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Abstract

Background: The two-stage time series design represents a powerful analytical tool in environmental epidemiology.
Recently, models for both stages have been extended with the development of distributed lag non-linear models
(DLNMs), a methodology for investigating simultaneously non-linear and lagged relationships, and multivariate
meta-analysis, a methodology to pool estimates of multi-parameter associations. However, the application of both
methods in two-stage analyses is prevented by the high-dimensional definition of DLNMs.

Methods: In this contribution we propose a method to synthesize DLNMs to simpler summaries, expressed by a
reduced set of parameters of one-dimensional functions, which are compatible with current multivariate
meta-analytical techniques. The methodology and modelling framework are implemented in R through the packages
dlnm and mvmeta.

Results: As an illustrative application, the method is adopted for the two-stage time series analysis of
temperature-mortality associations using data from 10 regions in England and Wales. R code and data are available as
supplementary online material.

Discussion and Conclusions: The methodology proposed here extends the use of DLNMs in two-stage analyses,
obtaining meta-analytical estimates of easily interpretable summaries from complex non-linear and delayed
associations. The approach relaxes the assumptions and avoids simplifications required by simpler modelling
approaches.
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Background
Research on the health effects of environmental stressors,
such as air pollution and temperature, often relies on time
series analysis using data from multiple locations, usually
cities [1,2]. The analytical design adopted in this set-
ting is commonly based on two-stage procedures, where
location-specific exposure-response relationships are esti-
mated through a regression model in the first stage, and
these estimates are then combined through meta-analysis
in the second stage [3].
Recently, the first-stagemodelling approaches have been

extended with the introduction of distributed lag non-
linear models (DLNMs) [4,5], a methodology to describe
simultaneously non-linear and delayed dependencies.
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This modelling class is based on the definition of a cross-
basis, a bi-dimensional space of functions describing the
association along the spaces of predictor and lags. The
cross-basis is specified by the choice of two basis, one
for each dimension, among a set of possible options
such as splines, polynomials, or step functions. Concur-
rently, developments have been proposed also for the
second stage. In particular, techniques based onmultivari-
ate meta-analysis have been used to combine estimates of
associations defined by multiple parameters, and applied
for either non-linear [6-8] or lagged dependencies [8-11].
We recently provided an overview of the use of multivari-
ate meta-analysis in this setting [12].
In this contribution we propose a method to reduce

estimates from DLNMs to summaries defined in only
one dimension of predictor or lags, re-expressing the
fit in terms of reduced parameters for the related
uni-dimensional basis functions. This step decreases the
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number of parameters to be pooled in the second stage,
offering a method to meta-analyse estimates from richly
parameterized non-linear and delayed exposure-response
relationships.
In the next section, we provide a brief recap of the

algebraic development of DLNMs and multivariate meta-
analysis, and then describe the main statistical devel-
opment, establishing a method to reduce the fit of a
DLNM to summaries expressed in a single dimension.
A motivating example with an analysis of the relation-
ship between temperature and all-cause mortality is used
throughout the paper to illustrate the statistical frame-
work. We finally note some limitations and indicate future
directions for research. Supplementary online material
provides information on algebraic notation and software
(Additional file 1), and also includes the R code and data to
entirely reproduce the results in the example (Additional
files 2–3).

Methods
The two-stage time series design can be applied to series
of observations collected at each time t, with t = 1, . . . ,Ni,
in each location i, with i = 1, . . . ,m. First-stage regres-
sion models are fitted to each series of Ni observations,
obtaining location-specific estimates of the association of
interest. These estimates are then pooled across locations
in the second stage, with the aim to estimate an average
exposure-response relationship and inspect heterogeneity
across locations.

An illustrative example
As an illustration, we describe an analysis of the relation-
ship between temperature and all-cause mortality using
daily series of Ni = N = 5113 observations from each
of the m = 10 regions in England and Wales, in the
period 1993–2006. Further details on the dataset were
previously provided [13,14]. The example is used through-
out the paper to describe the steps of the modelling
framework and introduce the new methodological devel-
opment. Specifically, the relationship is flexibly estimated
in each region in the first-stage analysis using DLNMs,
and then pooled in the second stage through multivari-
ate meta-analysis. The example aims to demonstrate how
results from DLNMs are summarized in an analysis of
a single region, and then how these reduced summaries
can be combined across regions. Also, we illustrate a
comparison with simpler modelling approaches. Mod-
elling choices are dictated by illustrative purposes, and the
results are not meant to provide substantive evidence on
the association.

