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Abstract

are low, inclusion of auxiliary variables is not useful.

Background: Multiple imputation is becoming increasingly popular. Theoretical considerations as well as simulation
studies have shown that the inclusion of auxiliary variables is generally of benefit.

Methods: A simulation study of a linear regression with a response Y and two predictors X; and X, was performed
on data with n =50, 100 and 200 using complete cases or multiple imputation with 0, 10, 20, 40 and 80 auxiliary
variables. Mechanisms of missingness were either 100% MCAR or 50% MAR + 50% MCAR. Auxiliary variables had
low (r=.10) vs. moderate correlations (r=.50) with X's and Y.

Results: The inclusion of auxiliary variables can improve a multiple imputation model. However, inclusion of too
many variables leads to downward bias of regression coefficients and decreases precision. When the correlations

Conclusion: More research on auxiliary variables in multiple imputation should be performed. A preliminary rule of
thumb could be that the ratio of variables to cases with complete data should not go below 1 : 3.

Keywords: Multiple imputation, Auxiliary variables, Simulation study, Small and medium size samples

Background

Missing data in statistical analyses is the rule rather than
the exception. Many statistical methods can only analyse
cases with complete data, so a way to deal with the miss-
ing data needs to be found. The traditional approach
was to only use cases complete data for the variables of
interest is fully available, which is often referred to as
the Complete Cases analysis (CC). However, not only is
CC inefficient when models with many variables are to
be examined, it can also introduce bias to regression
coefficients when the mechanism that leads to missing
data is anything other than missing completely at random
[MCAR: 1]. Multiple imputation (MI) was introduced in
the 1970s as a way to deal more efficiently with missing
data [2]. It met with small to moderate resonance at first,
but since 2008, Mackinnon [3] has observed a drastic in-
crease in articles on applying multiple imputation to data
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analyses published in four leading medical journals (BM],
JAMA, Lancet, NEJM). However, CC is still utilized in the
majority of publications — Karahalious et al. [4] reviewed
the methods utilized in prospective cohort studies with
samples larger than n=1000 published during the first
ten years of the century: of 82, only 5 utilized ML
Basically, MI creates multiple datasets that are copies
of the original complete data. The missing observations
in these datasets are then imputed, using a stochastic al-
gorithm that estimates values based on information con-
tained within the observed values and creates different
values in each dataset. The additional variance caused by
differences in the imputed values between the various
copies reflects the uncertainty of the imputation. The
relative increase of variance due to substitution of miss-
ing data can be calculated for any given data [5]. Statis-
tics are performed separately for these datasets and
coefficients are combined at the conclusion of the ana-
lysis [5]. Finally, the degrees of freedom are adjusted. MI
leads to results without bias for many missing at random
[MAR: 1] conditions that introduce bias in CC, but there
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are also situations in which MI produces bias and CC
does not e.g. [6,7].

In most cases, it has been demonstrated that MI is su-
perior to CC and various other ways of dealing with
missing data e.g. [8]. This has been proven in large sam-
ples e.g [9,10] or when data in the response variables is
missing, for example when there are dropouts in
repeated measurement designs e.g. [11]. In the latter
case, variables from different points in time are often
highly correlated, enabling MI algorithms to generate
good results. In such complex responses consisting of
many correlated variables, substitution of missing data
generally improves parameter estimation. When missing
data occurs in a single response (typically analysed
within the general linear model), any way of substituting
a response will introduce noise rather than being helpful
if auxiliary variables are not used [12].

An additional advantage of MI over CC is the possi-
bility of including information from auxiliary variables
into the imputation model. Auxiliary variables are vari-
ables within the original data that are not included in
the analysis, but are correlated to the variables of inter-
est or help to keep the missing process random [MAR:
1]. Little [6] has calculated the amount of decrease in
variance of a regression coefficient Y on X; when a
covariate X, is added that has no missing data. White
and Carlin [7] have extended this proof to more than
one covariate. In practice however, it is likely that auxil-
iary variables themselves will have missing data. Collins
et al. [13] performed a simulation study in which they
tested the influence of auxiliary variables with missing
data in a regression model. Particularly good results were
obtained by including auxiliary variables when (a) the
missing data were in the response, (b) the auxiliary vari-
able changed the process leading to missing data from
“missing not at random” (MNAR) to MAR and when
(c) the correlation of the auxiliary variable to the response
was very high, ie. r=.9. In their study, the information
gained due to auxiliary variables was generally larger than
the noise that was introduced by irrelevant information.
For this reason, they recommended using inclusive rather
than restrictive strategies.

This is in line with recommendations by most experts:
the imputation model should include all variables of the
analysis, plus those highly correlated with responses or
explanatory variables, and finally those variables that ex-
plain the mechanism leading to missing data e.g [2,14].
Enders [15, p. 127ff] demonstrated that when an auxil-
iary variable which mediates between an outcome Y and
an explanatory variable X is not included in the substitu-
tion model, some bias in the estimates occurs and the
power of the analyses decreases.

