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Abstract

Background: Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian
framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist
approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the
between-trial variance for all involved treatment comparisons are equal (i.e., the ‘common variance’ assumption).
This approach ‘borrows strength’ for heterogeneity estimation across treatment comparisons, and thus, ads valuable
precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias
variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank
probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic
due to reduced precision. To regain good precision, moderately informative variance priors or additional
mathematical assumptions may be necessary.

Methods: In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model
structures, and two approaches for use of moderately informative variance priors. We examine the relative
performance of all approaches in two illustrative MTC data sets. We particularly compare between-study
heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank
probabilities.

Results: In both data sets, use of moderately informative variance priors constructed from the pair wise
meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on
variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also
yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at
all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among
the novel approaches, but considerably different when compared with the homogenous variance approach.

Conclusions: MTC models using a homogenous variance structure appear to perform sub-optimally when
between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or
imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity
estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or
supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in
practice.
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Background

Multiple treatment comparison (MTC) meta-analysis is an
extension of conventional pair wise meta-analysis where
only two interventions are being compared at the time. In
contrast to pair wise meta-analysis, MTCs allow for simul-
taneous inferences about the comparative effectiveness and
safety of multiple (3 or more) interventions. The statistical
models used to analyze meta-analytic data on multiple
interventions are commonly employed in the Bayesian fra-
meworks [1] and conventionally employ non-informative or
weakly informative priors for all model parameters (e.g.,
treatment effects and heterogeneity variances). Such priors
are preferred for two main reasons. First, readers are typic-
ally already familiar with the purely data driven frequentist
approach for pair wise meta-analysis, and use of non-
informative or weakly informative priors allows the analysis
to, at least theoretically, remain data driven. Second, there
is an unfortunate but prevailing concern about use inform-
ative priors because such are believed to drive results in the
direction of the researchers’ personal believe. While use of
informative priors elicited for treatment effect parameters
may be inappropriate, it is a misconception that informative
priors are necessarily inappropriate for other parameters.
This is especially true for parameters where the immediate
effect of the informative priors on the treatment effects is
not apparent.

Variance parameter estimates play an important role in
the overall inferences of an MTC since they impact the
width of 95% credible intervals and treatment rank prob-
abilities. A largely under-recognized issue in random-effects
MTCs (as well as Bayesian pair wise random-effects meta-
analysis) is that apparently weakly informative heterogen-
eity variance priors may often be moderately informative
[2-4], and thus, bias overall inferences to a considerably lar-
ger degree than a well thought out informative variance prior
would [4-6]. This is particularly relevant in random-effects
MTCs where the results of an analysis can change dramatic-
ally depending on several factors including number of stud-
ies, the amount of heterogeneity between studies [4,7-9].

Another under-recognized issue in random-effects MTCs
is the importance of the assumptions made about the simi-
larity and correlation between the degrees of heterogeneity
across treatment comparisons (i.e., assumed heterogeneity
variance structures) [4,10,11]. Random-effects MTCs have
commonly been carried out under the assumption that the
between-trial variances representing each of the treatment
comparisons are equal (this assumption is also known as
the ‘common variance’ or ‘homogeneous variance’ assump-
tion) [12-14]. This approach ‘borrows strength’ for hetero-
geneity estimation across treatment comparisons, and so,
the risk that a weakly informative variance prior uninten-
tionally becomes moderately informative is mitigated. How-
ever, the homogenous variance assumption is typically
unrealistic because the heterogeneity variances are likely
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different across treatment comparisons [5,6,15]. As a result,
95% credible intervals may not maintain their nominal
coverage, and treatment rank probabilities may be distorted
[10,15]. Of course, when employing weakly informative vari-
ance priors, relaxing the homogeneous variance assumption
may be equally problematic due to a reduction in precision
for estimating heterogeneity across treatment comparisons.

There are a number of approaches for eliciting or con-
structing informative variance priors in random-effects
MTCs. Further, there are a number of possible heterogen-
eity variance structures under which weakly informative
variance priors can be employed. To date, no comparison
of the available informative and weakly informative
approaches is available of their relative performance. In
this article we review and compare six random-effects
MTC models — four under which weakly informative vari-
ance priors are elicited, and two under which moderately
informative variance priors are elicited. The four weakly
informative models include the conventional homoge-
neous variance model, the unrestricted heterogeneous
variance model, the exchangeable variances model, and
the consistency variances model. The two moderately in-
formative models are structurally based on the unre-
stricted heterogeneous variance model and the variance
priors are either frequentistic distribution approximations
from within the MTC data or distributions previously
derived from a large external empirical data set. We place
comparative emphasis on the homogeneous variance
model since this approach is conventionally used in MTC
practice. We discuss how inferences from the informative
approaches as well as the other weakly informative
approaches theoretically line up against inferences from the
conventional homogeneous variance MTC model. We
compare treatment effect estimates 95% credible intervals,
heterogeneity variance estimates and posterior distribu-
tions, and treatment rank probabilities from the discussed
models in two illustrative examples. MTC treatment effect
and variance estimates are also compared with those from
pair wise meta-analyses.

Methods

In this section we first describe, distinguish and discuss
what is meant by different degrees of information con-
tained in the prior distributions in Bayesian MTCs. We
then describe the general MTC model setup, as well as the
setup for the commonly applied homogeneous variance
MTC model. Lastly, we describe six approaches to model-
ling between-trial variances that make use of different
combinations of heterogeneity variance parameterizations
and priors.

Prior information terminology
In the introduction we mentioned use of ‘non-informative,
‘weakly informative, and ‘moderately informative’ priors.
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These terms are often used vaguely or interchangeably in
the literature. Below, we define, distinguish and discuss
what exactly is meant in this article when priors are
‘non-informative, ‘weakly informative, or ‘moderately
informative’.

Non-informative priors

In this article, we define ‘non-informative priors’ as prior
distributions, that carry virtually no information about the
likely true value of a parameter. For example, for treatment
effects measured as log odds ratios in a logistic regression
model (which is the typical set up for MTCs of binary data),
a normal distribution with mean zero and variance 10000
carries virtually no information about the likely true log
odds ratio, and thus, constitutes a non-informative prior
distribution. For a between-trial variance parameter, an ex-
ample of a non-informative prior could be a gamma distri-
bution with shape and scale parameters of both 107, It
should be noted that because Bayesian analysis is typically
realized by Markov Chain Monte Carlo (MCMC) sampling,
which relies on prior distributions and initial sampling
values being sufficiently reasonable to allow for conver-
gence of the posterior distribution, there is a limit to how
non-informative a prior can feasibly be. For example, run-
ning the MCMC sampling for a Bayesian MTC may not be
feasible if a gamma distribution with shape and scale para-
meters of 107'° is used for the between-trial variance
parameter.