Distributed lag non-linear models
TheDLNM framework has been extensively described [5].
Here we provide a brief overview to facilitate the new

development, illustrated later. In particular, we will focus
on the bi-dimensional structure of this class of models,
represented by the two sets of basis functions applied to
derive the parameterization. Following the original paper,
we first generalize the idea of simple distributed lag mod-
els (DLMs) and then introduce the non-linear extension.

The DLNMmodelling class
Distributed lag linear and non-linear models are
expressed through a lag-basis and cross-basis func-
tion s(xt), respectively, of the N-length exposure series
x =[ x1, . . . , xt , . . . , xN ]T . The definition of s(xt) first
requires the derivation of the N × (L + 1) matrix Q of
lagged exposures, so that qt· =[ xt , . . . , xt−�, . . . , xt−L]T .
This step indirectly characterizes the new lag dimension
identified by the vector � =[ 0, . . . , �, . . . , L]T , with L as
maximum lag. Now, choosing a first basis with dimension
v� to represent the association along the new lag space, we
can compute a (L+ 1) × v� basis matrix C by applying the
related functions to �. A compact and general definition
of the lag-basis function s(xt) for DLMs is given by:

s(xt ; η) =
v�∑
k=1

qTt·c·kηk = qTt·Cη = wT
t·η, (1)

where different models are specified with different choices
of the basis to derive C. The transformed variables in
W = QC can be included in the design matrix of the first-
stage regression model, in order to estimate the v�-length
parameter vector η, with Cη representing the lag-specific
contributions.
The non-linear extension to DLNMs requires the choice

of a second basis with dimension vx to model the rela-
tionship along the space of the predictor x, obtaining the
N × vx basis matrix Z from the application of the related
functions to x. Applied together with the transformation
which defines thematrix of lagged exposuresQ above, this
step produces a three-dimensional N × vx × (L+ 1) array
Ṙ. The parameterization of the cross-basis function s(xt)
for DLNMs is then given by:

s(xt ; η) =
vx∑
j=1

v�∑
k=1

rTtj·c·kηjk = wT
t·η. (2)

The simpler lag-basis for DLMs in (1) is a special case
of the more complex cross-basis for DLNMs in (2). These
models may be fitted through common regression tech-
niques with the inclusion of cross-basis matrix W in the
design matrix. The vector η̂ of estimated parameters of
the cross-basis function in (2) represents a simultaneously
non-linear and lagged dependency, and its length vx × v�

is equal to the product of the dimensions of the bases
for the two spaces. In completely parametric models as
those described here, this dimensionality is directly asso-
ciated with the notion of degrees of freedom (df ), related



Gasparrini and Armstrong BMCMedical ResearchMethodology 2013, 13:1 Page 3 of 10
http://www.biomedcentral.com/1471-2288/13/1

to the flexibility of the function and the smoothness of the
estimated dependency. In spite of the relatively complex
algebraic definition in (2), DLNMs are solely specified by
the choice of the two bases for deriving the matrices Z and
C. The software implementation of this methodology in
the R package dlnm has been previously described [15].

Summarizing the results from aDLNM
Fitted bi-dimensional cross-basis functions from DLNMs
can be interpreted by deriving predictions over a grid of
predictor and lag values, usually computed relative to a
reference predictor value. As a first example, we show the
results of a single-location analysis, using data from the
North-East region of England. The temperature-mortality
relationship is modelled through the same cross-basis
used for the full two-stage analysis illustrated later, com-
posed by two B-spline bases.
The results are shown in Figure 1. The top-left panel dis-

plays the bi-dimensional surface of the fitted relative risk
(RR) in a 3-D graph, predicted for the grid of temperature
and lag values, with a reference black line corresponding
to the centering value of the basis for the predictor space
(here 17°C). Similarly to previous analyses, the figure
suggests an immediate increase in risk for high temper-
ature, and a more delayed but protracted effect for low
temperature.
This bi-dimensional representation contains details not

