]. A network
meta-analysis model for the hazard rate with a two dimen-
sional treatment effect can be defined according to:

In(le) = By +Bupt?  with £ = In(t)

</40jb >
</>’o,-k> _ )\ b=AB,C, ifk=b
By ) /fio,-b> " ( Sojbk > if k 'alphabetically after’ b
Hijp diak — dap

2
Soppk~normal (doax — doap, 0*)

where 7, again reflects the underlying hazard rate in
trial j for intervention k at time point ¢ and is now
described as a function of time ¢ with p={2,-1,
-0.5,0,0.5,1,2,3} and °=In(t) with treatment and study
specific scale and shape parameters Sy, and Sy (In the
example presented below details on the likelihood and
data structure are provided). If 31 equals 0, a constant
log hazard function is obtained, reflecting exponentially
distributed survival times. If B # 0 and p=1 a linear
log hazard function is obtained which corresponds to a
Gompertz survival function [8]. If 5% # 0 and p=0
a Weibull hazard function is obtained. The vectors

(Zojb) are trial specific and reflect the true underlying
1jb

scale and shape parameters of the comparator treat-
ment b. gy is the study specific difference in the
scale parameter 3, of the log hazard curve for treat-
ment k relative to comparator treatment b. Jypi are
drawn from a normal distribution with the pooled
estimates expressed in terms of the overall reference
treatment A: doax— doap With dosq =0. The parameters
doax correspond to the treatment effect of k relative to
overall reference treatment A with a proportional hazard
model. The pooled difference in the shape parameter ;
of the log hazard curve for treatment k relative to com-
parator treatment b is expressed as dyax — diap With diga
= 0. dya reflects the change in the log HR over
time. For a proportional hazards model d; 4, equals 0. By
incorporating dy4, in addition to dos4r a multidimen-
sional treatment effect is used. For additional flexibility,
the first order fractional polynomial model can be
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generalized to a 2™ order fractional polynomial model,
representing 3-dimensional treatment effects [8].

Variance o3 reflects the heterogeneity in the difference
in the scale parameters across studies. A random effects
model with only a heterogeneity parameter for doax
implies that the between study variance of the log hazard
ratios remains constant over time.

Two-dimensional treatment effects with treatment specific
covariate interactions (Model 2)
Since randomization only holds within a trial, the
distribution of covariates may vary across studies for
a particular type of comparison, as well as between
different types of comparisons. Variation in treatment
effect modifiers across studies within comparisons results
in heterogeneity and an imbalance in effect modifiers be-
tween different types of comparisons results in violations of
the consistency assumption. [2-4,6,9,10]. Network meta-
analysis models can be extended with treatment-by-
covariate interactions in an attempt to adjust for this con-
founding bias or to explore sources of heterogeneity [9-14].
In line with previous meta-regression models for
network meta-analysis where the treatment effect
acts on one parameter [10], model 1 can be extended
with study level covariates to explore treatment-by-
covariate interactions. The specification assumes that
all treatment-by-covariate interactions are different
for each treatment k relative to overall reference
treatment A:

In(hue) = By + But” with £2 = In(t)

(ﬂo;‘b )
(:BOjk) _ I\ b=AB,C, ifk=b
By ) ﬂo;b) n < Sojbk ) if k ‘alphabetically after' b
Hijp diar — diap

Soihk~normal(d0hk + B X (702)
= normal(doax — doap + (Beax — Buan)Xj» 00°)

B reflects the impact of study level covariate X; on
the difference in the scale parameters of the hazard
functions with treatment k relative to control treatment
b. Now dy, is the difference in scale treatment k relative
to b when the covariate value equals zero. Since By =
Bsak = Brap With Boaa = 0, k — 1 different and independ-
ent regression coefficients for 3,4, will be estimated with
the model. As an alternative to independent treatment-
by-covariate interactions, one can also assume exchange-
able interaction effects [10].