Weakly informative priors

In this article, we define a ‘weakly informative’ prior as a
prior distribution that carries more information than a
non-informative prior, but deliberately carries smaller de-
gree of information than is actually available. The purpose
of using weakly informative priors rather than non-
informative priors is typically to achieve some stabilization
in the MCMC sampling and/or estimation procedure. In
the context of MTCs, a typical example of a weakly inform-
ative prior for the between-trial standard deviation param-
eter is the conventionally used uniform distribution
between 0 and 2 when data is dichotomous and treatment
effects are modelled as log odds ratios (ie, modelled in a lo-
gistic regression framework). This prior carries more infor-
mation than a typical non-informative variance prior (e.g.,
the above mentioned gamma distribution). It is well known
that between-trial variances on the log odds ratio scale gen-
erally do no exceed a value of 4, and so, this knowledge is
used by truncating the between-trial standard deviation to
2. It is also known that between-trial variances on the log
odds ratio scale are typically smaller than 1 and closer to 0.
However, this knowledge is only used partially for this prior
since the probability of observing larger between-trial
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variance values only decreases slightly for larger values [3].
The danger with using weakly informative variance priors
in MTCs is that the data is often relatively sparse, and so, a
variance prior that is presumed weakly informative can eas-
ily become moderately and sometimes highly informative.
For example, the expected value for the heterogeneity vari-
ance from the above unifom prior is approximately 1.33.
However, in a setting where the heterogeneity variance is
likely to be close to 0 (e.g., very similar trials designs and
drug responses do not differ much across populations) and
where only a few small trials are available to inform the
variance estimation, this prior may easily upward bias the
heterogeneity variance estimate, and thus, create artificially
wide credible intervals.

Moderately informative priors

In this article, we define a ‘moderately informative’ prior as
a prior distribution that carries a distinguishable and larger
degree of information than a weakly informative prior. The
purpose of using a moderately informative prior is to either
fully or partially mix prior (external) knowledge about one
or more parameters with the data. To this end, the data still
plays an important role. One example of a moderately in-
formative prior is use of observational data about the mag-
nitude of one or more comparative treatment effects. For
example, if observational studies have suggested that one
novel treatment exhibits a 25% reduction of symptoms over
another novel treatment, one can use this evidence to pro-
duce a mean parameter value (treatment effect) in the prior
distribution and subsequently elicit a variance that corre-
sponds to the weight and confidence one is willing to put
in this value. Another example of moderately informative
priors in the MTC framework is the use of empirical evi-
dence on the distribution of between-study variance esti-
mates across published meta-analyses. This is also the last
of the six heterogeneous variance approaches considered in
this article, and will be illustrated below.

General MTC model set up

For this manuscript we describe MTC models of binary
data. However, the modelling concepts are easily extended
for other types of data such as count data and continuous
data [16]. For simplicity, we also assume that all trials
included in an MTC are 2-arm trials. Multi-arm trials ne-
cessitate modelling of correlations between treatment com-
parisons with a common comparator. We refer to previous
papers for detailed description of this issue [10,13].

In the binary data setting, a commonly used effect meas-
ure in MTCs is the odds ratio (OR). For each treatment
comparison, odds ratios are typically estimates with a logis-
tic regression model that simultaneously links the trial-arm
odds and the treatment comparison odds ratios. Letting k
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denote the number of trials and 7' the number of treat-
ments in a network, and letting ¢=1,...T indicate the treat-
ment in focus and j=1,...k the trial in focus, then the
following main distributional and deterministic relation-
ships make up the core of the MTC model in the Bayesian
framework

r,~bin (n/tpjt)
logit (P/t) =tjy + i L)
5jtb~N(dtbj0tb2)
dw = dy — dp

Where pj, is the probability of an event in trial j under
treatment £, and rj, and 7, are the number of events and
the number of patients in the corresponding treatment
army; p, is the log odds of having an event in the control
arm (i.e., with ‘baseline treatment’ ) in trial j; §;; is the
log odds ratio of treatment ¢ relative to treatment b in
trial j, dy;, is the ‘true’ overall treatment effect of ¢ relative
to b, and o;,° is the corresponding between-trial vari-
ance. The last equation represents the ‘consistency’ as-
sumption, which is necessary for all MTC models, and
dictates that any expected relative treatment effect of a
direct (head-to-head) evidence source is equal to the
corresponding expected relative treatment effect of an
indirect evidence source. In other words, the consistency
assumptions dictates that the results from direct and in-
direct sources of evidence should not differ beyond the
play of chance.

In the above, the control arm (baseline) log odds para-
meters 4, are treated as nuisance parameters, and assigned
non-informative normal distribution priors with mean 0
and very large variances, typically of 1000 or 10000. For
b=1, the overall log odds ratios dj;, (i.e., the treatment effect
of £) are also assigned non-informative normal distribution
priors with mean 0 (representing no effect) and large var-
iances, typically of 1000 or 10000.

MTC models with weakly informative variance priors
The homogeneous variance model
Under the homogenous variance MTC model the assump-
tion is made that all between-trial variances are equal. That
is, strictly speaking we assume oy = o> for all treatment
comparisons t versus b, or specifically, that the between-
trial variance for all treatment comparisons is equal to ¢°.
Typically a weakly informative prior is assigned to ¢
(the between-trial standard deviation) under the homo-
geneous variance model. Although a number of weakly
informative variance priors have been used throughout
the MTC literature (e.g., gamma distribution or half-
normal), the most commonly used variance priors are
weakly informative uniform distributions between 0 and
2 or between 0 and 10 [13,16].
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The unrestricted heterogeneous variances model

Under the heterogeneous variance MTC models, all
between-trial variances are allowed to take on different
values. The unrestricted heterogeneous variances model
places no structural restrictions on the heterogeneity var-
iances. Under this model, weakly informative priors can be
assigned to each of the between-trial variance parameters
o> Conventionally, one would make use of the uniform
distribution from 0 to 2 or from 0 to 10 as prior distribu-
tions for the between-trial standard deviations. The het-
erogeneous variance model with such priors is typically
referred to as the unrestricted heterogeneous variance
model.

Theoretically, this model is advantageous due to its high
flexibility in modelling heterogeneity variances. In practice,
however, this model is often sub-optimal because many
comparisons are typically only informed by a few trials, and
thus, the estimation of between-trial variances (i.e., their
posterior distributions) is very imprecise. The below four
Bayesian modelling approaches are modifications of the
unrestricted heterogeneous variance model that apply dif-
ferent parameter value constraints or moderately inform-
ative prior distributions to optimize the estimation of the
between-trial variance parameters.

