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Background: In medical informatics, psychology, market research and many other fields, researchers often need to
analyze and model ranking data. However, there is no statistical software that provides tools for the comprehensive
analysis of ranking data. Here, we present pmr, an R package for analyzing and modeling ranking data with a
bundle of tools. The pmr package enables descriptive statistics (mean rank, pairwise frequencies, and marginal
matrix), Analytic Hierarchy Process models (with Saaty’s and Koczkodaj's inconsistencies), probability models

(Luce model, distance-based model, and rank-ordered logit model), and the visualization of ranking data with

Results: Examples of the use of package pmr are given using a real ranking dataset from medical informatics, in
which 566 Hong Kong physicians ranked the top five incentives (1: competitive pressures; 2: increased savings; 3:
government regulation; 4: improved efficiency; 5: improved quality care; 6: patient demand; 7: financial incentives)
to the computerization of clinical practice. The mean rank showed that item 4 is the most preferred item and item
3 is the least preferred item, and significance difference was found between physicians’ preferences with respect to
their monthly income. A multidimensional preference analysis identified two dimensions that explain 42% of the
total variance. The first can be interpreted as the overall preference of the seven items (labeled as “internal/
external”), and the second dimension can be interpreted as their overall variance of (labeled as “push/pull factors”).
Various statistical models were fitted, and the best were found to be weighted distance-based models with

Conclusions: In this paper, we presented the R package pmr, the first package for analyzing and modeling ranking
data. The package provides insight to users through descriptive statistics of ranking data. Users can also visualize
ranking data by applying a thought multidimensional preference analysis. Various probability models for ranking
data are also included, allowing users to choose that which is most suitable to their specific situations.

Keywords: Distance-based model, Luce model, Multidimensional preference analysis, Visualization,

Background

Ranking data arises when a number of items are to be
ranked. By the nature of the ranking data, they can be di-
vided into two types. The first type is characterized by a
small number of items to be ranked, and they frequently
represent the preference of these items among a group of
judges (individuals). These items can be candidates in an
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election [1], one’s place of living [2], choice of occupations
[3,4], medical treatment [5], and so on. In analyzing these
data, the focus is on the judges’ perception and preference
of some specific (or all) items. In recent years, this type of
ranking data have also becoming more popular in the
medical literature, particularly in health economics [6-10]
and medical informatics [11].

The second type of ranking data is characterized by a
large number of items, and they frequently represent the
ordering of these items in which researchers would like
to determine or predict which items were ranked at the
top positions. Examples of such ranking data include
search engine results [12], integration of microRNA and
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mRNA [13], and consumer behavior in e-commerce ap-
plications [14]. Due to the large number of items, these
ranking datasets often contain missing or tie rankings,
which are impossible to analyze without computers.
With the decreasing cost of powerful computers, more
researchers have paid attention to this type of ranking
data, especially those in machine learning and know-
ledge discovery.

Analyzing and modeling ranking data is an efficient
way to understand people’s perceptions and preferences
for different items. Over the years, besides statistical
tests for hypothesis testing [15], various models have
been developed for ranking data, including the Luce
model [16], distance-based model [1], ¢-component
model [17] and weighted distance-based model [18,19].

The maximum likelihood estimator (MLE) of the
aforementioned models does not have a closed form, yet
the MLE can be obtained using iterative algorithms.
However, at present, only summary statistics and a
visualization of ranking data are available (partially and
indirectly) in some statistical software (for example, pro-
cedure MDPREF in SAS), not to mention hypothesis
testing and probability models for ranking data. The lack
of software and tools for analyzing ranking data is not a
problem for statisticians who are used to writing pro-
grams for their own means. However many scientists are
not familiar with programming. We believe that a single
package for the analysis of ranking data could offer users
a more complete analysis, allowing them to use a single
program instead of shifting their ranking datasets from
one application to another.