relevant for some interpretative purposes, and does not
easily allow presentation of confidence intervals. The
analysis therefore commonly focuses on three specific
uni-dimensional summaries of the association, also illus-
trated in Figure 1. First, a predictor-specific summary
association at a given predictor value x0 can be defined
along the lag space. As an example, this is reproduced in
the top-right panel for temperature x0 = 22°C, together
with 95% confidence intervals (CI), and corresponds to the
red line parallel to the reference in the 3-D graph. Second,
similarly, a lag-specific summary association at a given lag
value �0 can be defined along the predictor space. This is
shown in the bottom-left panel for lag �0 = 4, and coin-
cides with the red line in the 3-D graph perpendicular to
the reference. Third, the sum of the lag-specific contribu-
tions provides the overall cumulative association, showed
in the bottom-right panel of Figure 1. This last summary
offers an estimate of the net effect associated with a given
exposure cumulated over the lag period L, and is usually
the focus of the analysis.

Multivariate meta-analysis
The framework of multivariate meta-analysis has been
previously described [16], and its application for com-
bining estimates of multi-parameter associations has
been recently illustrated [12]. We offer a brief summary
here, firstly illustrating the second-stage multivariate

meta-analytical model and then discussing its limitation
for pooling DLNMs.

Themultivariate extension ofmeta-analysis
Specification of the model assumes that a k-dimensional
set of outcome parameters η̂i and associated k × k
(co)variance matrix Si have been estimated in each of the
i = 1, . . . ,m studies. In the application for two-stage
time series analysis, these outcome parameters represent
regression coefficients from the first stage, while the term
study refers here to the first-stage analysis in each loca-
tion. The description below illustrates a random-effects
multivariate meta-regression model, where fixed-effects
models or simple meta-analysis treated as special cases.
The model for location i is defined as:

η̂i ∼ N
(
Uiβ , Si + �

)
, (3)

where the location-specific estimated outcome parame-
ters η̂i are assumed to follow a k-dimensional multivariate
normal distribution. The k × kp block-diagonal matrix
Ui = I(k) ⊗uTi is the Kronecker expansion of the location-
specific vector ui =[u1, . . . ,up]T of meta-variables. The
matrices � and Si represent the between and within-
location (co)variance matrices, respectively. This multi-
variate meta-regression model is applied to estimate the
parameter vectors β and ξ . The former represents the
kp second-stage coefficients defining how the p meta-
variables are associated with each of the true k first-stage
coefficients in ηi. The vector ξ includes a set of parameters
which uniquely define the between-location (co)variance
matrix � , depending on the chosen structure for this
matrix. In fixed effects models no additional variabil-
ity beyond the estimation error in the first-stage model
is assumed for η̂i, and �i = Si. In multivariate meta-
analysis with no meta-variable, U = I(k) and β = η,
the vector of average parameters. The development in (3)
can be considered as a special case of multivariate lin-
ear mixed model [17], where the within-city (co)variance
is assumed known. Among alternative estimation meth-
ods, such as Bayesian [18] and multivariate extensions of
the method of moments [19], we privilege here likelihood-
based approaches [20,21]. Methods to derive tests and
confidence intervals, fit statistics and (best-linear unbi-
ased) predictions have been previously developed within
the linear mixed models framework for the application in
this setting, together with a description of the software
implementation in the R packagemvmeta [12].

Limitations ofmultivariatemeta-analysis
In theory, the m sets of estimated first-stage coef-
ficients η̂i of the cross-basis obtained from DLNMs
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Figure 1 Temperature-mortality association in the North-East region of England, 1993–2006. Top-left: 3-D graph (with black reference line at
17°C). Top-right: predictor-specific summary at 22°C (red line parallel to the reference in the 3-D graph). Bottom-left: lag-specific summary at lag 4
(red line perpendicular to the reference in the 3-D graph). Bottom-right: overall cumulative summary. The 95%CI are reported as grey areas.

in (2) can be meta-analysed using (3), producing
an population-averaged three-dimensional effect surface
across locations, optionally conditional on meta-variables
in multivariate meta-regression. However, as anticipated
above, the definition of DLNMs in (2) requires k = vx ×
v� parameters η̂i for the cross-basis. For models speci-
fied by even moderately complex bases in each space, the
number of parameters becomes so high that the optimiza-
tion routine for multivariate meta-analysis is computa-
tionally impractical. This is particularly relevant for the
(co)variance terms in ξ defining the true between-location
variability, composed by k(k + 1)/2 parameters for an
unstructured matrix � .
This limitation is one of the main reasons which have

prevented so far the full application of DLNMs in two-
stage analysis. The modelling approach has often required
the simplification of the first-stage model, for the second-
stage multivariate meta-analysis to be feasible. For exam-
ple, investigators have assumed a linear relationship in the
dimension of the predictor [8-11], or computed a sim-
ple exposure moving average for the lag space [6-8]. We

previously adopted the same limited approach [12]. The
development of methods to derive meta-analytical esti-
mates from full DLNMs would offer a great deal of flex-
ibility in the investigation of complex exposure-response
dependencies.