The exchangeable variances model

One approach to gaining precision for the between-trial
variance estimation is to ‘meet in the middle’ between the
homogeneous and heterogeneous variances models by as-
suming that the between-trial variances are exchangeable.
That is, one can assume that the between-trial variances
are random samples from a common between-trial distri-
bution, thus allowing them to borrow strength from each
other [2]. In particular, one would assume some ‘common
precision parameter, g, and then sample between trial var-
iances from any treatment comparison ¢ vs b from a trun-
cated t-distribution with df the degrees of freedom (the
number of trials for the comparison of treatment ¢ vs b
minus 1)

op~t(0,df), 004520

Here we assign a weakly informative prior distribution to
the ‘common’ between-trial variance corresponding to the
‘common precision, (1/0) ~ U(0,2). The prior distributions
for the individual between-trial variances, o7, can be
thought of as weakly informative due to the reliance on the
‘common variance’ parameter and the degrees of freedom.
We refer to this approach as the exchangeable variances
MTC model.

Theoretically, the exchangeable variances MTC model
gains the best of two worlds. It gains precision by borrow-
ing strength from the common variance assumption, but
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it retains flexibility in allowing for differing between-trial
variances. In practice, however, this model may not per-
form optimally when the between-trial variances differ
considerably across comparisons. This is because the as-
sumption of a common variance ties all individual
between-trial variances probalistically to some central ten-
dency, in which case heterogeneity parameters that are
truly not close to the central tendency will be inaccurately
estimated. Arguably, the exchangeable variance approach
may work best in situations where 1) the interventions
being investigated in the MTC are all similar (e.g., of the
same drug class or solely pharmacotherapies); and 2) the
study designs and patient eligibility criteria are fairly
comparable.

The heterogeneous variances model using second order
consistency inequalities

Another approach to gaining precision but retaining flexi-
bility in modelling of heterogeneous variances is to re-
parameterize the variance structure in order to ensure that
the property of comsistency also holds for the between-trial
variance (and between-comparison correlation) parameters
[10]. The consistency relationship for variances is as fol-
lows. For any three treatments b, x, and y, we assume
consistency. That is, for the three corresponding (mean)
comparative treatment effects d,., d,;, and d,,;,, we assume
that

dyx = dyb - dxb

This equation is also sometimes referred to as the first
order consistency equation. Taking the variances of each
side of the above equation we have

2 2 2 b 2 2
Oy = Oyp” + 0" — 2pyx OybOxp < Oyp” + Oxp

Where oyf, be2 and 0,7, are the variances of Ay, dyp, and
d,yp, respectively, and pyxb is the correlation between d,
and d,,. The above equation implies a second order
consistency triangle inequality

laybz — oxh2| < Jyng ’bez + axh2|

Where |x| denotes the absolute value of any variable, x.
This inequality can be incorporated in the model to restrict
the variance and correlation parameters to plausible pos-
sible values and allow for better adherence to consistency.
However, incorporating the consistency triangle inequality
in the conventional heterogeneous variance MTC model
can create serious difficulties in assigning appropriate
priors. To solve this issue, Lu and Ades proposed a re-
parameterization of the heterogeneous variance model in
which each between-trial variance parameter would be
represented by the sum of variances of the two involved
treatment arms minus the corresponding covariance [10].
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The resulting covariance matrix is represented as the prod-
uct of variance vectors and a correlation matrix, where the
correlation matrix is constructed via a Cholesky decompos-
ition using spherical coordinates to allow for weakly in-
formative priors. We refer to the paper by Lu and Ades for
the mathematical details [10]. For the remainder of this
paper we refer to the above approach as the consistency
variances MTC model.

Theoretically, the consistency variances model is optimal
in that it largely retains the flexibility of the unrestricted
variances model, and additionally restricts variances in
alignment with and borrows strength from the seminal as-
sumption of consistency. In practice, the consistency tri-
angular inequality may not hold within the available data
since between-trial variance estimates (and posterior distri-
butions) may fluctuate and differ due to the play of chance
[17], time-dependent biases [18], and binary event rates
[19]. Incorporating the consistency triangular inequality
imposes an adjustment to the variances if the inequality is
not met within the data, but there is no guarantee that this
adjustment is in the right direction.

MTC models with moderately informative variance priors
Considering the limitation of the above models, one could
argue that random-effects MTCs incorporating sensible
moderately informative variance priors constitute a viable
alternative. Below we propose two sensible approaches for
obtaining and eliciting informative variance priors in
random-effects MTCs.

Using frequentist within-data approximate distribution as
priors

Informative variance priors should aid in ensuring that the
estimation of between-trial variances is directed with ap-
propriate probability mass to plausible intervals of possible
values. It therefore seems reasonable to require that vari-
ance estimates and their posterior probability distributions
should be directed towards the values one would have
obtained in separate pair wise meta-analysis, and vice versa
[11]. We therefore put forward, that the probability distri-
butions for the between-trial to variance estimated from
the available data in a frequestist framework could readily
be used as informative variance priors in MTCs. While a
number of methods are available for estimating variance
distributions, we particularly consider the approximate
gamma distribution proposed by Biggerstaff and Tweedie
[20], albeit in a modified version to fit MTC modeling. This
frequentist approximate distribution is a location-shifted,
scaled gamma distribution for the DerSimonian-Laird (DL)
estimator, o7, based on the relationship between this esti-
mator and Cochran’s Q (test for heterogeneity), opr = (Q-
(k-1))/(S; = (S5/S;)), where k is the number of trials, S; is
the sum of trial weights (ie, inverse variances) and S, is the
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sum of squared trial weights [21]. With respect to the two
treatments being compared, x and vy, the approximate
gamma distribution of Q and its parameters are given

ny"r(ryx,/lyxz)
ryw = E(Qu)”/ Var (Qy)
Ayw = E(Qyx) /Var(Qyx)

Where E(Q,,) and Var(Q,,) is the expected value and
variance of Q. We refer to the paper by Biggerstaff and
Tweedie for the approximate deterministic expressions
of E(Q,,) and Var(Q,,) [20].

While the approximate distribution for 0,7 for any com-
parison is a candidate as an informative variance prior, it
does have some undesirable limitations in the context of
Bayesian analysis. First, op; can yield negative estimates
and will in this case be truncated to 0 [21]. If used as a
variance prior in the Bayesian framework, this property
may create a bi-modality on the posterior distribution.
Such a bi-modality may increase the time to convergence
of the Markov Chain Monte Carlo (MCMC) sampling and
result in poor model fits (ie, large deviance information
criterion, DIC). Another issue is the well-known tendency
of op? to underestimate the between-trial variance
[7,8,22]. To avoid these issues, we propose to use a con-
sistently positive estimator proposed by Hartung and
Makambi (HM) [23]. In contrast with the DL estimator,
which is derived as a 1** order method of moments esti-
mator, the HM estimator is a 2" order method of
moments based estimator and has the following expres-
sion

o’ = Q((2(k — 1) + Q)(S1 — (S2/51))

The HM estimator is consistently positive and has been
shown to yield accurate and precise estimates of the
between-trial variance [7,9,23]. HM is a function of Q, and
thus, by incorporating the prior distribution of Q in the
WinBUGS code and subsequently deriving 07,57 via its ori-
ginal expression, the shortcomings of the DL approach are
circumvented.