R [20], an open-source program for statistical analysis,
is gaining in popularity because of its high flexibility.
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Indeed, users are free to write/use packages for specific
purposes. Although many packages are highly relevant
to medicine [21,22], there are only a limited number of
packages for analyzing and modeling ranking data. There
are some basic tools for ranking data, for example the
Kenduall package and the pspearman package for the com-
putation of Kendall and Spearman rank correlation. None-
theless, to the best of the authors’ knowledge, the only
statistical model currently available in R is the RMallow
package (http://cran.r-project.org/web/packages/RMallow)
for fitting a mixture of Mallows’ models [23]. Here, we
present pmr (probability models for ranking data), an R
package for analyzing and modeling ranking data with a
bundle of statistical tools. A review of statistical analysis
for ranking data is given, prior to demonstrating the im-
plementation of pmr. The current version of pmr and the
user manual can be found in Additional files 1 and 2
respectively. In addition, four ranking models are
reviewed, namely the Luce model, distance-based model,
¢$-component model, and weighted distance-based model.
For more details, readers can refer to [15,24,25]. The use
cases diagram of the pmr package is shown in Figure 1.

Implementation

In this section, we give a review of statistical analyses for
ranking data. For a better description of ranking data, some
notations must be defined. For a set of k items, labelled 1,
..., k, a ranking 7 is a mapping function from 1,..., k to 1,...,
k, where 7(i) is the rank given to item i. For example,
77(2) = 3 means that item 2 has a rank of 3. The inverse of
the ranking function (sometimes referred to as ordering)
(i) is defined as the item that has rank i. For example,
77(5) = 6 means that the item with rank 5 is item 6.
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Figure 1 Use Case Diagram of the pmr package.

Koczkodaj

Marginal

Truncated
octahedron

Statistical inference
for ranking data

Test for common

Test for uniformity
rank-order preference

Statistical modeling
for ranking data

Distance-based model Luce model

Label ranking
methods

Rank-ordered logit Local k-nearest neighbor



http://cran.r-project.org/web/packages/RMallow

Lee and Yu BMC Medical Research Methodology 2013, 13:65
http://www.biomedcentral.com/1471-2288/13/65

Descriptive statistics for ranking data

Descriptive statistics give an overall picture of the rank-
ing dataset. Not only do descriptive statistics provide a
summary of the ranking dataset, but they also lead us in
an appropriate direction to analyze the dataset. There-
fore, it is suggested that researchers consider descriptive
statistics prior to any sophisticated analysis of ranking
data.

We begin with a single measure of the popularity of
an item. It is natural to use the mean rank attributed to
an item to represent the central tendency of the ranks.
Mean rank m is defined as the k-dimensional vector in
which the jth entry equals

k!
m]' = ZNﬂTj(j),
i=1

where m;, i=1, 2, ..., k! represents all possible rankings
of the k items, N; is the observed frequency of ranking i,
and 77,(j) is the rank given to item j in ranking i.

Apart from the mean ranks, the pairwise frequencies,
that is, the frequency with which item i is ranked higher
than item j for every possible C% item pairs (i, j), are also
often used. These pairwise frequencies can be summa-
rized in a kxk matrix called a pair matrix (P) in which
the (s,£)™ entry equals

K
Py = ZNJ[M‘(S) > m(t)],

where I[-] is the indicator function. Note that Py/N rep-
resents the empirical probability that item s is ranked
higher than item ¢ In addition to mean ranks and pair-
wise frequencies, one can look more deeply into a rank-
ing dataset by studying the so-called “marginal”
distribution of the items. A marginal matrix, specifically
for this use, is the kxk matrix M in which the (s,t)
entry equals

K
My = ZNJ[M(S) = t].

Note that My, is the frequency of item s being ranked
. 1t is called a marginal matrix because “the i row
gives the observed marginal distribution of the ranks
assigned to item i, and the /* column gives the marginal
distribution of objects given the rank j.” ([15], page 18).