Another simulation study explored the role of aux-
iliary variables in confirmatory factor analysis and also
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concluded that the inclusion of auxiliary variables is
beneficial [16]. However, from a practical point of view,
inclusion of too many variables leads to a considerable
increase in computation time or even causes programs to
fail [17]. The latter happens with continuous linear vari-
ables in most programs when the number of variables
approaches the number of cases. In the study by Collins
et al. [13], the ratio of subjects to included variables
never fell below 10 to 1 — although this could easily
occur in small sample research. For example, if a re-
searcher had 100 subjects in a questionnaire survey com-
prising 10 scales based on six items each plus some
demographics, there would be more than 60 variables on
the item basis and about sixteen variables on the scale
basis. Repeated measurement designs may have even
more variables e.g. [18]. However, these face different
problems that will not be addressed here.

The aim of the present paper is to simulate various
realistic situations that might occur in a medical survey.
Within this frame, we have explored the effect of using
auxiliary variables in the substitution model for missing
data in explanatory variables of a linear regression
model. A model was chosen with a response Y with two
correlated continuous predictors X; and X,, both show-
ing strong associations to Y total R* = .40: [19]. Varying
proportions of missing data were introduced into this
model and analyses using CC and MI were applied, the
latter with varying numbers of auxiliary variables. To il-
lustrate, an example is provided where data is missing
from the items of a questionnaire scale.

Method

Simulation design

The analysis parameter was the non-standardized b;-
coefficient from the following formula:

Y:a+b1X1 +b2X2+€,

Where X1, X5 ~ N(0, 1); by, by = 1; 1y150=-40, e ~ N(0, 6°).

Results for the b,-coefficient were virtually identical
and are not displayed. The simulation design was
adopted from Allison [20] with some modifications, it
was also utilized by Horton and Lipsitz [21]. Basically,
we added the auxiliary variables, introduced additional
random error into the MAR conditions and put missing
values into all variables except the response, because we
wanted to create typical conditions for small and moder-
ate sample medical research. For the model described
above, simulations with the following variations were
conducted: (i) data sets with sample sizes of n = {50,
100, 200}, (ii) analyses utilizing CC or MI including
a = {0,10,20,40,80} auxiliary variables Z, which (iii) all
have low (r = 0.1) or moderate (r = 0.5) correlations to Y,
X1, X, and all other Z,, ;. In the simulations, (iv) 20% and
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50% of the observations in the X;, X, and Z, variables
were deleted by (v) one of three mechanisms.

MCAR
Observations in X;, X, and Z, were deleted completely
at random.

MAR(Y)

No full MAR mechanism was applied here, because in
real data, finding a variable that completely explains the
process of missingness is unlikely. Thus, the observa-
tions to be deleted in X;, X, and Z, were chosen de-
pending on the unweighted sum of a random standard
normal distribution and the standard normal distribu-
tion of Y, with the highest sums introducing missing
data in X;, X, and Z,. In terms of Allison (2000), this
mechanism consists of “50% MCAR and 50% MAR
(dependent on Y)”.

MAR(X)

A procedure similar to the one utilized in MAR(Y), but
the observations of X; and Z, were deleted depending
on the sum of X, and a value from a random normal
distribution; the observations of X, depended on X; and
a value from a random normal distribution. Since X;
and X, have a standard normal distribution as well, this
results in “50% MCAR and 50% MAR(dependent on X)”
as defined by Allison (2000). Again, the highest values
introduced the missing data.

The generating process for MAR(Y) was:

After z-transformation of Y, let all X;, X5, Y and ¢ be
Xy, Xo, Y, ¢ ~ N(0,1)

Summing: d=Y+c¢

Ranking: d; < dy for each i, j from N

Deleting: X, X5, Z, is missing if d > h: for h = 4%,
8%. ..64%

Similar for MAR(X):

Let all X, X5, Y, Z,, ¢ ~ N(0,1)

Summing: d1 =Xy + ¢, dr =X +¢

Ranking: d; < dy for each i, j from N

Deleting: X; Z, if d; > h: for h = 4%, 8%. ..64%
X, if dy > h: for h = 4%, 8%. . .64%

No MNAR condition was created, and no observations
of Y were deleted in the present study. The deletion of
observation was carried out separately for each variable.
This means that there were cases in the analyses that
had no observed values for X; and X, as well as for Z,,
only multiply imputed values. At first sight, one may
question whether this makes sense. However, in a com-
plex analysis where various regression analyses are
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involved (e.g searching for a mediator), this could be ne-
cessary. Hence, our simulations encompassed this
possibility.

Using multiple imputations by chained equations,
m = 20 imputed data sets were created [1]. There was
a recommendation by Little and Rubin that creating
three to five data sets is usually enough. In more recent
articles, probably due to increasing computational
power, this recommendation has changed, suggesting
the use of a greater number of imputed datasets in real
data analyses, ie. 20 — 100 [17,22,23]. Values were
imputed via chained equations followed by predictive
mean matching (PMM) using the program “MICE”
[24,25]. This combination was chosen because it yielded
the best results in previous simulation studies [26,27].