Two-dimensional treatment effects with constant covariate
interaction (Model 3)

One can also assume that the impact of the covariate
X; on the scale parameter of each treatment k relative
to A is the same for all treatments. This assumption
can be defended when treatments indirectly compared
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are all from the same class and there is no (biological)
reason to assume that a patient characteristic, or any
other contextual aspect of the study, modifies treat-
ment effects differently for the different drugs com-
pared. Furthermore, the assumption of constant
treatment-by-covariate interaction can also be useful
when evaluating the impact of study (design) charac-
teristics (or bias) on treatment effects. [10,14]. The
corresponding network meta-analysis model will be:

In (i) = Boje + Byt?  with £ = In(t)

(/"Ojb >
ﬁ()jk _ I\ Py b=A,B,C, ifk=0b
<ﬁ1/k) B llo,h> ( Bojbi > if k 'alphabetically after’ b
Hajip diak — drap
S normal (doar — doap + B X, 00%) ifb=A
K\ normal(doax — doas, 002) ifb+#£A

Since for each treatment k relative to A the impact
of the covariate is the same, B.X; will cancel out
for the comparison of treatment k relative to b when
b# A

normal ((doax + B.X;) — (doar + B.X;), 00%)
= normal (dopk, 00)

Figure 1 illustrates the results of a network meta-
analysis of AB and AC studies according to Models 1-
3 assuming the hazard over time follows a Weibull
distribution, i.e. p=0. The AB and AC planes reflect
the pooled effect estimates of treatment B and C
relative to A as a function of time and a covariate
value. The vertical axis represents model parameters
doax with k=B, C, corresponding to the log-HR
of treatment B and C relative to A at time £=0 and
covariate value X=0. The slope of the AB and AC
planes as a function of In(time) represents parameter
diax the impact of time on the log HR of treatment k
relative to A. The slope of the AB and AC planes as a
function of the covariate value represents f5,4r, which
is the impact of covariate X on the treatment effect
parameter do4 (the scale). Figure 1A represents Model
1 where it is assumed that the covariate is not an ef-
fect modifier of dyax and therefore S, ar=0. In
Figure 1B the effect of the covariate for the AB com-
parison is different from the AC comparison (Model
2). Figure 1C reflects Model 3 with the same effect of
the covariate for the AB and the AC comparison.

The random effects Models 1-3 treat multiple-arm
trials (>2 treatments) without taking account of the cor-
relations between the trial specific ds that they estimate.
Bayesian random effects models with a heterogeneity
parameter for dy; can be easily extended to fit trials
with 3 or more treatment arms by decomposing a mul-
tivariate normal distribution as a series of conditional
univariate distributions [9,13]:
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2 2
572 /s “/s
60;‘{7k1 dovic1 02/2 2 02/2
~normal : , ] i
Sojvk dopk : : " :
P p 2 2
o / o / . 0_2
2 2

then the conditional univariate distributions for arm i
given the previous J,....(i-1) arms are:

Oojbk,
i—1

o ; ~; 1 i+1
Bojvr; normal (dobk( 4 *-Z <§O/bkj _ dobk/)y(z.)th)
Bojk;_y = g

Higher dimensional models with heterogeneity
and covariate effects acting on multiple treatment
effect parameters
Models 2 and 3 have treatment effects on a scale and
one shape parameter, and make the simplifying assump-
tion that the heterogeneity and covariate only interact
with the treatment effects in terms of scale. Two-
dimensional random effects models with additional het-
erogeneity parameters for treatment in terms of shape
have the flexibility to capture between study variance
regarding changes in the log HRs over time [8]. Building
upon the higher-dimensional network meta-analysis
models proposed by Jansen [8], a general formulation is
a model with heterogeneity and covariate effects that act
on 3 treatment effect parameters (i.e. 1 scale and 2 shape
parameters) as presented at the end of this page.
B
By
/))xAk
on the pooled treatment effects in terms of scale, dgjpr,s
and shape &y and 5, with treatment k relative to
control treatment b.
¥ is the between study covariance matrix with oy, 03, 05
representing the heterogeneity in treatments effects oz,
Oypk and o respectively. poi, por and py, are the

reflect the impact of study level covariate X;

In (h ) ﬁo;‘k + /3)1]'ktp1 + /))ijtpz P17 P2
) =
M Bojic + Bujxt”* + Bojrt”* In(2) P1 =P
f Hojp
Hajp b=AB,C,...,
ﬁo;k
Hajp
/3‘)1jk = <
Hojp 50jbk
Bojx
Hyp | + O1jvk
\\ Aajp 82k
50‘171( dOAk dOAb ﬁo
) xAk
61jbk ~normal diak | — | diap | + /)))chk —
Ok doak daap Baak
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correlations between these parameters. Although such
a general model is very flexible to explore heterogeneity
and inconsistency, identifiability is expected to be a
challenge.

lllustrative example

An example of the models is presented for a network
meta-analysis of treatment of advanced (stage IIlc or IV)
melanoma. Although the interventions compared in the
network in this example do not reflect the latest treat-
ment options for melanoma, it provides a useful illustra-
tion of the survival models with covariates.