Inconsistency indices for pairwise comparisons

According to the Analytic Hierarchy Process [26], a
group of judges combine the rankings from different cri-
teria to form a final ranking. The Analytic Hierachy
Process has been used to determine the weights of these
criteria. First, a pairwise comparison matrix 4, in which
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the (s,t)™ entry ag equals the number of times criterion
s is preferred over criterion ¢, is computed. The weights
are then found as the eigenvalues of the matrix A. The
reliability of these weights depends on the consistency of
the ranking process, which is defined as aya,, = ay, for s,
t, u=(1,..., k). Therefore, evaluating the consistency of
the ranking data using A is a crucial task in analyzing
ranking data and hence a number of measures have been
developed for this purpose. One popular measure is
Saaty’s index, which is given by

Amax—k
k-1

RI;

where )\, is the largest eigenvalue of A, and RI; is the
average value of A‘};T’k for a kxk random matrix. Another
popular measure is Koczkodaj’s index, which equals
max{ min(’l—ﬂ, |1—%|) for each triad (a, b, c) in A}.

Other consistency indices exist besides these two [27].

Visualizing ranking data: multidimensional preference
analysis

Because ranking data often have a high dimension,
visualization is a good first step towards their analysis.
Multidimensional preference analysis [28] is a dimension
reduction technique that aims to display ranking data in
a low-dimensional (preferably 2D or 3D) space. It is ap-
plicable to ranking data with five or more items where
the dataset cannot be displayed in a 2D/3D plot. Let X
be an Nxk matrix of ranking data such that x; repre-
sents the rank of item j assigned by judge i, centered by
the overall mean rank, ie., (k+ 1)/2. Suppose the singu-
lar value decomposition of X is X =UDV’. A 2D repre-
sentation of the multidimensional preference analysis
denotes the items and judges by the first two columns of
VN-1U and %’ respectively. Items are usually plotted

as points, whereas judges are plotted as vectors from the
origin. To give a better graphical display, the length of
the ranking vectors can be scaled to fit the position of
the items. It is not difficult to see that the perpendicular
projection of all k item points onto a judge vector will
closely approximate the ranking of the k items by that
judge if the 2D solution fits the data well. Otherwise, we
may look for a higher-dimension solution.

Statistical inferences for ranking data

Apart from exploring ranking data using descriptive sta-
tistics and graphs to identify the structure of the data,
statistical inferences can be made to test the significance
of a data structure. The two most commonly used infer-
ences are the test for uniformity in a set of ranking data
and the test for common rank-order preference for two
sets of ranking data.
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When we say that a ranking dataset is uniform, we
mean that all possible rankings have the same probabil-
ity of being observed. Hence, under uniformity, the
expected frequencies of every ranking should be N/K!,
and the standard y* test can be applied to test the uni-
formity. However, when k! is too large compare with N,
this is not always applicable, because we may encounter
rankings with fewer than five observation. In such a
case, mean rank, pairs, or marginals can be used to test
the uniformity instead of ranking proportions [15]. Note
that under uniformity, the expected values of mean rank,
pairs, and marginals are (k+1)/2, 05N, and N/k
respectively.

Under uniformity, the test statistic when using
mean rank, pairs, and marginals are ([15], page 58,
Table 3.1)

2N & k+1\2
k(k+1)2(m’_ 2 )

j=1

k 2,
k+1
oy (B
12N Zpst—o.s -t , and
s>t

N(K + 1)zk: (MS[— %) 2,

s>t

and they follow a x* distribution with k-1, C%, and (k-
1)* degrees of freedom, respectively.

The x* test could be used to test for any difference be-
tween two ranking datasets. Before doing so, we align
the matrix (in the case of pairs and marginals) into a
q x 1 vector, for both datasets. We can now use the
standard y* test. For comparison between three or
more ranking datasets, MANOVA-like tests can be
used [15].