The above proposed approach for obtaining and eliciting
informed variance priors is either optimal or sub-optimal
depending on the assumptions one is willing to make. By
informing variance estimation with prior distributions cor-
responding to the expected likelihood in a frequentist ana-
lysis, one imposes a “2-stage’ estimation process that lets
the Bayesian MCMC sampling ‘concentrate’ on the esti-
mation of treatment effects. An analogous process was re-
cently proposed in the purely frequentist framework [11].
The informed variance prior approach, however, is sub-
optimal if one is not willing to believe the frequentist
variance likelihoods and prefers to incorporate additional
uncertainty around variance estimation. Further, approxi-
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mating the heterogeneity variance distributions as sug-
gested above, may be work intensive.

Heterogeneous variances using empirically derived
informative priors

A simpler and more general approach to incorporating
informed variance priors is to borrow strength from exter-
nal empirical evidence. Turner et al. reviewed 14886
Cochrane Database meta-analyses including a total 77237
trials and approximated the empirical distribution of the
between-trial variance categorized by type of outcome
(mortality, semi-objective and subjective), type of interven-
tion, and field of medicine [6]. The mean and variance par-
ameter values for log-normal distributions were estimated
by category [6]. These empirically derived log-normal distri-
butions can readily be used as moderately informative vari-
ance priors under the unrestricted heterogeneous variance
model. For example, Turner et al. empirically approximated
the heterogeneity variance distribution for meta-analyses
comparing pharmacological interventions on subjective
outcomes (e.g., dichotomous biomarker outcome) to a log-
normal distribution with mean -2.34 and variance 1.62 [2].
In an MTC comparing only pharmacological interventions
on a subjective outcome (as is the case in illustrative ex-
ample 1), one can then elicit this log-normal distribution
for all heterogeneity variance parameters instead of the
conventional weakly informative uniform distribution.

This informative variance approach is relatively straight-
forward to apply. The already empirically approximated
priors have general applicability due to the sample size of
the empirical study from which they originated. However,
to the extent other factors than the ones explored by
Turner et al. determine the likely degree and distribution of
heterogeneity variance, the approach may not produce opti-
mal variance estimation.

Results
We applied the above considered models and priors to two
MTC data sets of differing size and complexity to illustrate
the performance. The treatment networks for our two
examples are presented in Figure 1. We compared the
inferences from the five described heterogeneous variance
MTC models with the homogeneous variance MTC model
and with reference to the heterogeneity estimates obtained
from pair wise meta-analysis. In particular, we compared 1)
the model fit (using the deviance information criterion
(DIC)) as well as the estimates and posterior distributions
of the between-study heterogeneity variances; 2) the magni-
tude, direction and significance of each treatment compari-
son; and 3) the ranking of the treatments in terms of
probabilities of being the best treatment.

The DIC is a measure of model fit computed from the
likelihood function with a penalty for complexity [24]. The
complexity is measured as the ‘effective number of
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parameters, which is abbreviated ‘pD’ [24]. The DIC is simi-
lar to the AIC and BIC, and a lower value means a better
fit [24]. The probability of ‘being the best treatment’ is
derived as the probability of being the largest odds ratio
among MCMC simulations from the posterior distribution.

We compared the heterogeneity variances from all
MTC models with the DerSimonian-Laird and Hartung-
Makambi estimates from pair wise meta-analyses, as well
as with the Bayesian pair wise meta-analysis estimates.
Considering the pair wise heterogeneity variance estimates
as the bench mark, we then assessed the extent to which
observed differences in inferences between MTC models
could be explained by poor estimation of between-study
heterogeneity variances and their posterior distributions.

All Bayesian MTC models were carried out in WinBUGS
v.1.4.3 [25]. Convergence of Markov Chain Monte Carlo
simulation was assessed using the Brooks-Gelman-Rubin
criteria using 3 chains, and based on the findings of the
convergence analysis, a burn-in of 20000 iterations was
used for all MTC analysis. Similarly, MTC model inferences
were based on 20000 iterations following the burn-in
period. Frequentist meta-analyses were carried out in
Rv.2.14 [26].

lllustrative example 1
In our first example, we use data from two Cochrane Data-
base systematic reviews on interventions for treating hepa-
titis C [27,28]. The MTC data set is a simple fully
connected treatment network of the three interventions:
Peglnterferon alpha-2a plus Ribavirin (PEG-2a+RBV),
Peglnterferon alpha-2b plus Ribavirin PEG-2b+RBV), and
standard Interferon + Ribavirin (INF+RBV) (see Figure 1a).
The population is limited to treatment-naive patients and
excludes patients with co-infections (e.g., HIV). We use the
meta-analysis data for the conventionally used surrogate ef-
ficacy measure sustained virologic response (SVR).

In this data set, each of the three treatment comparisons
is informed by a comparable amount of evidence. In par-
ticular, the comparison of PEG-2a+RBV and INF+RBV
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includes 4 trials and 1197 patients, the comparison of PEG-
2b+RBV and INF+RBV includes 12 trials and 2750 patients,
and the comparison of PEG-2a+RBV and PEG-2b+RBV
includes 6 trials and 2994 patients. The trials in the three
comparisons (pairwise meta-analyses) each incurred differ-
ent degrees of heterogeneity (e.g., DerSimonian-Laird be-
tween-trial variance estimates of 0.64, 0.00, and 0.04). This
suggests a need for modelling the between-trial variances as
heterogeneous in the MTC model, which makes this data
set a good candidate for how well the heterogeneous vari-
ance MTC models perform in this context and how they
measure up against the conventional homogeneous vari-
ance model. For the ‘empirically informed variances’ model
we used a log-normal distribution with mean -2.34 and
variance 1.62 [2] because all interventions being compared
are pharmacological and the outcome, SVR, is a dichotom-
ous biological marker, which fits under ‘subjective outcome’
definition by Turner et al. [6].

As expected, the homogeneous variance MTC models
yielded a worse model fit than the heterogeneous variance
MTC models according to the DIC (Table 1). The informed
variance model based on frequentist approximate distribu-
tions yielded the best model fit according to the DIC. The
remaining four heterogeneous variance models yielded
comparable DICs. Comparison of the ‘common’ between-
trial variance estimate with the frequentist estimates as well
as the estimates from the five heterogeneous variances
MTC models strongly suggests that the ‘homogeneous vari-
ance’ assumption is both strongly violated and will result in
an unrealistic between-trial variance estimates for most
(if not all) comparisons (Table 1). Among the five heteroge-
neous variances MTC model, the informed variances model
based on frequentist approximate distributions produced
variance estimates closest to the frequentist ones and had
the posterior variance distributions with the highest preci-
sion (Figure 2). The empirically informed variances model
had the second highest posterior distribution precision, the
consistency variances model third, the exchangeable var-
iances model fourth, and lastly the unrestricted variances
model fifth (Figure 2).