Reducing DLNMs
Predictions from DLNMs as those shown in Figure 1 are
obtained by selecting the grid of exposure and lag val-
ues defined as x[p] and �[p], respectively. Details on the
algebraic development are given elsewhere [5] [sections
4.2–4.3]. Briefly, predictions are computed by deriving
matrices Z[p] and C[p] from x[p] and �[p], respectively,
through the application of the same basis functions used
for estimation in (2). The bi-dimensional predicted rela-
tionship in location i is expressed by the full set of esti-
mated parameters in η̂i and quantities derived by Z[p] and
C[p]. However, the specific summaries described in the
previous section are defined only on the single dimension
of predictor (lag-specific and overall cumulative associa-
tions, bottom panels of Figure 1) or lag (predictor-specific
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association, top-right panel of Figure 1). The idea is to
re-parameterize these summaries in terms of the related
uni-dimensional basis Z[p] or C[p] for predictor or lags
only, respectively, and sets of reduced in coefficients θ̂ i.
Dimensionality of the functions expressing such sum-
maries therefore decreases from vx × v�, corresponding to
the length of vector η̂i in the original parameterization, to
vx or v� only, corresponding to the length of new sets of
reduced parameters θ̂ i.
The definition of the reduced parameters depends on

the specific summary among those listed above. They
can be obtained by applying a related dimension-reducing
matrixM, expressed as:

M[x0] = I(v�) ⊗ zT[x0] (4a)

M[�0] = cT[�0] ⊗ I(vx) (4b)

M[c] = 1T(L+1)C ⊗ I(vx) (4c)

for predictor-specific summary association at x0, for for
lag-specific summary association at �0, and for overall
cumulative summary association, respectively. Here z[x0]
and c[�0] are the vectors of transformed values of x0 and �0
obtained by the application of the sets of basis functions
for predictor and lags, respectively. The reduced parame-
ter vector θ̂ i and associated (co)variance matrix V (θ̂ i) are
then obtained by:

θ̂ [j]i = M[j]η̂i

V (θ̂ [j]i) = M[j]V (η̂i)MT
[j],

(5)

with j ∈ {x0, �0, c}. The predictor-specific association at
x0, defined on the lag space for values in �[p], is expressed
by C[p]θ̂ [x0]i, with standard errors provided by the square
root of C[p]V (θ̂ [x0]i)CT

[p]. The lag-specific association at
�0 and the overall cumulative association, defined on the
predictor dimension for values in x[p]i, are then obtained
by Z[p]θ̂ [�0]i and Z[p]θ̂ [c]i, respectively, with computation
for standard errors as above. The number of coefficients
defining these summaries, reduced from vx×v� to v� or vx
only, is usually compatible with the application of standard
multivariate meta-analysis techniques, which can now be
used to combine the estimates of these summaries from
DLNMs in two-stage analyses. In addition, the deriva-
tion in (4)–(5) simplifies the algebra for DLNM predic-
tions originally provided [5] [Section 4.3]. The dimension
reduction comes at the price of loss of information about
the association on one of the two dimensions, as the rank-
deficiency of M does not allow reversing the reduction
applied in (5).

Results
The analysis is now extended to the full set of 10 regions,
with the aim to produce pooled estimates of the overall
cumulative association, and to compare the results with
those obtained by simpler approaches, applying a moving
average to the daily exposure series. Also, we investigate
the lag structure for exposure to cold and hot temper-
atures through predictor-specific estimates. Finally, we
assess heterogeneity and then the role of meta-variables
through multivariate meta-regression.