The combination of (i) three sample sizes, (ii) ten ways
of handling missing data including the two levels of cor-
relations (r=.1 or r=.5) in the auxiliary variables, (iv) two
percentages of missing observations and (v) three
mechanisms for deleting data resulted in 180 different
simulations. The simulations were conducted with
q=1000 replications each. Each simulation was started
with a random seed and created different seeds for each
replication for use with the random number generator.
For each replication, a new complete dataset was gener-
ated, and then the intended percentage of data was
deleted. Depending on the simulated condition, this was
either directly followed by fitting the linear regression
model using the CC method, or by first creating multiple
imputations and then following with regression analyses.
The latter were conducted separately on each data set
and pooled applying Rubin’s Rules. For the b;-coefficient,
the raw bias (mean of estimated — true coefficient), its
standard error (SE), the standardized bias (raw bias/SE)
as well as the root mean square error (RMSE) over the

(bi—b)*

q=1000 replications (i.e. “—, s an estimate for pre-

cision (b; is the estimated b-coefficient for replication i, b
the coefficient in the complete data, i.e. 1, and q the
number of replications) are displayed in Tables 1, 2,
3. The presentation of results was oriented on Lee and
Carlin’s [28], but the parameter for precision, coverage,
was replaced by the RMSE.

For illustrative purposes, a first set of simulations was
performed on a dataset with a sample size of n=100,
again utilising CC and MI with 0 to 80 auxiliary vari-
ables and moderate correlations under the MAR(Y)
mechanism as described above. In these simulations,
data was deleted for exactly h = 4, 8, 12, ..., 64% of the
observations for X;, X, and all Z. Again, a total of 1000
replications for each rate of missing data were per-
formed - everything else followed the design presented
above, but the b;-coefficient is shown in Figure 1 using
box plots.
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Table 1 Results of the simulations on linear regressions, MAR(Y)
Percent Auxiliary variable n=>50 n =100 n = 200
missing correlation
Bias SE  Std.Bias RMSE Bias SE  Std.Bias RMSE Bias SE  Std. Bias RMSE
20 CcC - -013 033 -043 020 -013 022 -0.60 017 =013 0.15 -0.85 0.15
MI+0 - -0.05 032 -0.11 016 -003 022 -0.10 011 =002 0.15 -0.09 0.08
MI+10 0.1 -0.08 033 -0.21 017 004 022 -0.17 010 -0.02 0.15 -0.10 0.07
MI+20 0.1 -0.16 035 -043 021 -006 023 —-0.26 012 =003 0.15 -0.16 0.07
MI+40 0.1 -028 035 -0.77 032 =017 024 -0.66 019 =005 0.16 -0.32 0.08
MI+80 0.1 -025 035 -0.70 031 -030 027 -1.13 033 -016 0.17 -0.94 0.17
MI+10 05 -006 045 -0.10 023 -003 030 -0.06 0.15 0 021 0 0.11
MI+20 05 -013 046 -0.25 026 -005 030 -0.14 017 =002 021 -0.07 0.10
MI+40 0.5 -020 044 -0.46 033 -012 033 -0.37 019 -0.04 0.21 -0.16 0.11
MI+80 05 -021 044 -045 034 -043 033 -137 043 -012 023 -0.53 0.16
50 CcC - -014 057 -032 044 -025 035 -0.72 034 -023 025 -0.96 0.27
MI+0 - -0.13 044 -0.20 033 -008 029 -0.18 023 -006 0.21 -0.20 0.17
MI+10 0.1 -027 047 -0.52 038 -013 030 -0.36 022 -007 020 -0.29 0.15
MI+20 0.1 -059 048 -1.30 060 -023 033 -0.68 028 -0.10 021 -043 0.15
MI+40 0.1 -052 042 -1.28 059 -057 033 -1.82 057 =021 023 -0.94 0.23
MI+80 0.1 -050 042 -1.21 058 -054 029 -1.95 059 -056 0.23 -2.54 0.56
MI+10 0.5 -023 063 -0.33 042 -009 041 -0.15 032 -003 028 -0.06 0.17
MI+20 0.5 -0.50 0.59 —-0.90 052 -0.18 044 -0.39 031 -006 0.28 -0.16 0.21
MI+40 05 -045 050 -0.94 061 -051 041 -1.31 051 =018 031 -0.57 0.25
MI+80 0.5 -043 051 -0.89 061 -043 035 -1.28 057 -051 029 -1.85 0.51
Data generation and selection of program parameters Results

Data was generated in three steps. First, X; and X, were
created in random order, drawn from a normal distribu-
tion. Second, Y was generated by drawing from a normal
distribution, setting b; and b,-coefficients to 1, then
obtaining the necessary errors and adding those to Y so
that an R* of .40 could be created. Third, the auxiliary
variables Z were created in random order. Using the
Choleski factorization, the variables were transformed
to show the desired correlation matrix (all coefficients
r = .1 or .5) was generated.

All simulations were performed using R [29]. The
simulation data were generated utilizing R's methods for
generating random, normally distributed variables, ap-
plying the Choleski factorization and solving systems of
linear equations [rnorm, chol, solve: 30], all taken from
the base and stats packages. R's default random number
generator "Mersenne-Twister" was used. The seeds used
for each simulation were true random numbers provided
by random.org via the package “random” [randomNum-
bers: 31]. Multiple imputation was also performed in R
using the package MICE V2.0: [25]. The script used to
create the simulation data, induce missing data and per-
form multiple imputations and regression analyses can
be obtained from the authors.

Figure 1 displays the non-standardized regression coef-
ficient b; under MAR(Y) and n=100. It illustrates the
curve that occurs with increasing amounts of missing
data with various numbers of auxiliary variables. The
horizontal axis of the graph stands for the percentage
of missing data; the vertical axis displays the distribu-
tions of the coefficient b; over the 1000 replications
for each proportion of missing data. The box-and-
whisker plots display the box as the usual 25%, 50%,
and 75%-quantiles of b; with the whisker having a
maximum of 1.5 times the length of the box. Outlier
values of b; are displayed as circles. The line at value
1 represents the true regression coefficient when there
are no missing data. All auxiliary variables in Figure 1
have moderate correlations of r=.5 to X;, X5, Y and
all Z.