PEG-2A+RBV PEG-2B+RBV

N 7
N/

INF+RBV

Figure 1 Presents the treatment networks with the number of trials informing each treatment comparison in our two illustrative
examples. The treatment network on the left is the network for our first illustrative example. The treatment network on the right side is the
network for our second illustrative example. The circles represent the treatments in the network, the lines represent the comparisons where
head-to-head (direct) evidence is available, and the numbers in the lines present the number of randomized clinical trials available per
comparison. Abbreviations: PEG-2A (Peginterferon-2a); PEG-2B (Peginterferon-2b); INF (Interferon), RBV (Ribavirin); Trt (Treatment).
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For the comparison between peginterferon-2a and inter-
feron and the comparison between the two peginterferons,
the homogeneous variance model has narrower 95% cred-
ible intervals that all other heterogeneous variance models,
except for the informed variance model based on frequen-
tist approximate distributions (see Table 2). For the com-
parison between peginterferon-2a and interferon, the
homogeneous variance model yielded a comparably wider
95% credible interval (see Table 2). The unrestricted var-
iances model had the widest credible intervals among the
heterogeneous variances models, and the informed var-
iances model based on frequentist approximate distribu-
tions had the narrowest credible intervals. Because this
network only included three treatments we did not calcu-
late treatment rank probabilities.

lllustrative example 2

Our second example data set is a larger, more diverse treat-
ment network including four pharmacological interventions
(Trt1, Trt2, Trt3, and Trt4) and a control for cessation of a
harmful behaviour (See Figure 1b) [15]. In this example the
outcome of interest is taken at 6 months follow-up. The
included studies all enrolled participants at initiation of
therapy. Each of the four interventions had been compared
to control, and the first two had been compared to each
other. The amount of evidence differed across comparisons.
In particular, Trtl versus placebo was informed by 39 trials
and 16674 patients, Trt2 versus placebo was informed by 6
trials and 3222 patients, Trt3 versus placebo was informed
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by 40 trials and 10682 patients, and the Trt4 versus placebo
was informed by 8 trials and 3678 patients, and lastly, Trt 2
vs Trt 1 was informed by 4 trials and 2330 patients. These
five head-to-head comparisons (pairwise meta-analyses) in-
curred only moderately different degrees of heterogeneity,
except for Trt3 versus placebo where little to no heterogen-
eity was detected (see Table 3). This suggests the homoge-
neous variance model may not perform too poorly.
However, the situation still raises uncertainty about
which model is most suitable and therefore warrants
modelling with a proposed heterogeneous variance
models for the purpose of identifying the best fit (and
thus most valid inferences). For the ‘empirically informed
variances’ model we used a log-normal distribution with
mean -3.02 and variance 1.85 [2] because all placebo
comparisons and a log-normal distribution with mean
-3.23 and variance 1.88 [2] for comparison of active inter-
ventions, since all interventions being compared are
pharmacological and the outcome, cessation to a harmful
behavious, fits under the ‘semi-objective outcome’ defin-
ition by Turner et al [6].

According to the DIC, the informed variances model based
on the frequentist approximate variance distributions yielded
the best model fit (Table 3). The homogeneous variance
model and the remaining four heterogeneous variances
models yielded similar model fits according to the DIC
(Table 3). Comparison of the ‘common’ between-trial vari-
ance estimate with the frequentist estimates as well as the
estimates from the five heterogeneous variances MTC mod-
els suggests that the ‘homogeneous variance’ assumption

Table 1 Between-trial variance estimates and model fit statistics from the considered models and priors in the first
illustrative example on hepatitis C treatments for achieving sustained virological response (SVR)

Between-trial variance estimates

Model fit statistics

Models PEG-2A+RBV vs INF+RBV PEG-2B+RBV vs INF+RBV PEG-2B+RBV vs PEG-2A+RBV pD DIC
Random-effects pair wise meta-analysis
Frequentist (DerSimonian-Laird) 0.642 0.000 0.036 - -
Frequentist (Hartung-Makimbi) 0.580 0.017 0.021 - -
Bayesian (weakly informative) 0.700 0.018 0.077 - -
Bayesian (frequentist informed) 0422 0.001 0.038 - -
Bayesian (empirically informed) 0.091 0.024 0.052 - -
Random-effects MTC models
Weakly informed variance models
Homogeneous variance model 0.097 0.097 0.097 333 2832
Unrestricted variances 1.046 0.017 0.103 328 277.7
Exchangeable variances 0510 0.016 0.083 326 2786
Consistency variances structure 0.225 0.024 0.164 329 280.2
Moderately informed variance models
Frequentist informed priors 0677 0.011 0.047 309 2756
Empirically informed priors 0.368 0.026 0.076 324 2784

Abbreviations: PEG-2A (Peginterferon-2a); PEG-2B (Peginterferon-2b); INF (Interferon), RBV (Ribavirin).
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Consistency Exchangeable Unrestricted Homogeneous
Variances

Frequentist

Empirically

Variances Variance

Variances

Informed

Informed

PEG-2A+RBV vs INF+RBV

PEG-2A+RBV vs PEG-2B+RBV

0 1 2

3

Figure 2 Presents the posterior distributions of the between-trial variance parameters in the first illustrative example under the six
employed MTC models: the homogeneous variance model (row 1); the unrestricted variances model (row 2); the exchangeable
variances model (row 3); the consistency variances model (row 4); the frequentistically informed variances model (row 5); and the
empirically informed variances model (row 6). The two presented comparisons are: peginterferon-2a (PEG-2A) vs Interferon (INF) (column 1),
and Peginterferon-2a (PEG-2A) vs Peginterferon-2b (PEG-2B) (column 2). The comparison of PEG-2B vs INF was selective excluded due to the
posterior variance distributions being more similar across the five heterogeneous variance approaches.