In the early stages of melanoma, surgery presents a
potential curative option. However, for unresectable late
stages, the mainstay of treatment is (experimental) sys-
temic therapy. A literature search identified 10 RCTs
evaluating the following 4 treatment groups: dacarbazine
(DTIC) monotherapy, DTIC + Interferon (IFN), DTIC +
Non-IFN, and Non-DTIC [15-24]. The network of RCTs
is presented in Figure 2.

For each treatment arm in each study the reported
Kaplan-Meier curves were digitized (Digitizelt; http://
www.digitizeit.de/) and the data extracted from these
trials were included in the network meta-analysis. In
Figure 3 the scanned survival proportions are presented
according to each direct comparison available. This
aggregate data was analyzed using two-dimensional net-
work meta-analysis models. Whilst network meta-analysis
can be performed with a frequentist or a Bayesian
approach, for this manuscript we focus on the Bayesian
approach. Within the Bayesian framework, analyses con-
sist of data, likelihood, parameters, and a model.

The survival curves in Figure 3 can be divided into g
consecutive intervals over the follow-up period: [, £],
(ty t3], ..., (ty tga] with £,=0. For each time interval
m =1,2,3,. . ..q extracted survival proportions were used

with 0 = In(¢)

if k=>b

if k'alphabetically’ after b.

0 2

Bian 09 0001Po1 0002
1 _ 2

Beav | > > = | 0001, 07 0102019
2 2

Bian 000209, 010213 03
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oup B0 g 30
In(hazard ratio) dOAC = 0, dlAC =0
Bz =0,  Buc =0

AB comparison

In(time)
covariate
value
Model 1: Two-dimensional treatment effect without
covariates
doip 20, @l
In(hazard ratio) dOAC >0, dlAC =0
IBXAB < 0’ ﬂxAC > 0
AB comparison
AC comparison
In(time)

covariate
value

Model 2: Two-dimensional treatment effect with
treatment-specific covariate interactions

Gy 2l oyl
dOAC >0, dlAC =0
Bes =Puc =B.<0

AB comparison

In(hazard ratio)

In(time)

covariate
value
Model 3: Two-dimensional treatment effect with constant
treatment covariateinteractions
Figure 1 Graphical representation of two-dimensional network
meta-analysis model for survival data without treatment-by-
covariate interaction (A); two-dimensional network meta-
analysis model with treatment specific covariate interactions
(B); two-dimensional network meta-analysis model with
constant covariate interaction (C). (See Model 1-3 and text for
explanation).
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to calculate the patients at risk at the beginning of that
interval and incident number of deaths. (A more specific
explanation is provided in the Additional file 1 of this
paper.) A binomial likelihood distribution of the incident
events for every interval can be described according to:

’”jkt~bi”l (ijm njkt)
Where rj is the observed number of events in the m'"
interval ending at time point £,,,; for treatment k in
study j. n, is the number of subjects at risk just before
the start of that interval adjusted for the subjects cen-
sored in the interval. pj, is the corresponding underlying
event probability. When the time intervals are relatively
short, the hazard rate /, at time point ¢ for treatment
k in study j can be assumed to be constant for any time
point within the corresponding m™ time interval. The
hazard rate corresponding to pj, for the m™ interval can
be standardized by the unit of time used for the analysis
(e.g. months) according to: A, = —In(1 - pjr,)/ Aty where
Aty is the length of the interval. For the model estima-
tion we assign this underlying hazard to time point ,,, ;.