Figure la displays the results of the CC analysis. A
downward bias is clearly visible with increasing rates of
missing values, as well as a decrease in precision.
Figure 1b shows the same simulation after multiple
imputations without any auxiliary variables, i.e. only Y,
X; and X, are in the imputation model (MI+0). Com-
pared to CC, there was almost no bias and precision was
minimally higher.
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Table 2 Results of the simulations on linear regressions, MAR(X)

Percent Auxiliary variable n=>50 n =100 n = 200

missing correlation

Bias SE  Std.Bias RMSE Bias SE  Std.Bias RMSE Bias SE  Std. Bias RMSE

20 CcC - -014 033 -043 020 -013 022 -0.60 017 =013 0.15 -0.85 0.15
MI+0 - -0.04 031 -0.12 015 -005 022 -0.22 010 -0.05 0.15 -032 0.08
MI+10 0.1 -0.08 032 -0.24 016 -007 022 -0.30 012 -006 0.15 -0.36 0.08
MI+20 0.1 -0.17 033 -0.51 021 =010 022 -046 013 =007 0.15 -044 0.09
MI+40 0.1 -016 033 -0.48 021 =019 023 -0.85 021 =011 015 -0.68 0.1
MI+80 0.1 -0.15 033 -045 021 -022 024 -0.93 023 -021 0.16 -1.34 0.21
MI+10 05 -002 042 -0.02 019 =001 029 -0.03 013 =002 020 -0.08 0.09
MI+20 05 -008 043 -0.15 020 -003 029 -0.10 013 =002 020 -0.10 0.09
MI+40 0.5 -0.08 042 -0.19 023 -008 029 -0.26 015 -0.04 020 -0.17 0.10
MI+80 05 -009 041 -0.21 023 -031 030 -1.11 032 -009 021 -043 0.12

50 CcC - -014 057 -032 044 -025 035 -0.72 034 -023 025 -0.96 0.27
MI+0 - -0.20 046 -0.37 035 -021 031 -0.63 027 -0.18 0.21 -0.82 0.21
MI+10 0.1 -028 047 -0.59 035 =023 031 -0.74 028 -020 021 -0.95 0.22
MI+20 0.1 -053 044 -1.30 054 -027 030 -0.89 030 -023 021 =112 0.25
MI+40 0.1 -042 042 -1.07 047 052 030 —-1.82 052 -028 0.21 -1.36 0.29
MI+80 0.1 -044 042 =111 047 -044 028 =173 046 -053 0.20 =277 0.53
MI+10 05 -0.12 06 -0.17 035 =010 041 -0.20 028 -007 028 -0.21 0.19
MI+20 0.5 -041 055 -0.79 044 011 040 -0.24 025 -009 0.28 -0.30 0.19
MI+40 05 -030 051 -0.65 044 -038 038 -1.07 039 -014 028 -049 0.20
MI+80 0.5 -0.28 051 -0.60 042 -021 036 -0.76 044 -038 0.25 -1.58 0.38

Figure 1c displays the situation when ten auxiliary
variables were added (MI+10). Here, a slight downward
trend of the coefficient could be observed when the
missing rate exceeded 40%. Precision was somewhat bet-
ter than in MI+0. Figure 1d displays the same simulation
with 20 auxiliary variables (MI+20). Up to a missing data
rate of 20%, bias was small and precision did not im-
prove compared to MI+10. However, with higher rates
of missing data, bias increased. Figures le and f display
the results after inclusion of 40 and 80 auxiliary vari-
ables, respectively. They clearly indicate that the inclu-
sion of too many variables did not improve the
imputation process under these conditions; rather, it was
disadvantageous. The inclusion of 40 variables may be
acceptable when very few data (<10%) are missing, but it
was clearly worse than using less auxiliary variables. The
inclusion of 80 auxiliary variables did not make sense in
this simulation; when 8% of the data was missing, there
was already an extreme bias so that an analysis per-
formed on that data set would be seriously impaired by
the multiple imputation.

Table 1 displays the results of the main simulations
under MAR(Y). The first column under each sample size
displays the raw bias of b; over q = 1000 replications. It
ranges between zero and -.59 in these simulations, no

upward bias was observed, here. Raw bias was not posi-
tively affected by the inclusion of auxiliary variables in
these simulations except for one case: 50% missing data,
n=200 and 10 auxiliary variables, where it is reduced
from -.06 for MI+0 to -.03 for MI+10. The second col-
umn displays its standard error (SE) which decreases
with the sample size and increases with the number of
auxiliary variables. The third column displays the stan-
dardized bias, i.e. the ratio of the former two. With few
exceptions, the standardized bias increases with the
number of auxiliary variables, indicating that including
auxiliary variables is not beneficial in these simulations.
The exceptions are: ten auxiliary variables with a correl-
ation of r = .5 for n = 50, 100, and 200 with 20% missing
data, ten auxiliary variables for n = 100 and 200 with
50% missing data, and 20 auxiliary variables for n = 200
in 20% as well as for 50% missing data. The fourth col-
umn displays the root mean square error (RMSE), which
shows lowest values in most cases for the MI+0 condi-
tion. In sum, MI+0 performs much better than CC, but
the inclusion of auxiliary variables is not a great advan-
tage under the MAR(Y) condition realized here.