0 1 2 3

is mildly to moderately violated. Among the five heteroge-
neous variances MTC model, the consistency variance model
and the informed variances model using frequentist approxi-
mate distributions produced estimates closest to the frequen-
tist ones. The exchangeable variance model and the
empirically informed variances model also produced seemingly

reliable variance estimates. Again, the informed variance
model using frequentist approximate distributions had the
highest posterior distribution precision (Figure 3). The em-
pirically informed variances model had the second highest
posterior distribution precision, the consistency variances
model third, the exchangeable variances model fourth,



Thorlund et al. BMC Medical Research Methodology 2013, 13:2
http://www.biomedcentral.com/1471-2288/13/2

Page 10 of 14

Table 2 Odds ratios and 95% confidence/credible intervals for the three comparisons from the considered models and
priors in the first illustrative example on hepatitis C treatments for achieving sustained virological response (SVR)

Model PEG-2A+RBV vs INF+RBV PEG-2B+RBV vs INF+RBV PEG-2B+RBV vs PEG-2A+RBV
Random-effects pair wise meta-analysis
Frequentist (DerSimonian-Laird) 3.63(1.51-8.73) 1.30(1.11-1.52) 1.38(1.07-1.79)
Frequentist (Hartung-Makimbi) 3.60(1.56-8.34) 1.35(1.11-1.64) 1.38(0.36-3.24)
Bayesian (weakly informative) NA* 1.36(1.10-1.73) 1.38(0.94-2.22)
Bayesian (frequentis informed) NA* 1.30(1.11-1.55) 1.40(0.86-2.47)
Bayesian (empirically informed) NA* 36(1.10-1.74) 1.38(1.02-1.99)
Random-effects MTC models
Weakly informed variance models
Homogeneous variance model 2.42(1.75-3.60) 1.53(1.19-2.03) 1.58(1.18-2.26)
Unrestricted variances 2.11(1.40-3.57) 1.38(1.13-1.79) 1.50(1.06-2.53)
Exchangeable variances* 2.17(1.48-343) 40(1.15-1.79) 1.53(1.11-2.36)
Consistency variances structure 2.39(1.63-3.80) 42(1.16-1.86) 1.67(1.17-2.68)
Moderately informed variance models
Frequentist informed priors 2.04(1.45-2.93) 1.38(1.15-1.69) 1.46(1.12-2.05)
Empirically informed priors 2.23(1.54-3.40) 1.44(1.16-1.83) 1.54(1.13-2.29)

* The MCMC simulation did not converge for the log odds ratio parameter (within the first 1.000.000 runs), and thus did not produce meaningful results.
Abbreviations: PEG-2A (Peginterferon-2a); PEG-2B (Peginterferon-2b); INF (Interferon), RBV (Ribavirin).

and lastly the unrestricted variances model produced the
most imprecise posterior distributions. Figure 3 Presents
the posterior distributions of the between-trial variance
parameters in the second illustrative example under the
six employed MTC models: the homogeneous variance
model (row 1); the unrestricted variances model (row 2);

the exchangeable variances model (row 3); the consistency
variances model (row 4); the frequentistically informed
variances model (row 5); and the empirically informed var-
iances model (row 6). The three presented comparisons
are: Treatment 2 (Trt2) versus control (column 1); treat-
ment 4 (Trt2) versus Control; and Trt4 versus Trtl. The

Table 3 Between-trial variance estimates (posterior distribution median) for the comparisons that were also informed
by head-to-head evidence in the treatment network in the second illustrative example

Between-trial variance estimates

Model fit statistics

Models Trt1 vs Placebo Trt2 vs Placebo Trt3 vs Placebo Trt4 vs Placebo Trt2 vs Trt1 pD DIC
Random-effects pair wise meta-analysis
Frequentist (DerSimonian-Laird) 0.086 0.110 0.016 0.075 0.106 - -
Frequentist (Hartung-Makimbi) 0.083 0.103 0.040 0.072 0.112 - -
Bayesian (weakly informative) 0.100 0371 0.023 0.103 0334 - -
Bayesian (frequentist informed) 0.087 0.121 0.036 0.067 0.093 - -
Bayesian (empirically informed) 0.088 0.110 0.021 0.054 0.059 - -
Random-effects MTC models
Weakly informed variance models
Homogeneous variance model 0.078 0.078 0.078 0.078 0.078 1388 1229.1
Unrestricted variances 0.100 0.469 0.023 0.104 0.214 138.3 1229.9
Exchangeable variances* 0.092 0.226 0.009 0.066 0.047 1337 12322
Consistency variances structure 0.091 0.172 0.033 0.075 0.133 136.6 1230.0
Moderately informed variance models
Frequentist informed priors 0.087 0.172 0.036 0.069 0.064 1356 12264
Empirically informed priors 0.087 0.199 0.020 0.054 0.042 1338 12295

* The'average' variance was 0.173.

Abbreviations: DIC (Deviance information criterion); pD (effective number of model parameters); Trt (Treatment).
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remaining comparisons were selective excluded due to the
posterior variance distributions being more similar across
the five heterogeneous variance approaches.

The treatment effect estimate and 95% credible inter-
val for Trt2 were considerably affected by the variance
assumption, and thus, so were indirect comparisons be-
tween Trt2 versus other interventions (Table 4). The
treatment effect estimate of Trt2 versus placebo was
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smallest with the homogeneous variance model, and the
95% credible intervals were narrow compared with those
of the heterogeneous variances models. These differences
considerably impacted treatment rank probabilities. While
Trtl and Trt3 consistently received very low rank prob-
abilities (e.g., 0.5% chance of being the best), the probabil-
ity of Trt2 versus Trt4d being the best treatment varied
from 71.3% versus 28.2% with the homogeneous variance

Trt2 vs Control

Homogeneous
Variance

Unrestricted
Variances

Trt4 vs Control

Trt4vs Trtl

Frequentist Consistency Exchangeable
Variances Variances

Informed

Empirically
Informed

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Figure 3 Presents the posterior distributions of the between-trial variance parameters in the second illustrative example under the six
employed MTC models: the homogeneous variance model (row 1); the unrestricted variances model (row 2); the exchangeable
variances model (row 3); the consistency variances model (row 4); the frequentistically informed variances model (row 5); and the
empirically informed variances model (row 6). The three presented comparisons are: Treatment 2 (Trt2) versus control (column 1); treatment 4
(Trt2) versus Control; and Trt4 versus Trt1. The remaining comparisons were selective excluded due to the posterior variance distributions being
more similar across the five heterogeneous variance approaches.




Thorlund et al. BMC Medical Research Methodology 2013, 13:2
http://www.biomedcentral.com/1471-2288/13/2

model to informed variance model to 43.2% versus 56.8%
with the unrestricted variance model (see Table 5).

In this example, a number of reasons suggest the
informed variances model based on frequentist approxi-
mate variance distributions is the more optimal choice.
First, this model clearly yields the best model fit according
to the DIC. Second, it produces the variance estimates clos-
est to those of the frequentist pair wise meta-analyses.
Lastly, the full MTC from which this example is borrowed,
the efficacy of the considered interventions was also investi-
gated for 1 month, 3 months, and 12 months follow-up.
For these outcomes, many of the comparisons were non-
significant (i.e, the 95% credible intervals included 1.00)
with the homogeneous variance model despite clear statis-
tical significance in the pair wise meta-analyses. When we
used variance priors informed by frequentist approximate
variance distributions, this statistical significance was
recovered.