Statistical models for ranking data: the Luce model

After conducting a descriptive analysis for ranking data,
we may have some understanding about the empirical
distribution of the rank-order preferences of different
items and their popularity. To further understand the
data and make inferences about its structure, an effi-
cient method is to establish some statistical models
for ranking data. Over the years, various statistical
models for ranking data have been developed. In this
subsection, we review a commonly used approach,
the Luce model.
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Suppose 7 judges are asked to rank k items. Luce [29]
proposed a ranking process where independent utilities
V=(V, V5.,Vi) 20 are assigned to item 1,2, ...,k. The
probability of observing ranking i, is

Plv) =[] "7

and the resulting models is referred to as the Luce
models [16]. The Luce models can be interpreted as a
vase model [15]: imagine there are infinitely many balls
inside a vase, and each ball is labeled j., j=1, 2, ..., k.
The proportion of balls labeled with j is proportional to
Vj. Then, the Luce models correspond to the ranking
process whereby the first ball drawn is labeled 7777(1), the
second ball drawn is labeled 777(2) (with all balls labeled
7'(1) removed from the vase), and the process con-
tinues until all balls in the vase have the same label.

The loglikelihood function is globally concave, and
hence a global maximum exists. The MLE of the param-
eters can thus be obtained using standard methods, e.g.,
the Newton—Raphson algorithm. Besides MLE, Bayesian
method can also be used for parameter estimation, using
expectation propagation [30], generalized repeated inser-
tion model [31], and random atomic measures [32].

The Luce model can be extended to incorporate covar-
iates. We can include M covaraites of judge n, x,,,,,, m =
1,2, ..., M, into the utilities, that is,

M
Vi = Bo+ D Bitom:
m=1

where S, m=0, 1, 2, ..., M are parameters specific to
item j. This extension of the Luce model is known as the
rank-ordered logit (ROL) model [33-35].

Statistical models for ranking data: distance-based model
In what follows, we will introduce the distance-based
model for ranking data. Before doing so, we need to have
a clear definition of the “distance” between two rankings.
A distance function is useful in measuring the discrep-
ancy between two rankings. The usual properties of a
distance function between two rankings i and ¢ are:

d(m, m) =0,

d(m, 0) >0 if mn=zo,

d(m, o) =d(o, m).

For ranking data, we require that the distance, apart
from having these usual properties, must be right
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invariant, i.e., d(15, 0) = d(roy, ooy), where moy(i) = n(y(i)).
This requirement ensures that the relabeling of items has
no effect on the distance.

Some popular right-invariant distances are Spearman’s
rho [36], given by

k 0.5
R(m,0) = (Z [n(i)—o(i)P) ,

i=1

Spearman’s rho square, given by

R*(m,0) =

-

Spearman’s footrule, given by

and Kendall’s tau, given by

T(m,0) = X {[n(i)-

i<j

n(j)llo(i)-a(j)] <0},

where I() is the indicator function. There are other dis-
tances applicable to ranking data, and readers can refer
to [24] for details.

It is reasonable to assume that there is a modal rank-
ing 1y, and we expect most of the judges to have rank-
ings close to my. According to this framework, Diaconis
[1] developed a class of distance-based models,

eAd (7z,710)

P(ﬂ"/},,ﬂo) :W,

where A >0 is the dispersion parameter, C(1) is the pro-
portionality constant, and d(m, mp) is an arbitrary right
invariant distance. When we use Kendall’s tau as the dis-
tance function, the model is called Mallows’ ¢-model
[37]. In distance-based models, rankings nearer to the
modal ranking 7, have a higher probability of occur-
rence and this is controlled by A. The distribution of
rankings will be more concentrated around 7, for a
smaller value of 1.

A closed form for the proportionality constant C(A)
only exists for some distances. In principle, it can be

/ld(f[, ]Z(])

solved numerically by summing e~ over all

Page 5 of 11

possible 7. The computational time increases exponen-
tially with the number of items [17].