Table 2 displays a similar simulation, but an MAR(X)
condition was realized. The basic patterns are similar to
Table 1. MI generally performed better than CC, bias
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Table 3 Results of the simulations on linear regressions, MCAR
Percent Auxiliary variable n=>50 n =100 n = 200
missing correlation
Bias SE  Std.Bias RMSE Bias SE  Std.Bias RMSE Bias SE  Std. Bias RMSE
20 CcC - 002 034 0.06 0.19 001 024 -0.05 012 =001 0.16 -0.05 0.08
MI+0 - 0 030 0.01 0.12 0 020 0.01 0.09 0 014 -0.01 0.06
MI+10 0.1 -0.06 031 -0.17 014 -004 021 -0.16 009 -001 0.14 -0.06 0.06
MI+20 0.1 -0.16 032 -049 019 -006 0.21 -0.25 011 =002 0.14 -0.14 0.06
MI+40 0.1 -013 033 -0.41 018 =017 022 -0.75 018 -006 0.15 -042 0.08
MI+80 0.1 -0.15 032 -046 019 -019 025 -0.77 020 -0.17 0.5 -1.09 0.17
MI+10 05 -003 040 -0.06 0.18 0 027 0.01 0.11 0 0719 -0.01 0.08
MI+20 05 -006 040 -0.13 019 -003 028 -0.09 012 =002 0.19 -0.08 0.08
MI+40 0.5 -0.09 041 -0.23 021 -007 028 -0.24 013 -003 0.19 -0.15 0.09
MI+80 05 -006 040 -0.14 020 -030 027 =113 030 -008 0.19 -042 0.1
50 CcC - 012 062 0.18 043 -002 038 -0.08 028 004 027 0.15 0.19
MI+0 - -0.04 040 -0.04 028 -001 026 0.04 0.18 -0.01 0.18 -0.01 0.12
MI+10 0.1 -020 043 -0.44 031 =010 028 -034 020 -004 0.18 -0.19 0.13
MI+20 0.1 -049 042 -1.25 050 -0.18 029 -0.64 022 -010 0.9 -0.52 0.14
MI+40 0.1 -035 041 -0.94 040 -049 029 -1.77 049 -0.19 0.19 -1.02 0.20
MI+80 0.1 -033 040 -0.89 038 -035 028 -138 038 -048 0.20 -2.55 048
MI+10 0.5 -0.06 053 -0.09 0.31 0 035 0.06 023 -001 024 0 0.16
MI+20 0.5 -034 051 -0.72 037 -003 036 -0.07 021 -003 024 —-0.10 0.15
MI+40 05 -020 047 -0.48 035 -031 035 -091 032 -006 024 -0.26 0.15
MI+80 0.5 -022 048 -0.51 036 -019 033 -0.68 031 -030 024 =131 0.30

and SE tended to increase with the number of auxiliary
variables, the same holds true for the RMSE. However,
there is one difference to MAR(Y): the inclusion of ten
auxiliary variables with r =.5 was helpful in all sample
sizes, 20 variables with n>100, and 40 variables with
n = 200. Including more variables caused a downward
bias of coefficients and precision decreased as was
observed under MAR(Y). For auxiliary variables with low
correlations, no such effect was observed.

Table 3 displays a simulation where an MCAR condi-
tion was realized. The basic patterns are different from
Tables 1 and 2. Naturally, there was no bias under CC,
so MI could not perform better than CC bias. Also, no
benefit from including auxiliary variables could be
observed regarding precision. However, including few
auxiliary variables did not cause damage: ten auxiliary
variables did not introduce bias for n > 100 for 20%
missing data, and for n = 200 also for 50% missing
data — precision was only slightly worse then. Similar to
the two MAR conditions, including too many auxiliary
variables caused a downward bias of coefficients and a
loss of precision.

A subset of simulations was replicated using different
algorithms and programs. Some of the simulations were
repeated using two different joint modelling algorithms,

Norm [23,32] and Amelia II [33]. Results were basically
the same as those presented here, except that in small
samples, the curves were less smooth when compared
with the MICE algorithm. A similar result was reported
by Taylor and Zhou [34]. Both programs, Amelia and
Norm, broke down when the number of auxiliary vari-
ables and the missing rate was high and the sample size
low. For example, in samples of n = 100 and 20% miss-
ing data, not more than about 40 auxiliary variables
could be included. Three other programs based on the
MICE algorithm, STATA’s V12 [23], ICE [35] and STA-
TA’s “MI” [23] utilizing “chained (pmm)” and SPSS [36],
basically led to the same results as R's MICE. However,
they also broke down when the number of auxiliary vari-
ables (minus one) reached the number of cases with
data. This is no disadvantage over MICE, given the
results of the present simulation study. As this paper
outlines, it makes no sense to reach a point where the
number of variables is equal to the number of cases.