Study date can be considered a proxy for potential
changes over time in (background) medical care and
other contextual factors that influence the treatment
effects. For the included RCTs, there is variation within
and between different types of comparisons regarding
study date. The impact of study date on treatment
effects was evaluated with the following meta-regression
models: 1) random and fixed effects Weibull (p=0)
survival models without treatment-by-covariate inter-
action (Model 1; Figure 1A); 2) random and fixed effects
Weibull survival models with treatment specific covari-
ate interaction terms (Model 2; Figure 1B); 3) random
and fixed effects Weibull survival models with a con-
stant treatment-by-covariate interaction (Model 3;
Figure 1C). Only Weibull models were used because the
In (~In(Survival)) versus In(time) showed linear relations
for the different studies, indicating Weibull models are
appropriate [25].

Here below the prior distributions are presented as
used for the meta-analysis.

o\ _ 0 _(10* 0
(ﬂljb> normal<<0>,Tﬂ> T, = < 0 10
doax 0 _(10* o0
(dlAk) normal((()),Td) T, = ( o 10t

Boax~normal(0,10%)
oo~uniform(0,2)

With constant covariate interaction, S,ax~ normal
(0,10% will be replaced with S, ~ normal(0, 10%). With
the fixed effects model, it is not necessary to define a
prior distribution for oy,.
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Figure 2 Network of randomized controlled trials.
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Figure 3 Survival as observed in individual studies with different treatment comparisons.
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The parameters of the different models were estimated
using a Markov Chain Monte Carlo (MCMC) method as
implemented in the WinBUGS software package [26].
(See Additional file 1 for the code) The first 80,000 itera-
tions from the WinBUGS sampler were discarded as
‘burn-in” and the inferences were based on an additional
50,000 iterations using two chains. Convergence of the
chains was confirmed by the Gelman-Rubin statistic.

The deviance information criterion (DIC) was used
to compare the goodness-of-fit of the different mod-
els [27,28]. DIC provides a measure of model fit
that penalizes model complexity according to DIC =
D+pD,pD=D—D [28]. D is the posterior mean
residual deviance [28], pD is the ‘effective number of
parameters’ and D is the deviance evaluated at the pos-
terior mean of the model parameters. In general, a more
complex model will result in a better fit to the data,
demonstrating a smaller residual deviance. The model
with the lowest DIC is the model providing the ‘best’ fit
to the data adjusted for the number of parameters.

Results

lllustrative example

In Table 1 the model fit statistics for the different mod-
els are presented. The random effects model without
covariates was associated with a smaller residual devi-
ance than the fixed effects model without covariates.
Taking into account the increased model complexity of
the random effects approach, the DIC with the random
effects model is also lower. We prefer the random effects
model over the fixed effects model. (We take the pos-
ition that in principle a random effects model is pre-
ferred over a fixed effects model because there is often
cause to suspect heterogeneity. Hence, in a situation
when the DIC with the more complex random effects
model is comparable to the fixed effects model, suggest-
ing there is no strong evidence against the fixed effects
model on statistical grounds, we might still prefer to use
the random effects model to obtain a conservative

Page 7 of 16

estimate. In a situation when there is not sufficient data
to estimate a heterogeneity parameter, a fixed effects
model is preferred.) Adding treatment specific covariate
interaction terms to the random effects model improved
the residual deviance, but resulted in a similar DIC
(1492.5) due to the greater number of model parameters.
Treatment constant interaction effects for the random
effects model resulted in a similar residual deviance, but
the DIC was arguably somewhat more favorable (1490.7)
because of the less complex model formulation. For the
fixed effects model, extension with treatment specific
covariate interaction terms improved both the residual
deviance and the DIC, suggesting that factors associated
with study date (partly) explain the heterogeneity in the
scale related treatment effects. A fixed effect model with
a constant covariate interaction term showed a compar-
able model fit.

Table 2 provides parameter estimates for the fixed and
random effects model without covariates (Model 1), as
well as parameter estimates for the random effects
model with treatment specific covariate interaction
terms (Model 2) and the random effects model with a
constant covariate interaction term (Model 3). Although
credible intervals for the treatment effects in terms of
shape include the null, the point estimates (on a log HR
scale) for DTIC+IFN and non-DTIC are sufficiently
large to defend the two-dimensional models. (Fur-
thermore, ignoring the treatment effects in terms of
shape, ie. assuming a constant HR, implies that the
uncertainty in model shape is not captured with the
meta-analysis models.) Adding the treatment-by-covariate
interaction term notably affected the treatment effect
in terms of scale (doax). The treatment-by-covariate inter-
action for non-DTIC vs. DTC (-0.02) was different than
the interaction term obtained with a model with
a constant interaction term (0.05), which implies that
the assumption of a constant covariate interaction can
be challenged.