Statistical models for ranking data: ¢-component model
Fligner and Verducci [17] extended the distance-based
models by decomposing the distance metric d(z, o) into
k-1 distance metrics,

k-1
o) = Zdi(ﬂ, o), (1)

where each d,(r, 0)is independent. Both Kendall’s tau
and Cayley’s distance [38] can be decomposed in this
form, and Fligner and Verducci [17] developed two new
classes of ranking models for these, called ¢p-component
models and cyclic structure models, respectively.

Fligner and Verducci [17] showed that Kendall’s tau
satisfies [1]:

7T7'[()

Z Vi)

7o(i)=1

H{[m()-m(j)] > 0}

70 () =70 (i) +1

Here, V7 represents the number of adjacent transposi-
tions required to place the best item in g in the first
position. V5 is the number of adjacent transpositions re-
quired to place the second best item in 7, in the second
position, and so on. Therefore, the ranking can be de-
scribed as k-1 stages, V7 to V;.;, where V;=m can be
interpreted as m mistakes made in stage i.

By applying a dispersion parameter A; to stage V;, the
Mallows” ¢p-model is extended to:

Z A‘ﬂo(l 0 (i

e ﬂo(
P(n|A, ) =

c) ’

where A={1; i=1,.., k=1} and C(A) is the proportion-
ality constant, which equals

k=l (ko)D)

o(d)
70(i)=1

These models were named k-1 parameter models by
Fligner and Verducci [17], but were also named



Lee and Yu BMC Medical Research Methodology 2013, 13:65
http://www.biomedcentral.com/1471-2288/13/65

¢p-component models in other papers [24]. Mallows’
¢ -models are special cases of ¢-component models
when A, = ... = 1x;.

Statistical models for ranking data: weighted distance-
based model
Lee and Yu [18,19] proposed an extension of the
distance-based model by replacing the (equal-
weighted) distance with a new weighted distance
measure, so that different weights can be assigned to
different ranks.

Motivated by the weighted Kendall’s tau correlation
coefficient [39], Lee and Yu [18,19] defined the weighted
Kendall’s tau distance by

Tu(,0) = Z oy Hlm(0) (1)l [o(0)=0 )] < O}

It is important to note that this weighted distance sat-
isfies all the usual distance properties, in particular the
symmetry property, i.e., T,,(1r, 0) = T\, (0, 7).

Other distance measures can be generalized to a
weighted distance in a similar manner to this
generalization of Kendall’s tau distance. For examplethe
weighted Spearman’s rho is

k 05
Ry (m,0) = <Z Wiy i [ﬂ(i)—ﬂ(i)]2> :

The weighted Spearman’s rho square is
: 2
R(m,0) =Y ey (i) -0(i)]%,
=1

4

and the weighted Spearman’s footrule is
k
Fo(m,0) = > ey |m(i)-0(i)].
i=1

Apart from the weighted Kendall's tau [39] and
weighted Spearman’s rho square [40], many other
weighted rank correlations have been proposed [41].
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Applying a weighted distance measure d,, to the
distance-based model, the probability of observing a
ranking 77 becomes

e~w(mmo)

P(rlw, ) = <

Generally speaking, if w; is large, few people will tend
to disagree that the item ranked i in 7y should not be
ranked i. This is because such disagreement will greatly
increase the distance and hence the probability of ob-
serving it will become very small. If w; is close to zero,
people have little or no preference on how the item
ranked i in 77y is ranked, because a change in its rank
will not affect the distance at all. The extension of
weighted distance-based ranking models can retain the
nature of distance, and at the same time maintain a
greater flexibility. Readers are referred to [19] for the de-
tails of these properties.