To explore if the present simulation results can be
generalized to larger samples, we performed a simulation
as defined above, having 50% missing data, MAR(Y), but
350 auxiliary variables, all r = .5, n = 1000. To reduce
the computational time, only m = 5 imputed datasets
were created and only 200 replications performed.
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Figure 1 Regression coefficient b, in simulations with varying amounts of missing data, moderately correlated auxiliary variables

0.5) and 100 cases under MAR(Y).
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Results show a strong downward bias under MI+350
(bias = -.53, SE = .26, std. bias = -2.04, RMSE =
.54), even somewhat worse than under CC (bias = -.37,
SE = .25, std. bias = -1.48, RMSE = .39), compared to
MI+0 (bias = -.01, SE = .34, std. bias = —.03, RMSE =
17).

Marshall et al. [27] compared various algorithms
(among them MICE and various joint modelling algo-
rithms) in a simulation with eight predictors in a logistic
regression with n=1000 subjects and did not find large
differences. We would draw the conclusion that (1) the
present effects of auxiliary variables were not the result
of a specific program and that (2) in small samples, the
MICE algorithm seems to perform better. However, in
large samples, one of the — usually much faster — joint
modelling algorithms would probably be preferable.

Example

In addition to the simulations, an example utilizing real
data is provided. The data for this example is taken from
an online survey, which was conducted in 2008 [37] in
order to cross-validate a questionnaire, the SCL-27-plus.
It is used to screen for symptoms of depression, agora-
phobia, social anxiety, pain and vegetative symptoms.
Questionnaires on quality of life [38] and parent—child
relationships were also included [39]. For the present ex-
ample, a score based on 8 items from the physical func-
tioning scale of the quality of life (QOL) instrument was
chosen as the response, and the pain score (six items) of
the SCL-27-plus as a predictor (PAIN). In total, 48 add-
itional items were used as auxiliary variables. Out of 500
cases, 100 were randomly chosen for this example. None
of the cases had any missing data in QOL, PAIN or any
auxiliary variable.

For the example, we conducted a simple regression
analysis. The unstandardized b-coefficient for PAIN on
QOL was —1.97 with a standard error of 0.71 and a t-
value of -2.76 in the 100 cases with complete data. As
in the simulations, successively increasing numbers of
observations (5%, 10% ... 50% from all 40 items except
the 8 for QOL were deleted using a 50% MAR(Y) and
50% MCAR mechanism - the higher the QOL, the
higher the probability the items were missing. After each
step, two multiple imputations were performed and the
impact on the following regression analysis examined.
The first multiple imputation only used QOL and the
six items of the score for PAIN for its imputation model
(MI+0), the second used all other available variables as
auxiliary variables for its imputation model (MI+48).
The bivariate correlations between the variables were .23
on average, with the lowest being close to 0, and the
highest .82. Program settings were identical compared to
the simulated data.
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When 5% of the observations were deleted, whether
auxiliary variables were included or not made no visible
difference. Both showed negligible bias with standard
biases of —0.01 and 0.03, as compared to the value over
the complete data. When the proportion of missing data
rose, using no auxiliary variables for the imputation
model did not increase bias. When 50% of the observa-
tions were deleted and substituted, the relative bias was
still less than 5% and the standard bias was only slightly
increased to —0.08. Utilizing the 48 auxiliary variables
introduced considerable bias with higher proportions of
missing data. With 50% of the data missing, the standar-
dized bias reached 0.99 and the mean b-coefficient was
clearly biased towards zero.

Figure 2 examined what happened when too many
auxiliary variables were in the imputation model. The
first item of the PAIN score is used for demonstration.
The top figure shows the distribution of answers from
50 remaining cases when the other 50 were deleted. Be-
cause the missing mechanism is partly MAR, the first
distribution is not an approximation for the distribution
of the complete data, but skewed. The second graph
shows the distribution of the values that were imputed
using no auxiliary variables. Virtually no difference from
the first graph can be observed. The third graph shows
the distribution of imputed values using all 48 auxiliary
variables. It clearly deviates from the original data, with
a much broader distribution.

Discussion

The results of the present simulation study can be sum-
marized very briefly: In MI, inclusion of some auxiliary
variables may help, too many can be harmful. Under
MCAR, the inclusion of auxiliary variables was worthless
and under MAR(Y), advantages were limited. The best
results here were observed under the MAR(X) condition,
where a reduction of bias plus an increase of precision
could be reached by including a few auxiliary variables.
Further, few auxiliary variables did not cause harm
within the simulations realized here. The reason why too
many variables introduce bias is probably that regression
models become unstable when the ratio of cases to vari-
ables gets low due to over-parameterization of the im-
putation model. Standard textbooks usually recommend
having at least ten cases per variable in regression mod-
els. From the present simulations, we derived a prelimin-
ary rule of thumb that is somewhat below the lower
limit of such recommendations — not to include a larger
number of variables than 1/3 of the cases with complete
data for the variable to be imputed. An optimal imput-
ation model would have fewer variables, but including
up to 1/3 would not do much harm (to continuous vari-
ables, see below). This relativizes recommendations from
other sources, who mostly recommend including more
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Figure 2 Comparison of deleted values and imputed values,
using PMM and no or 48 auxiliary variables in an exemplary
dataset.

rather than fewer auxiliary variables. These other recom-
mendations should by no means be discredited by our
simulation, they are correct - we merely want to show
that the number of auxiliary variables that are included
has an upper limit. We assume that the authors of these
recommendations consider it obvious that over-
parameterization needs to be avoided and therefore did
not focus on it.

One of the main sources cited in these recommenda-
tions is the simulation performed by Collins et al. [13].
We found five main differences between the Collins
et al. simulations and ours.