Based on the pooled treatment effects regarding the
scale and shape of each intervention relative to DTIC

Table 1 Goodness of fit estimates for fixed effects and random effects network meta-analysis models

Model Dbar Dhat pD DIC
Random effects Weibull model without covariates 14624 14323 30.1 1492.5
Fixed effects Weibull model without covariates 1468.9 1443.0 259 1494.8
Models with study data as covariate
Random effects Weibull model with treatment specific covariate interactions 1460.5 14285 320 14925
Fixed effects Weibull model with treatment specific covariate interactions 1464.7 1436.7 280 1492.7
Random effects Weibull model with constant treatment covariate interactions 1459.7 1428.7 310 1490.7
Fixed effects Weibull model with constant treatment covariate interactions 1466.7 14399 268 1493.5

Dbar = posterior mean residual deviance.

Dhat = deviance evaluated at the posterior mean of the model parameters.
pD =the effective number of parameters as a measure of model complexity.
DIC = Deviance Information Criteria.



Table 2 Model parameters for fixed and random effects two-dimensional (Weibull) network meta-analysis models with and without treatment-by-covariate
interaction

TS 1/T1/88TT-L L7 L /WO [RIIUSIPIWIOIG MMM//:d1Yy

Fixed effects model Random effects model (model 1) Random effects model with Random effects model with
treatment specific covariate constant treatment-by-covariate
interaction* (model 2) interaction* (model 3)

Median 95% Credible Median 95% Credible Median 95% Credible Median 95% Credible
of posterior Interval of posterior Interval of posterior Interval of posterior Interval
distribution distribution distribution distribution

Pooled estimate for difference in scale 8,
DTIC+IFN vs. DTIC (dgag) -0.16 (-0.63; 0.33) -0.22 (-0.76; 0.23) -0.04 (-0.54; 047) -0.18 (—-0.58; 0.39)
DTIC+ non-IFN vs. DTIC (dpac) -0.07 (—0.46; 0.34) -0.19 (—0.65; 0.30) -0.16 (—0.66; 0.32) -0.10 (-0.51;0.35)
non-DTIC vs. DTIC (dgap) -0.27 (-0.63; 0.13) -0.30 (-0.88; 0.24) -0.17 (=140; 1.11) -043 (=1.12; 0.06)
Pooled estimate for difference in shape 8;
DTIC+IFN vs. DTIC (d;48) 0.13 (—0.08; 0.33) 0.14 (—0.04; 0.34) 0.12 (-0.07; 0.30) 0.16 (—0.04; 0.30)
DTIC+ non-IFN vs. DTIC (d;40) -0.06 (-0.23;0.11) -0.02 (-0.19; 0.15) -0.04 (=0.21; 0.13) —-0.05 (=0.19; 0.10)
non-DTIC vs. DTIC (d4p) 0.04 (=0.17; 0.23) 0.06 (-0.15; 0.27) 0.09 (=0.11; 0.29) 0.03 (-0.16; 0.21)
Estimate for covariate effect (8x)
DTIC+IFN vs. DTIC (Bxag) 0.06 (-0.02; 0.16) 0.05 (=0.01;0.12)
DTIC+ non-IFN vs. DTIC (Bxac) 0.06 (-0.05; 0.18) 0.05 (-=0.01;0.12)
non-DTIC vs. DTIC (Bxap) -0.02 (=0.21; 0.19) 0.05 (=0.01; 0.12)
Between study variance (heterogeneity) in scale 0.21 (0.02; 0.56) 0.19 (0.01; 0.52) 0.18 (0.01; 0.55)

25 1:ZL ‘210 Abojopoyiapy ya4pasay [paIpay DNG 9dod pue ussuer

* Covariate value set at the average across studies.
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Figure 4 Treatment effects of different interventions relative to DTIC as obtained with random effects Weibull network meta-analysis
expressed as hazard ratio (and 95% credible interval). A) Results without adjustment for differences in study date; B) Results after adjustment
for differences in study date assuming treatment specific covariate interactions. Hazard ratios are presented corresponding to the average
covariate value; C) Results after adjustment for differences in study date assuming constant covariate interaction. Hazard ratios are presented

corresponding to the average covariate value.