Modelling strategy
The first-stage region-specific model is specified by
adopting a standard analytical approach for time series
environmental data [1,3,4]. In each region, we fit a com-
mon generalized linear model for the quasi-Poisson family
to the series of all-cause mortality counts. The model
includes the cross-basis for daily mean temperature, a nat-
ural cubic spline of time with 10 df /year to control for the
long-term and seasonal variation, and indicator variables
for day of the week.
In themain first-stagemodel, the temperature-mortality

association is estimated by a flexible cross-basis defined by
a quadratic B-spline for the space of temperature, centered
at 17°C, and a natural cubic B-spline with intercept for the
space of lags, with maximum lag L = 21. We place two
internal knots at equally spaced values along temperature
(5.3°C and 15.1°C) and three internal knots at equally-
spaced log-values of lag (1.0, 2.8 and 7.6), with boundary
knots at −4.4°C and 24.9°C, and 0 and 21 lags, respec-
tively. These choices define spline bases with dimensions
vx = 4 and v� = 5 for temperature and lag spaces, respec-
tively. The same specification was previously applied for
the single-region analysis.
The set of vx × v� = 20 coefficients of the cross-basis

variables with associated (co)variance matrices, estimated
in each region, are then reduced. Specifically, for region
i we derive the vector θ̂ [c]i with 4 reduced parameters of
the quadratic B-spline of temperature Z[p] for the over-
all cumulative summary association, and two vectors θ̂ [0]i
and θ̂ [22]i with sets of 5 reduced parameters of the natural
cubic B-spline of lags C[p] for predictor-specific summary
associations at 0°C and 22°C. These temperatures corre-
spond approximately to the 1st and 99th of the pooled
temperature distribution, respectively. These effects along
lags are interpreted using the reference of 17°C.
For comparison with methods not requiring dimen-

sionality reduction, in two alternative first-stage models
we simplify the lag structure by fitting one-dimensional
splines to the moving average of the temperature series
over lag 0–3 and 0–21, respectively. Such moving aver-
age models have been commonly used in weather and
air pollution epidemiology [4,10,22]. These alternatives
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can be described as DLNMs including cross-bases with a
constant function to represent the relationship in the lag
space, while keeping the same quadratic B-spline for the
space of the predictor, as described for the main model
above. In these simplified models, the dimension of fit-
ted relationship does not need to be reduced. In fact, the
application of the reduction method returns the original
vx × v� = 4 × 1 = 4 parameters re-scaled by the num-
ber of lags, giving a dimension-reducing matrix M[c], as
described in (4c), composed in this case by a diagonal
matrix with entries corresponding to a constant equal to
the number of lags.
The coefficients for each of the three summary asso-

ciations from the main model are estimated in the 10
regions and then independently included as outcomes in
three multivariate meta-analytical second-stage models.
The ten estimated sets of coefficients from the two alter-
native models (equivalent to the overall cumulative sum-
mary) were directly meta-analysed. All the second-stage
models are fitted here through restricted maximum likeli-
hood (REML) using the R packagemvmeta.We first derive
an estimate of the pooled relationship through multivari-
ate meta-analysis, and then extend the results showing an
example of multivariate meta-regression which includes
population-averaged regional latitude as a meta-variable.
The effect of latitude is displayed by predicting the aver-
aged temperature-mortality associations for the 25th and
75th percentiles of its distribution, using the same base-
line reference of 17°C. The significance of such an effect is
assessed through a Wald test, given a likelihood ratio test
cannot be applied to compare model fitted with REML
and different fixed-effects structures [12].

Two-stage analysis
The overall temperature-mortality associations in the 10
regions of England and Wales are illustrated in Figure 2.
The left panel shows the regions-specific summary asso-
ciations from the first stage, together with the pooled
average from multivariate meta-analysis, as predicted by
the main flexible model. Regions-specific estimates show
similar curves, although some variability exists, in partic-
ular at the extremes. Consistently with previous findings,
the pooled curve suggests an increase in relative risk (RR)
for both cold and hot temperatures, although less pro-
nounced for the latter, and with a steeper increase for
extreme when compared to mild cold. The average point
of minimummortality is at 17.1°C, corresponding approx-
imately to the 90th percentile of the pooled temperature
distribution. The multivariate Cochran Q test for hetero-
geneity is highly significant (p-value < 0.001), and the
related I2 statistic indicates that 63.7% of the variability is
due to true heterogeneity between regions.
The right panel of Figure 2 illustrates the comparison