Label ranking method using k-nearest neighbor

algorithm

Label ranking is defined as the problem of classifying a
judge’s ranking over a set of items given the covariate of
this judge and a training dataset. ROL can be used for
this, as it produces utility scores that can generate rank-
ings for the judges. However, when the number of items
and covariate are large, ROL may not be feasible due to
its long computation time. Recently, a local k-nearest
neighbor method has been developed for label rank-
ing [42]. If we want to predict the ranking of judge i,
we can first select the k-nearest neighbor (by Euclid-
ean distance) of i. Second, a statistical model (the
Luce model in [42]) is fitted to these k neighbors and
the parameters will be used to predict the ranking of
judge i.

Results and discussion

In this section, we will use a seven-item ranking
dataset g4 [11], in which 566 Hong Kong physicians
ranked the top five incentives (1: competitive pres-
sures; 2: increased savings; 3: government regulation;
4: improved efficiency; 5: improved quality care; 6:
patient demand; 7: financial incentives) to the
computerization of clinical practice. Items not ranked
were imputed using the mean rank. The dataset is
not available in the pmr package but is available upon
request. Note that most of the functions in pmr re-
quire the input ranking data to be organized in an
aggregated format, that is, a summary matrix with
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rankings and their corresponding frequencies. To
transform the individual ranking data to an aggre-
gated format, the rankagg function can be used
(q4agg < - rankagg(q4)).

All analyses of ranking data start from descriptive sta-
tistics. Using the R code destat(qdagg), the destat func-
tion produces the mean rank vector, the pairs matrix,
and the marginal:

Descriptive statistics of ranking data:
Smean.rank: mean ranks; S$pair: pairs; S$mar: marginals
Smean.rank

[1] 3.722615 4.070671 5.159011 2.666078 3.307420 4.708481

4.365724
Spair
[,11 [,21 (,31 [,4]1 [,5] [,6] [,7]
[1,1 0 330 433 189 240 353 310
[2,1 236 0 421 182 214 324 281
[3,] 133 145 0 123 141 280 220
[4,] 377 384 443 0 386 441 422
[5,1 326 352 425 180 0 422 385
[6,1 213 242 286 125 144 0 287
[7.] 256 285 346 144 181 279 0
Smar
(11 [,21 [,31 [,41 [,5]1 [,6]1 [,7]
[1,1 73 93 89 88 109 114 0
[2,1 71 55 91 88 82 165 14
[3,] 29 29 48 62 94 157 147
[4,] 213 116 70 72 36 27 32
[5,1 81 163 105 72 57 39 49
[6,1] 41 51 71 92 86 64 161
[7,1 58 59 92 92 102 0 163

From the descriptive statistics, we can deduce that
item 4, improved efficiency, is the most preferred item,
and item 3, government regulation, is the least preferred
item.

Statistical inferences about ranking data can be
performed using the destat function. For instance, if we
want to test whether the ranking over seven items is uni-
form using mean rank, the following R code can be
input:

del <- destat(g4agg); mean <- rep(4,7);
chi <- 12*567*sum((del$mean.rank - mean)”2 )/7/8;

chi; dchisqg(chi,s6)
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and would give the output:

> chi

[1] 524.8747

> dchisqg(,6)

[1] 1.82345e-110

The y* test statistic equals 524.8747 and the corre-
sponding p-value equals 1.82345x 10", Thus, the
ranking was not uniformly distributed.

This example illustrates how to test the uniformity of
a ranking dataset using the destat function, and we will
now explain how to compare two ranking datasets using
the same function. For example, we may wish to test the
hypothesis that physicians with monthly incomes above
and below HK$100,000 (rankings stored in g4agg.
highincome and q4agglowincome respectively) have dif-
ferent preferences towards computerization incentives.
According to the marginal matrix using the y* test, the
following codes:

de.highincome <- destat (g4agg.highincome)
de.lowincome <- destat (g4agg.lowincome)
chisqg.test (cbind (as.vector (de.highincomeS$mar) ,as.vector (de.low

income$mar)))

give the output:

> Pearson's Chi-squared test

> data: cbind(de.highincome$mar,de.lowincome$mar)

> X-squared = 66.415, df = 48, p-value = 0.04024

The x” test statistic equals 66.415 and the correspond-
ing p-value equals 0.04. Thus, we have found a signifi-
cant difference between physicians’ preferences with
respect to their monthly income.