(1) There were no missing values in our response;
Collins et al. [13] observed the best effects of
including auxiliary variables when the missing data
were in the response. Hence, we included missing
data in our response but still could not attribute a
positive effect to auxiliary variables.

(2) Our auxiliary variables had correlations of r=.1 and
r=.5, Collins et al. [13] used one variable with a
correlation of r=4 or r=.9. We were able to
replicate the results from Collins et al. when
including one variable with a correlation of r=.9.
However, we did not want to use such high
correlations because they are not likely to be
observed in clinical research. When we performed
simulations with correlations of r=.7 and higher, a
stronger positive effect of including a few auxiliary
variables could be observed. Particularly with
relatively small amounts of missing data, we
observed higher precision, with the drawback that
larger amounts of missing data introduced bias. This
data is not shown here because it is not realistic to
assume such high correlations in real data. This
result is congruent with a simulation performed by
Enders and Peugh [40] who included six auxiliary
variables into a factor analysis on samples with
missing data rates of up to 25%. In this study, factor
loadings were .60 - .70, and the correlations of the
auxiliary variables were all r=.3. No substantial
benefit from the auxiliary variables was observed.

(3) Collins et al. had no missing data in the auxiliary
variables themselves. Hence, we also performed a
simulation where only the X’s had missing data.
Results were very similar to the ones obtained by
correlations of r=.7, i.e. a slightly positive effect of
including a few auxiliary variables was observed.
With relatively small amounts of missing data, a
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higher precision was achieved, but again, with larger
amounts of missing data, some bias occurred.

(4) A further difference between our study and the
simulations performed by Collins et al. [13] was that
in the latter, the auxiliary variable Z was associated
with the likelihood for Y to be missing, i.e. an
MNAR condition was introduced when the auxiliary
variable was omitted. Hence, we performed a similar
simulation, but in ours the value of Z was associated
with the likelihood of X; and X, being missing. As a
result, no positive effect of including this variable Z
could be observed.

(5) Collins et al. [13] did not focus solely on a
regression coefficient as we did here, but also
examined means, standard deviations and
correlations. They observed stronger effects of the
auxiliary variables on means and standard deviations
than on regression coefficients.

From this, we can conclude that in estimating a linear
regression coefficient, (1) it doesn’t matter whether
missing values are in the explanatory variables only or
also in the response, (2) inclusion of auxiliary variables is
most helpful when the correlations to the X’s and Y are
high (i.e. r = |.5]), (3) auxiliary variables without missing
data perform a little better than those that have missing
data themselves, (4) a variable that explains the mechan-
ism leading to missing data in the predictors need not
necessarily be included in the imputation model and (5)
regression coefficients are less sensitive to bias than
means and standard deviations. Conclusion (4) in par-
ticular came as a surprise to us, because it partially con-
tradicts the intuitively appealing and well-accepted
recommendation to keep the data MAR [14]. Further re-
search is necessary to explore under which conditions it
is beneficial to include a variable to keep the data MAR
or whether including such a variable is disadvantageous.
Conclusion (2) is similar to one provided by Enders [15],
who has suggested that correlations greater than + .40
are generally helpful.

A noteworthy effect was the drastic breakdown of the
regression coefficient when too many variables were
included, as displayed in Figures le and f. Therefore, we
analyzed the distribution of the imputed values for
Figure 1f when only 4% of the cases were missing
(4 missing values x 20 imputed datasets x 1000 replica-
tions = 80,000 data points). It turned out that there was
an extreme variation in the imputed values — the standard
deviation was 8 under this condition, instead of 1 as it
was in the “observed” values. We repeated this analysis in
our real data example with a higher percentage of miss-
ing data and obtained the same result. An almost normal
distribution of complete data changed to a U-shape by
imputation with too many auxiliary variables.
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In principle, this simulation study confirmed the ob-
servation that under realistic conditions, a small amount
of missing data (e.g. <5%) usually does not lead to severe
bias or relevant loss in precision regardless which
method of dealing with missing data is applied [27], in
longitudinal studies, even larger missing rates can be
tolerable [41]. However, when missing rates become
higher and too many auxiliary variables are included in
the imputation model, the regression coefficient can
becomes seriously biased downward and imprecise
(Figure le and f). If multiple imputations are used at a
ratio close to 1:1 of variables and cases, i.e. the point
where chained equation programs often break down,
even with small rates of missing data (i.e. 5-10%), coeffi-
cients can be seriously biased.

With the present simulations, we have tried to create
conditions that are typical for data analyses in medicine
and life sciences, ie. small to moderate sample sizes,
small to moderate correlations among the variables and
small to moderate amounts of missing data. For small
numbers of auxiliary variables, we saw an almost linear
increase in bias and a decrease in precision with growing
rates of missing data (Figure 1). However, as a rule of
thumb, we suggest restricting the number of auxiliary
variables to not more than 1/3 of the cases with complete
data, ie all cases minus those with missing data [5].
As an example, with 100 cases and 40% missing data,
60 cases have complete data. Hence, no more than
60/3 = 20 variables should be used in the imputation
model. This holds true for continuous variables, and will
not dramatically change when a few explanatory binary
variables are in the model. Binary responses or datasets
consisting mainly of binary or categorical variables with
more than two categories will need a higher variables/
cases ratio — a simulation study on this is currently being
planned? Using fewer variables should not be problem-
atic, while using more variables would cause the risk for
a serious downward bias of the regression coefficients.
This was tested for samples of n=50, 100, and 200 under
MCAR and two MAR mechanisms, including auxiliary
variables with low or moderate correlations, and missing
rates of up to 64%. Within the limits studied here, sample
size does not indicate a strong deviation from a “not
more than 1/3” rule, higher correlation of auxiliary vari-
ables are better under MAR conditions, and MAR(X)
profits more form auxiliary variables than MAR(Y).