with the two alternative simpler models. We see that the

association based on the 0–21 lag moving average tem-
perature approximates that based on a flexible DLNM in
the cold range, but completely misses the heat effect. The
reverse is true for the association based on the 0–3 lag
moving average temperature.
Figure 3 depicts the pooled estimate from the main

model for predictor-specific summary associations at
22°C and 0°C, with the same reference of 17°C, as pre-
dicted by the two sets of v� = 5 reduced coefficients.
Consistently with previous research, the effect of hot tem-
perature is immediate and disappears after 1–2 days, while
cold temperatures are associated with mortality for a long
lag period, after an initial protective effect. This complex
lag pattern can explain the different results provided by
the less flexible alternative models. The pooled overall
RR estimated by the main model, cumulated along lags
for these specific summaries and reported graphically in
Figure 2 (left panel), are 1.101 (95%CI: 1.078–1.124) for
22°C and and 1.308 (95%CI: 1.245–1.375) for 0°C, respec-
tively. The Cochran Q test is significant for the lag curve at
0°C (p-value < 0.001), but not for that at 22°C (p-value =
0.178), with an I2 of 63.4% and 16.0%, respectively.
It is interesting to note that the second-stage multivari-

ate meta-analytical model for the predictor-specific sum-
mary associations at 22°C estimates perfectly correlated
random components, with between-study correlations
equal to −1 or 1. This is a known phenomenon in multi-
variate meta-analysis, frequently occuring in the presence
of a small number of studies and/or a high within-study
uncertainty relative to the between-study variation [23].
However, in this case, the results from the Cochran Q
test suggest that a fixed-effects multivariate model may
be preferable, and as expected, this model returns almost
identical estimates for the pooled summary associations
(results not shown).
The heterogeneity across regions can be partly

explained as effect modification by region-specific vari-
ables. The results of the example of meta-regression with
latitude are illustrated in Figure 4. The top panel suggests
a differential overall cumulative association between
northern and southern regions, a pattern previously
reported [8,10]. Interestingly, the effect modification
seems to occur for cold, with a higher effect in southern
regions, but not for heat. The estimated pooled RR at 0°C
versus 17°C are 1.380 (95%CI: 1.337–1.424) and 1.237
(95%CI: 1.198–1.277) for the 25th and 75th percentiles of
latitude, respectively, while the same estimates are 1.106
(95%CI: 1.079–1.133) and 1.104 (95%CI: 1.059–1.150)
for 22°C. Overall, the evidence for an effect modifica-
tion is substantial, with a highly significant Wald test
(p-value < 0.001). Latitude explains much of the hetero-
geneity across regions, with an I2 reduced to 18.7% and
a non-significant Cochran Q test (p-value = 0.174). The
bottom panels illustrates the same effect modification for
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predictor-specific summary associations at 22°C and 0°C.
Consistently, theWald test indicates a significant effect for
cold (p-value < 0.001), but not for heat (p-value = 0.634).

Discussion
In this contribution we describe a method to re-express
the bi-dimensional fit of DLNMs in terms of uni-
dimensional summaries, involving reduced sets of modi-
fied parameters of the basis functions chosen for the space
of predictor or lags. This development, in addition to sim-
plifying the algebraic definition of the methodology, offers
a more compact description of the bi-dimensional asso-
ciation modelled by DLNMs. In particular, the dimension
of the sets of reduced parameters is usually compatible
with the application of multivariate meta-analytical tech-
niques in a two-stage framework, allowing the analysis

of complex non-linear and delayed associations in multi-
location studies.
Previous applications of the two-stage design for multi-

location time series studies are based on simplified func-
tions for modelling the association of interest at the first
stage. In particular, the analyses are usually limited to
splines or other non-linear functions of simple moving
average of the exposure series [6-8], a modelling approach
similar to the alternative models used for comparison
in our example. Alternatively, the simplification could be
applied in the other dimension of predictor, specifying
DLMs for linear or linear-threshold exposure-response
relationships [8-11]. All these approaches require strong
assumptions on the exposure-response dependency, in
order to simplify the association modelled in one of the
two dimensions within the first stage. These are prone
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Figure 3 Pooled predictor-specific temperature-mortality association in 10 regions of England andWales, 1993–2006. First-stage
region-specific and pooled (95%CI as grey area) summaries at 22°C (left panel) and 0°C (right panel). Reference at 17°C.
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Figure 4 Pooled temperature-mortality association by latitude in 10 regions of England andWales, 1993–2006. Predictions for the 25th