Discussion

The variance structure in an MTC is challenging to esti-
mate because it rests on the amount of evidence and the
linkage between comparisons. A number of approaches are
available, but their performance is tied with the appropri-
ateness of the assumed linkage between comparisons, and
in the Bayesian framework, the elicited variance priors.
Conventional MTC models have made use of the unrealis-
tic assumption that the between trial variances for the
included comparisons are all equal [4-6,10,15]. Emerging
evidence (including our examples), however, suggest this
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Table 5 Treatment rankings, the probability of being the
best treatment, under the considered Bayesian

Model and prior Trt1 Trt2 Trt3 Trt4
Weakly informed variances models

Homogeneous variance 0.00% 282% 0.00% 71.8%
Unrestricted variances 0.01% 56.8% 0.00% 43.2%
Exchangeable variances 001% 493% 002% 50.4%
Consistency variances structure 0.04% 450% 0.01% 55.9%
Moderately informed variances models

Frequentist informed priors 000% 425% 000% 57.5%
Empirically informed priors 000% 465% 000% 53.5%

MTC models for the second illustrative example.

approach is sub-optimal [10,15]. Instead, there is a need to
consider ‘heterogeneous variance structures’. Because the
amount of evidence to reliably estimate heterogeneity vari-
ance parameters is typically sparse, some precision can be
gained either by incorporating informative variance priors
or by using alternative restrictive heterogeneity variance
structures in connection with weakly informed variance
priors. In this paper we have considered two types of in-
formative variance priors: frequentist and empirically
informed; and we considered two restrictive variance struc-
tures with weakly informative priors: the exchangeable var-
iances approach, and the consistency variances approach.
Our examples suggest that these four approaches all
allow for reliable estimation of differing between-study het-
erogeneity variances across comparisons, whereas the unre-
stricted approach often does not. To this end, these four

Table 4 Odds ratios and 95% confidence/credible intervals for the four placebo comparisons and two select active

intervention comparisons in the second illustrative example

Model Trt1 vs Placebo  Trt2 vs Placebo  Trt3 vs Placebo  Trt4 vs Placebo  Trt2 vs Trt1 Trt4 vs Trt2
Random-effects pair wise meta-analysis
DerSimonian-Laird 1.94(1.67-2.24) 11(142-3.13) 1.78(1.60-1.97) 2.86(2.21-3.71) 0 (1.17-3.09) -
Hartung-Makimbi 1.94(1.68-2.23) 2.09(1.42-3.09) 1.77(1.57-2.00) 2.86(2.21-3.70) 1(1.16-3.13) -
Bayesian (non-informative) 1.98(1.70-2.31) 2. 38(1 30-5.82) 1.80(1.61-2.02) 2.89(2.08-4.06) 97 (0.66-8.88) -
Bayesian (frequentist informed) 1.97(1.71-2.28) 16(1.48-3.68) 1.80(1.60-2.02) 2.89(2.23-3.77) 9 (1.17-3.55) -
Bayesian (empirically informed) 1.97(1.71-2.28) 13(1.47-3.98) 1.80(1.61-2.03) 2.89(2.20-3.80) 4 (1.17-3.53) -
Random-effects MTC models
Weakly informed variance models
Homogeneous variance model 1.91(1.67-2.19) 2.59(1.97-3.50) 1.80(1.57-2.08) 2.90(2.23-3.79) 6 (1.02-1.84) 1.11(0.74-1.63)
Unrestricted variances 1.95(1.69-2.28) 3.05(1.84-5.50) 1.81(1.62-2.01) 2.90(2.07-4.07) 6 (0.94-2.75)  0.94(0.49-1.74)
Exchangeable variances* 1.93(1.67-2.26) 2.89(1.98-4.43) 1.78(1.56-1.99) 2.89(2.17-3.86) 0(1.03-2.26)  1.01(0.59-1.58)
Consistency variances structure 1.93(1.66-2.23) 2.80(1.92-4.69) 1.80(1.60-2.02) 2.90(2.18-3.86) 5(0.99-240) 1.03(0.58-1.66)
Moderately informed variance models
Frequentist informed priors 1.93(1.68-2.22) 2.80(1.98-4.10) 1.80(1.60-2.03) 2.90(2.22-3.78) 146 (1.02-211)  1.05(0.66-1.61)
Empirically informed priors 1.93(1.67-2.23) 2.84(2.00-4.26) 1.80(1.61-2.02) 291(2.22-3.81) 148 (1.00-220)  1.02(0.63-1.59)

Abbreviations: DIC (Deviance information criterion); pD (effective number of model parameters); Trt (Treatment).
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approaches seem superior to the homogeneous variance
structure model as well as the unrestricted heterogeneous
variances approach. The frequentist informed approach
yielded the best model fits in both example, and although
further research is needed at this point, one could argue for
this approach as a primary supplement to the conventional
homogeneous model.

Our study offers several strengths, but also has some lim-
itations. Our chosen illustrative examples are of different
size and complexity and yield heterogeneity estimates for
which the homogeneous variance assumption was violated
to an extend that impacted the findings of the MTCs. Our
study is also the first to compare multiple weakly and mod-
erately informed approaches to modelling heterogeneity in
MTCs. Our study, however, is by no means generalizable to
all MTCs. Several treatment networks may exist or emerge
in which, for example, the homogeneous variance model
and some heterogeneous variance model will yield close to
equal inferences about all comparative treatment effects. In
this vein, it is important that authors and readers of MTCs
continually pay careful consideration to the fragility of vari-
ance estimation, credible intervals and treatment rank
probabilities. Another limitation is the empirical nature of
this study. With empirical data we can only observe differ-
ences, but never infer definitively about the truth. In this
context, simulation studies would be needed to investigate
the performance of the models based on bias, precision,
MSE, etc., under different scenarios and types of networks.
However, we believe additional empirical studies are neces-
sary to inform which scenarios are truly important to ex-
plore under simulation.

Appropriate modelling of heterogeneity variances in
MTCs will become increasingly important over the next
years. First, ‘statistical significance’ and treatment rank prob-
abilities can be sensitive to the employed variance structure
and variance priors [15]. Since regulatory agencies and clin-
ical decision makers increasingly rely on comparative
effectiveness inferences from MTCs, choosing the appropri-
ate variance structures and priors (and necessary sensitivity
analyses) also becomes increasingly important.

Further, we will likely see an increase in MTCs incorpor-
ating meta-regression or subgroup analysis to explain the
observed heterogeneity by effect modification caused by
some clinical covariate(s). In this vein, appropriately esti-
mating the unexplained degree of heterogeneity for each
treatment comparison is seminal to reliable estimation of
the effect modification caused by some clinical covariate
(s). In other words, without unbiased quantification of het-
erogeneity it becomes increasingly challenging to explain
heterogeneity.