Multidimensional preference analysis [28] can help us
understand more about the physicians’ ranking
process and their preferences over the seven items by
decomposing the rankings into a few dimensions.
This can be performed using the mdpref function (R
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code: mdpref(q4agg,rank.vector = T)). The output is as
follows:

Multidimensional preference analysis
$item

[.1] [,2]

¥

[1,] 0.2617896 .4327039

[2,] 2.0304576 4.6877078
[3,1] 7.1972472 3.2369083

[4,] -8.6872015 1.5649170

[5,]1 -5.9976649 -0.6995201
[6,] 4.2711405 -4.0874211
[7,] 0.9242315 -7.1352958
$ranking
[,11 [,21 [,31 [,41 [,5] [,el [,7]1 I[,8] [,91 [,10]
1,1 1 2 3 4 5 6 7 3 0.34578679 4.418398859
2,1 1 2 3 5 6 7 4 1 1.02368458 2.817632498
[3,] 1 2 4 3 6 7 5 1 -0.28702760 3.436342641
4,1 1 2 6 3 4 7 5 1 -1.64369628 2.743277371
[5,] 1 2 5 4 3 6 7 1 -1.01088189 3.725333590
[397,1 3 5 4 6 7 2 1 1 2.30895882 -2.893356539
[398,] 5 6 3 4 7 2 1 1 1.65446374 -3.173860152
[399,] 6 5 7 3 4 2 1 1 -1.10621436 -4.162134143
[400,1] 4 6 5 7 3 2 1 1 1.03438336 -4.189219159
[401,] 5 6 7 4 3 2 1 1 -1.05887363 -4.559990691
$explain

[1] 0.4242463

and the 2D plot is given in Figure 2.

The coordinates of the items and rankings, and the
proportion of variance explained by the first two dimen-
sions are stored in the values $item, $ranking and $ex-
plain respectively. The final two columns of the

$ranking matrix are the coordinates of the first two col-

DV’
mns of 22—,
wmns ot N1

Figure 2 shows the multidimensional preference graph.
The 2D plot explains around 42 % of the total variance.
The first dimension can be interpreted as the overall
preference of the seven items (labeled as “internal/exter-
nal”). The leftmost item (item 4) and rightmost item
(item 3) are the most and the least preferred items, re-
spectively. The second dimension can be interpreted as
the overall variance of the seven items (labeled as “push/
pull factors”). The bottommost item (item 7) has the lar-
gest variance and the topmost item (item 2) has the sec-
ond largest variance among the seven items.

Descriptive statistics and plots provide an insight to
the data, but modeling will be more useful if we wish to
have a deeper understanding. The Luce model (pl),
distance-based model (dbm), ¢-component model
(phicom) and weighted distance-based model (wdbm)
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Figure 2 Multidimensional preference of the g4 dataset (1:
competitive pressures; 2: increased savings; 3: government
regulation; 4: improved efficiency; 5: improved quality care; 6:
patient demand; 7: financial incentives).

can be fitted using the pmr, which requires the stats4
package. We will demonstrate the model fitting proced-
ure. Spearman’s footrule distance usually gives the best
fit [18,19] and hence it will be used in our demonstra-
tion of distance-based models.