(dot-dashed line) and 75th (dashed line) percentiles of latitude from meta-regression for overall cumulative summary (top panel), and
predictor-specific summaries at 22°C (bottom-left panel) and 0°C (bottom-right panel). Reference at 17°C. The 95%CI are reported as shaded areas.

to biases when the true underlying dependency is mis-
specified. The framework we propose, in contrast, require
less assumptions or simplifications regarding the associa-
tion in the first-stage model, but rather reduces the esti-
mates to uni-dimensional summaries of a bi-dimensional
fit. The advantages of this approach are exemplified by
the comparison of the simpler alternatives with the bi-
dimensionally flexible model, illustrated in the Results
section. This methodology offers greater flexibility in the
investigation of complex associations through a two-stage
analysis.
Most of the limitations of DLNMs and multivariate

meta-analysis of multi-parameter associations, previously
discussed [5,12], identically apply to this framework. In
particular, the issues of model selection and control for
confounding pose important challenges, and are matters
of current and future research. The issue of model selec-
tion is particularly relevant, due to the bi-dimensional
nature of the models, where two independent bases are
chosen to describe the dependency along predictor and
lag spaces, respectively. In our example, we selected the

bases a-priori for illustrative purposes, but model selec-
tion is clearly more problematic in applied analyses.
The problem of estimating perfectly correlated random

components in the second-stage meta-analytical model,
as described in the example, can bias upward the standard
errors of the pooled estimates. This problem occurs in
likelihood-based andmethod of moments estimation pro-
cedures of multivariate meta-analysis, as these estimators
truncate the between-study correlations on the bound-
ary of their parameter space [16,19,23]. Although in many
cases this problem arises with small number of studies
or when the amount of heterogeneity is negligible (and
thus when a fixed-effects model is preferable), alternative
approaches may be considered. First, different estimation
methods can be applied, for example by imposing some
structure to the between-study (co)variance matrix, or
adopting a Bayesian approach that employ weakly infor-
mative priors models could avoid truncation of between-
study correlations. Also, alternative parameterization of
the cross-basis functions may reduce the correlation pat-
tern in the first stage and avoid estimation problems in the
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second-stage multivariate model. This issue needs to be
explored further.
The definition of identical cross-basis functions in all

the locations can be problematic in the presence of
substantially different exposure ranges. In our example,
the temperature distribution was similar across regions,
and the placements of common knots was straightfor-
ward. However, this can be hardly generalized. The issue
was previously discussed, and an alternative approach
based on relative scale was proposed for pooling one-
dimensional functions [12]. The same method is applica-
ble for bi-dimensional DLNMs. However, this limitation
requires further research.
Estimation methods for DLNMs not requiring the

completely parametric approach proposed here seems
attractive and possible, in particular based on penal-
ized likelihood [24] or Bayesian methods [25]. These
estimation procedures also provide automatic selection
methods. These options require the specification of a
large number of parameters, which are then shrunk dur-
ing the fitting procedures to reach a far smaller number
of equivalent df. However, the high dimensionality of the
fitted model may present a problem for the second-stage
multivariate meta-analysis, even when reduced to uni-
dimensional summaries following (4)–(5). Techniques for
meta-analysis of high-dimensional estimates are a topic of
current and future research.
Potentially, the number of parameters of the second-

stage multivariate meta-analysis can also be decreased by
structuring the between-study (co)variance matrix of ran-
dom effects. However, the extent to which such a choice
can bias the estimates of fixed-effects parameters is not
known. Moreover, this option is not yet available in the R
package mvmeta, and will be implemented and assessed
in future analyses.

Conclusions
The extension of the DLNM framework presented here,
involving the reduction of the complex two-dimensional
fit to one-dimensional summaries, provides an improved
method to study complex non-linear and delayed associ-
ations in two-stage analyses. Unlike previous approaches
proposed so far, this method requires less simplification of
the exposure-response shape or lag structure. This frame-
work may be applied in any setting where non-linear and
delayed relationships needs to be investigated in different
populations or groups.
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Additional file 1: Online appendix. This pdf document provides
additional information on the algebraic notation, on the software and R
code, and on the time series data used in the example.
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with extension .R which can be used to reproduce the results of the analysis
in the example. They can be opened directly in R or read with a text editor.
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