(doar and dy 4y, with k= B,C,D, corresponding to respect-
ively DTIC + IFN, DTIC + non-IEN and non-DTIC) the
resultant HRs as a function of time were obtained
according to In(HRux) =doax+diar-In(t). Figure 4A
reflects the HRs over time (along with 95% credible
intervals) with a random effects model without adjust-
ment for differences in study date across studies and
comparisons. Figure 4B shows the HR over time after ad-
justment for differences in study date using a random ef-
fect model with treatment specific covariate interactions
(model 2). The HRs over time are presented for the aver-
age study date of all studies. Figure 4C shows the HRs
over time after adjustment for study date using a random
effect model with a constant treatment-covariate inter-
action (model 3). Comparing Figure 4A with Figure 4B
and 4c illustrates the effect of ignoring the variation in
study date across the different comparisons.

By applying the treatment effects on scale and shape
as obtained with model 1, 2 and 3 (Table 2) to an aver-
age scale and shape of the studies with DTIC, an
expected scale and shape was obtained for the other
interventions. The corresponding survival functions for
each of the four interventions are presented in Figure 5.
This figure allows for comparisons of survival propor-
tions at different time points (including median survival),
as well as comparisons of expected (i.e. mean) survival,
which is useful for cost-effectiveness evaluations. In
Table 3 differences in expected survival are presented for
the different random effects models.

Given the Bayesian approach, the probability that a
certain treatment shows the greatest survival at different

time points was presented based on the posterior distri-
bution of the estimated survival proportions over time
(Figure 6).

To illustrate the relevance of the covariate publication
date for this analysis, the study specific differences in
scale of DTIC+IFN, DTIC + non-IFN, and non-DTIC
relative to DTIC are presented as a function of publica-
tion year in Figure 7. (These study specific estimates
were obtained with a model similar to Model 1, but now
assuming independent study specific differences in scale,
rather than exchangeable effects as obtained the random
effects model.) From Figure 7 it can be inferred that for
the comparisons DTIC + IFN versus DTIC and DTIC +
non-IFN versus DTIC the treatment effects in terms of
scale show an increasing trend over the years. Further-
more, the non-DTIC versus DTIC studies were per-
formed at later point in time than the other studies.
Given this imbalance, adjustment for publication date
as a proxy for changing medical care is justified for this
indirect comparison.

Discussion

In this paper, the network meta-analysis models pro-
posed by Ouwens et al. and Jansen for survival data
are extended with treatment-by-covariate interactions to
explain heterogeneity and possibly to adjust for con-
founding bias due to inconsistency [7,8]. The primary
advantage of these evidence synthesis models for sur-
vival data is that they do not rely on a proportional
hazards assumption across studies and comparisons, and
any inconsistency due to imbalance in known and

Table 3 Difference in expected survival (in months) between interventions as obtained with random effects network
meta-analysis model with and without treatment-by-covariate interaction

Random effects model without Random effects model with Random effects model with
covariate interaction (model 1) treatment specific covariate constant treatment-by-covariate
interaction (model 2) interaction (model 3)
Median 95% Median 95% Median 95%
of posterior Credible of posterior Credible of posterior Credible
distribution Interval distribution Interval distribution Interval
DTIC+IFN vs. DTIC -1.12 (—4.20; 3.49) —246 (=5.72; 1.91) -1.90 (=5.10; 2.22)
DTIC+ non-IFN vs. DTIC 3.63 (=1.72; 10.75) 3.77 (=1.04;, 10.72) 321 (—2.39; 9.65)
non-DTIC vs. DTIC 2.66 (—2.38; 13.49) 1.16 (=7.51; 25.76) 6.60 (—0.78; 21.39)
DTIC+ non-IFN vs. DTIC + IFN 4.71 (—1.38;11.37) 6.26 (0.26; 13.29) 5.13 (=1.15; 11.50)
non-DTIC vs. DTIC +IFN 3.81 (—2.40; 14.11) 346 (—6.00; 27.88) 848 (=0.65; 24.00)
non-DTIC vs. DTIC + non-IFN —-0.84 (=9.15; 10.3) —-2.79 (=13.90; 22.17) 3.27 (—6.72; 20.74)
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Figure 5 Survival (and 95% credible interval) with different interventions as obtained with random effects Weibull network meta-
analysis. A) Results without adjustment for differences in study date; B) Results after adjustment for differences in study date assuming treatment
specific covariate interaction. Results are presented corresponding to the average covariate value across studies; C) Results after adjustment for
differences in study date assuming constant covariate interaction. Results are presented corresponding to the average covariate value.

measured treatment effect modifiers can be (partly)
adjusted for. Although models to incorporate covariates
in network meta-analysis have been presented before,
this is the first application where treatment effects act
on two separate parameters [10-14].