Conclusions
In conclusion, MTC models using either a homogenous
variance structure or weakly informative variance priors in
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connection with an unrestricted heterogeneous variance
structure both have serious methodological shortcomings.
Using informative variance priors in connection with an
unrestricted variance structure or borrowing strength by
assuming exchangeability or imposing consistency be-
tween heterogeneity variances, can all ensure sufficiently
reliable and realistic heterogeneity estimation, and thus
reliable MTC inferences. All four approaches should be vi-
able candidates for replacing or supplementing the conven-
tional homogeneous variance MTC model, which is currently
used widely in practice.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

KT drafted the first version of the manuscript, conceived the idea of the
study, contributed to the design of the study, and performed all statistical
analysis. LT contributed to the design of the study and writing of the
manuscript. EM co-conceived the idea of the study, contributed to the
design of the study, and contributed to the writing of the manuscript. All
authors read and approved the final manuscript.

Author details

'Department of Clinical Epidemiology and Biostatistics, McMaster University,
Hamilton, ON, Canada. “Biostatistics Unit, Father Sean O'Sullivan Research
Centre, St Joseph's Healthcare, Hamilton, ON, Canada. *Faculty of Health
Sciences, University of Ottawa, Ottawa, ON, Canada.

Received: 6 July 2012 Accepted: 27 December 2012
Published: 11 January 2013

References

1. Coleman C, Phung O, Cappelleri J, Baker W, Kluger J, White M, et al- Use of
network meta-analysis in systematic reviews. Under review: AHRQ; 2012.

2. Gelman A: Prior distributions for variance parameters in hiearchical
models. Bayesian Anal 2006, 1(3):515.

3. Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR: How vague is
vague? A simulation study of the impact of the use of vague prior
distributions in MCMC using WinBUGS. Stat Med 2005, 24(15):2401-2428.

4. Thorlund K, Steele R, Platt R, Shrier I: Rapid response to Methodological
problems in the use of indirect comparisons for evaluating healthcare
interventions: survey of published systematic reviews' by Song F et al.
BMJ 2009.

5. Pullenayegum E: An informed reference prior for between-study
heterogeneity in meta-analysis of binary outcomes. Stat Med 2011, 30:13.

6. Turner RM, Davey J, Clarke M, Thompson S, Higgins JP: Predicting the
extent of heterogeneity in meta-analysis, using empirical data from the
Cochrane Database of Systematic Reviews. Int J Epidemiol 2012.

7. Sanchez-Meca J, Marin-Martinez F: Confidence intervals for the overall
effect size in random-effects meta-analysis. Psychol Methods 2008,
13(1):31-48.

8. Sidik K, Jonkman JN: A comparison of heterogeneity variance estimators
in combining results of studies. Stat Med 2007, 26(9):1964-81.

9. Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud G: Comparison of
statistical inferences from the DerSimonian-Laird and alternative
random-effects model meta-analyses - ana empirical assessment of 920
Cochrane primary outcome meta-analyses. Res Synth Meth 2011, 2:14.

10.  Lu G, Ades A: Modeling between-trial variance structure in mixed
treatment comparisons. Biostatistics 2009, 10(4):792-805.

11. Lu G, Welton N, Higgins JP, White IR, Ades A: Linear inference for mixed
treatment comparison meta-analysis: A two-stage approach. Res Synth
Meth 2011, 2:18.

12. Higgins JP, Whitehead A: Borrowing strength from external trials in a
meta-analysis. Stat Med 1996, 15(24):2733-49.

13. Lu G, Ades AE: Combination of direct and indirect evidence in mixed
treatment comparisons. Stat Med 2004, 23(20):3105-24.



Thorlund et al. BMC Medical Research Methodology 2013, 13:2
http://www.biomedcentral.com/1471-2288/13/2

4. Lumley T: Network meta-analysis for indirect treatment comparisons.
Stat Med 2002, 21(16):2313-24.

15. Mills E, Wu P, Ebert J, Thorlund K, Puhan MA: Comparisons of High Dose
and Combination Nicotine Replacement Therapy, Varenicline and
Bupropion for Smoking Cessation: A Systematic Review and Multiple
Treatment Meta-analysis. Ann Med 2012, 44(6):10.

16. Dias S, Welton N, Sutton A, Ades A: NICE DSU Technical Support Document
2: A generalised linear modelling framework fro pairwise and network
meta-analysis of randomised controlled trial; 2011.

17. Thorlund K, Imberger G, Johnston B, Walsh M, Awad T, Thabane L, et al:
Evolution of heterogeneity (IA2) estimates and their 95% confidence
intervals in large meta-analyses. PLoS One 2012, 7:7.

18.  Jackson D: The implications of publication bias for meta-analysis’ other
parameter. Stat Med 2006, 25(17):2911-21.

19.  Rucker G, Schwarzer G, Carpenter JR, Schumacher M: Undue reliance on |
(2) in assessing heterogeneity may mislead. BMC Med Res Methodol 2008,
8:79.

20. Biggerstaff BJ, Tweedie RL: Incorporating variability in estimates of
heterogeneity in the random effects model in meta-analysis.

Stat Med 1997, 16(7):753-68.

21. DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials
1986, 7(3):177-88.

22. Brockwell SE, Gordon IR: A comparison of statistical methods for

meta-analysis. Stat Med 2001, 20(6):825-40.

23. Hartung J, Makambi K: Reducing the Number of Unjustified Significant
Results in Meta-analysis. Comm Stat 2003, 32(4):12.

24.  Spiegelhalter D, Best N, Carlin C, van der Linde A: Bayesian measures of
model fit and complexity. J Roy Stat Soc Ser B 2002, 64(4):57.

25. Lunn D, Spiegelhalter D, Thomas A, Best N: The BUGS project: Evolution,
critique and future directions. Stat Med 2009, 28(25):3049-67.

26. The R, Core T: R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing; 2005.

27. Awad T, Brok J, Thorlund K, Hauser G, Mabrouk M, Stimac D, et al: Pegylated
interferon versus non-pegylated interferon for chronic hepatitis C. protocols:
Cochrane database of systematic reviews; 2009.

28. Awad T, Thorlund K, Hauser G, Stimac D, Mabrouk M, Gluud C:
Peginterferon alpha-2a is associated with higher sustained virological
response than peginterferon alfa-2b in chronic hepatitis C: systematic
review of randomized trials. Hepatology 2010, 51(4):1176-84.

doi:10.1186/1471-2288-13-2

Cite this article as: Thorlund et al: Modelling heterogeneity variances in
multiple treatment comparison meta-analysis — Are informative priors
the better solution?. BMC Medical Research Methodology 2013 13:2.

Page 14 of 14

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Prior information terminology
	Non-informative priors
	Weakly informative priors
	Moderately informative priors
	General MTC model set up
	MTC models with weakly informative variance priors
	The homogeneous variance model
	The unrestricted heterogeneous variances model
	The exchangeable variances model
	The heterogeneous variances model using second order consistency inequalities

	MTC models with moderately informative variance priors
	Using frequentist within-data approximate distribution as priors
	Heterogeneous variances using empirically derived informative priors


	Results
	Illustrative example 1
	Illustrative example 2

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Author details
	References