The result can be plausibly extrapolated for larger
samples — our simulation with n=1000 and 350 variables
showed a downward bias, too. However, we did not sys-
tematically perform simulations with larger n’s, because a
large n here results in large numbers of auxiliary vari-
ables, which leads to long computational times. How
far the 1/3 rule can be extrapolated to rates higher than
64% of missing data was intentionally not tested.
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Situations may exist in which a substitution of very large
amounts of missing data (eg 90%) makes sense. In our
simulations, it did not. Marshall et al. [26,27] warned that
using a multiple imputation that works well with less than
50% missing data introduces bias in a Cox regression
when 75% of the data were missing. We do not recom-
mend applying our rule to proportions of missing data
larger than 64% without performing further simulations.

What to do when many variables are utilized in an ana-
lysis with a limited sample size? Or if a statistician wants
to impute the missing data in a set to make it freely us-
able for public — in this case, he cannot know which stat-
istical methods will be applied later. In such situations,
including more variables than three times the number of
cases with complete data may be desirable — even with-
out considering any auxiliary variables. Then the choice
of a program that allows a restriction of the number of
predictors for each variable for which imputations are to
be done is recommended — mostly this would be a MICE
algorithm. This helps to avoid over-parameterization.
Different possibilities in the various programs exist.
Some (e.g. R’'s mice, STATA) offer convenient ways to de-
fine which variables are used as predictors for imputa-
tions of other variables, others currently would make it
difficult to do so (e.g. SPSS). If, further, the dataset con-
sists of items belonging to different sub scales of a ques-
tionnaire for example, it would make sense to use this
information and to impute each subscale separately. If
such a structure is not present, one should try to
maximize the squared multiple correlations “using as few
auxiliary variables as possible” [15], p. 133. With STATA
[23], such a selection needs to be done manually, R’s
mice provides a tool that automatizes this task quickpred:
[25,42]. The predictor matrix can be displayed to see the
selected variables and modified if desired.

Simulation studies should always be read with care.
(1) We have only studied linear regression coefficients
here. Other statistical parameters may be influenced dif-
ferently by auxiliary variables. For example, in simula-
tions by Hoo [16], positive effects on bias through
inclusion of auxiliary variables were seen in some stand-
ard errors in a confirmatory factor analysis, though the
factor loadings themselves were not affected. (2) The
present simulations are restricted to continuous data.
Analysis of categorical data will introduce additional
challenges. In that case, it is not only to be expected
that the ratio variables/number of cases with complete
data would be smaller, but the number of events per
variable [43,44] will probably also become a parameter
of interest. (3) In our simulations, all variables were dis-
tributed normally and relations were perfectly linear.
Both are not likely to happen in real data. Deviations
from normal distribution may have a negative effect on
the MI process, which should be examined in further
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studies [45]. Problems of including quadratic or inter-
action effects were examined by Seaman et al. [46] and
van Buuren [42]. (4) In large surveys where thousands
of cases are collected, even large numbers of variables
may become a problem. This was not examined in detail
here due to the limitations of computational power.
Creating Figure 1f, for example, required more than 200
hours of computing time on a 6 physical core PC opti-
mized for these simulations, and estimate of 350 vari-
ables and 1000 cases about 60 hours. (5) We have
displayed the distributions of the beta-coefficient only.
This was done because research often focuses on the
analysis of associations between variables. Simple point
estimates of prevalence or means seem to benefit more
from the inclusion of auxiliary variables. (6) Our simula-
tions display downward bias. This is not necessarily al-
ways the case. Knol et al [47] created four scenarios
where down- and upward bias occurred under CC.
Whether such upward bias, i.e. overestimation of an as-
sociation, can also occur under a multiple imputation is
unknown.

To summarize, we have learned from the present
simulation that in a typical life science survey, the in-
clusion of auxiliary variables is often of little use; too
many auxiliary variables may even be disadvantageous.
Unless the correlations are high, we recommend keep-
ing the number of variables in the imputation model
as low as possible; even variables that explain the
mechanism leading to missing data don’t necessarily
need to be included. In our initial example, we used a
researcher with 100 subjects that had ten scales based
on six items each plus some demographics. This re-
searcher was considering whether it would make more
sense to substitute missing data on the item or on the
scale level. Based on this example, our recommendation
would be to impute in sub-models and to carefully se-
lect the variables, rather than using one imputation
model for all data.

Conclusion
Inclusion of too many auxiliary variables can ser-
iously bias estimates in regression. We suggest a rule
of thumb: that the number of cases with complete
data should be at least three times the number of
variables — otherwise, restricting the number of pre-
dictors becomes an option. This holds true for data-
sets containing mainly continuous and some binary
variables. Performing MI in data sets consisting pre-
dominantly of categorical variables, maybe even with
many categories, will be even more difficult in small
and medium samples.
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