Since the treatment effect acts on both scale and shape
with these network meta-analysis models, differences in
treatment effect modifiers across studies can (in principle)
cause heterogeneity and inconsistency in terms of both
the scale and shape. Accordingly, treatment-by-covariate
interactions to explain heterogeneity or minimize incon-
sistency can be of a multidimensional nature as well.
However, identifiability of models with treatment-by-
covariate interactions for both scale and shape may be
very challenging. Under the assumption that heterogen-
eity of treatment effects only act on the scale parameter,
we need at least 2 studies for at least one of the treatment
comparisons in the network to estimate a corresponding
random effects model. If also covariate interactions are
assumed for this effect, even more studies are needed. If
we want to estimate heterogeneity and/or treatment-by-
covariate interactions in terms of shape, we run in the
additional challenge of decreasing sample size and event
counts for longer follow-up time points, thereby making
the estimation of any shape related parameter beyond
a fixed treatment effect challenging. To ensure model
identifiability, it is recommended to use network meta-
analysis models with fixed treatment effects in terms of
shape and only heterogeneity and treatment-by-covariate
interactions regarding treatment effects in terms of the
scale. Given the presence of a time related treatment
effect in these models (i.e. shape), it is unlikely that study
characteristics, patient characteristics, and contextual fac-
tors (which are most likely unaffected by time) have an
impact on heterogeneity and inconsistency beyond the
constant component of the treatment effect (i.e. the
scale). More complex models with heterogeneity and cov-
ariate interactions in terms scale and shape parameters
are only expected to be feasible if a large number of stud-
ies with sufficient number of events for longer follow-up
times are available.

To estimate treatment specific covariate interaction
terms (Model 2) we need sufficient covariate variation
across the studies for each intervention k relative to an
overall anchor treatment (A). For models with a con-
stant covariate interaction term (Model 3) we have fewer
parameters to estimate and these models are therefore
easier to identify. Furthermore, for these models we

do not necessarily need spread in the covariate across
studies for each type of comparison relative to A; we
only need sufficient variation across studies comparing
any intervention relative to treatment A. An alternative
approach to estimate treatment specific covariate inter-
action terms is a model with exchangeable interaction
effects described by a normal distribution [10]. Such a
model allows interaction estimates that shrink towards a
common mean, thereby improving parameter estimation.

This network meta-analysis was based on survival pro-
portions extracted from published Kaplan-Meier curves,
used to calculate the incident number of deaths and
patients at risk per interval according to an algorithm
described by Jansen (See Additional file 1 of this paper)
[7,8]. Guyot et al. recently proposed an improved algo-
rithm to reconstruct the data from published Kaplan-
Meier curves, which provides a closer approximation
of the censoring times, thereby possibly improving the
accuracy in terms of the number of patients at risk and
allowing greater accuracy of the uncertainty in model
parameter estimates [29].

In the present paper, covariate adjustment was based on
study-level or aggregate level data. A challenge with
meta-regression models using study level data is that the
association between a patient characteristic and the treat-
ment effect of the studied interventions at the study level
may not reflect the individual level effect-modification
of that covariate [30,31]. Hence, the models can only be
used with study level data when there is between-study
or between-comparison variation with limited variation
in effect modifiers within studies. This is typically the
case for study design characteristics or characteristics of
the intervention such as dose. However, in the case of
imbalances in baseline patient characteristics across com-
parisons, variation in these characteristics is often present
within studies, in which case patient level data is required
to ensure valid adjustment for inconsistency. Further-
more, patient-level data provides a greater opportunity to
explore differences in effects among subgroups. However,
obtaining patient-level data for all RCTs in the network
may be considered unrealistic. If there is only individual
patient data available for a subset of trials, combining
individual patient data for this subset with study level data
from the other studies provides a useful alternative [31].

The proposed models can also be used to adjust for
differences in terms of baseline risk or placebo response
across the trials. The placebo response reflects the
impact of all study or patient characteristics that have
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Figure 6 Probability of greatest survival up to a certain time point (AUC) with different interventions as obtained with random
effects Weibull network meta-analysis. A) Results without adjustment for differences in study date; B) Results after adjustment for differences
in study date assuming treatment specific covariate interaction. Results are presented corresponding to the average covariate value across
studies; C) Results after adjustment for differences in study date assuming constant covariate interaction. Results are presented corresponding

to the average covariate value.

an impact on the outcome; the placebo response sum-
marizes the impact of prognostic factors (i.e. the study
effect). If there is an association between the placebo
response and treatment effects, it implies that some or
all of the study and patient characteristics that are prog-
nostic factors of the outcomes are also treatment effect
modifiers. Adjustment for the placebo response partly
mitigates inconsistency or bias due to an imbalance in
effect modifiers across comparisons [9,10]. This may be
important given the challenge of adjusting for multiple
differences in effect modifiers using study-level data and
the limited feasibility of accessing individual patient data
for all trials. A limitation of adjusting for baseline risk in
a network meta-analysis is the (theoretical) possibility of
introducing collider stratification bias [9].

Although network meta-analysis where the treatment
effects contain a time related aspect has obvious advan-
tages in terms of model fit to the data, the presenta-
tion of the results might need some familiarization.
The advantage of presenting HRs as a function of time
(Figure 4) is that time varying treatment effects can be
identified, but a possible disadvantage is the challenge to
identify whether one treatment is overall favourable over
another, especially when the HR curves cross. Pooled
treatment specific survival curves as shown in Figure 5

provide information on commonly understood concepts
like median survival and survival at different time points.
A disadvantage, however is that a baseline survival curve
with treatment A needs to be defined in order to trans-
late the HR curves as obtained with the network meta-
analysis into (pooled) survival curves by treatment.
In the current example the pooled curve with treatment
A was based on the average of study specific nuisance
parameters for scale and shape of all treatment A (ie.
DTIC) controlled trials.

Within a Bayesian framework it is possible to calculate
the probability of being the best treatment out of all
those treatments assessed, or second best, third best, etc.
[32]. With the time varying treatment effects obtained
from the network meta-analysis models presented in this
paper there are different options to create probabilistic
summaries of treatment effects. We can either present
a probabilistic summary based on a collapsed measure
of the time varying treatment effects, or present prob-
abilistic summaries as a function of time. Examples of
the first category are based on the median survival or
expected survival obtained from the pooled survival
curves. Probabilistic summaries over time can be based
on the HR at each time point, the survival proportion at
each time point, or the area under the survival curve
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(AUC) to the left of each time point. Figure 6 is based on
this concept and summarizes the cumulative treatment
effect. Additional research is required to understand
the sensitivity of these different probabilistic measures to
the estimated underlying basic model parameters for the
treatment effect, and provide some guidance.

A multidimensional network meta-analysis model for
survival data is extremely useful for cost-effectiveness
analysis because estimates of expected survival differ-
ences of competing interventions are less likely to be
biased [7,8]. The extension of the two-dimensional
model to include covariates allows for an evaluation of
patient subgroups for which the clinical or cost effective-
ness of the technology might be expected to differ from
the overall population. Although the current analysis
focused on overall survival, this method can be applied
to any time to event outcomes. It may be of interest
to extend the model to evaluate both progression-free
and overall survival simultaneously using a multivariate
approach, as has been proposed by Welton et al. [33].
This will avoid any inconsistency between clinical evi-
dence synthesis and economic evaluations based on
models with differences in quality of life before and after
disease progression.

Conclusion

Adding treatment-by-covariate interactions to multidi-
mensional network meta-analysis models for published
survival curves can be worthwhile to explain systematic
differences across studies and to reduce inconsistencies.
An additional advantage is that heterogeneity in survival
data can be addressed. These models are not only useful
for comparative effectiveness evaluation, but also pro-
vide an opportunity to ensure consistency within a cost-
effectiveness analysis. In the Additional file 1 the data
requirements to perform analysis with these kinds of
models are outlined.

Additional file

Additional file 1: Data requirements to perform network
meta-analysis of published survival curves.
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