The parameter estimates of the Luce model can be
obtained using the R code q4.pr <- pl(qdagg); q4.pr@coef,
and the output is as follows:

Maximum Likelihood Estimation of the Luce Model
Chi-square residual statistic: 8239.59, df: 5040
Warning messages:

1: In log(pr([i]l) : NaNs produced

Parameter estimates:

[1] 1.21815 1.01797 0.39800 1.78440 1.40580 0.51181 0.66293

The warning messages are a result of some of the pre-
dicted probabilities being close to zero. The parameter
estimates of the distance-based model can be obtained
using the R code q4.dbm < - dbm(q4agg); q4.dbm@coef,
and the distance type can be specified using the argu-
ment dtype (default: Kendall’s tau; rio: Spearman’s rho;
rho2: Spearman’s rho square; foot: Spearman’s footrule).

The loglikelihood is a suitable criterion for determin-
ing which model should be used. The model with the
largest loglikelihood is selected. We can compute the
loglikelihood of all models using the minimum value
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(@min) of the negative loglikelihood function, which is
built-in for maximum likelihood models:

g4 .pr <- pl(g4agg); g4.dbm <- dbm(g4agg, dtype="foot”);
g4 .phicom <- phicom(g4agg); g4.wdbm <- wdbm(g4agg,

dtype="foot") ;

g4 .premin; g4.dbme@min;

g4 .phicom@min; g4.wdbme@min

and the output is as follows:

[1] 4552.1
[1] 4569.9
[1] 4542.4
[1] 4541.1
The best model (with the smallest negative

loglikelihood) is the weighted footrule model. The pa-
rameters are given by the R code q4.wdbm@coef as
follows:

Maximum Likelihood Estimation of the weighted distance-based
model
Weighted distance type: Spearman’s footrule
Modal ranking: 4562371
Chi-square residual statistic: 7811.15, df: 5040
Call:
NULL
Parameter estimates:

[1] -0.16288 0.20215 0.19890 0.28253 0.27971 0.43962

0.22850

From the model parameters, we can conclude that
item 4 is ranked 1%, but the judges preference for this
position is not particularly strong. Note that the modal
ranking in the weighted distance-based model is differ-
ent from that using the mean rank.

As the “best” model does not imply that it gives an ad-
equate fit to the data, we need to assess the goodness-of-fit.
The sum of squares Pearson residuals (Xz) [18,19] can be
used for this purpose, and is provided in pmr. It is given by

k!
2 2
X :E iy
f

where r; = % is the Pearson residual, and O;, E; are the

observed and expected frequencies of ranking i, respect-
ively. The sum of square Pearson residual will automatically
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be given in the output, together with the corresponding de-
grees of freedom.

We can also examine the effect of physicians’ gender
and type (private/public) on their preferences (gender
and type stored in g4cov) using the ROL model. This
can be fitted using the rol function in the pmr package
with the R code g4.rol <- rol(q4,q4cov); qé.rol@coef
where covariate stores the gender and type of every phy-
sicians. The output is as follows:

Maximum Likelihood Estimation of the Rank-ordered Logit Model
BetalOiteml BetaOitem2 BetaOitem3 BetalOitem4 BetaOitem5
Betalitemé
0.7271744 0.2788784 0.1204306 -0.0927481 0.1671606
1.2260023
Betaliteml Betalitem2 Betalitem3 Betalitem4 Betalitem5
Betal2itemé
0.4346967 0.3648443 0.3145217 0.4642009 0.2825524
0.2187091
Beta2iteml Betal2item2 Betalitem3 Betal2item4 Betal2item5
Beta2itemé

-0.4063632 -0.0845522 -0.0058510

0.0126934 0.0029885 -

0.1425022

These parameters are difficult to interpret without
their corresponding significance levels. To obtain the
p-values, the following R code can be used:

p value <- rep(l,ncov*(nitem-1))
for (i in 1:3)({
for (j in 1:6){
p_value[(i-1)*6+j] <- 2*pnorm(-abs(g4.rol@coef [(i-

1)*6+3j]1 /g4 .role@vcov[(i-1)*6+3, (i-1)*6+31))

}
}

which gives the output:

> p_value
[1] 4.458237e-12 5.885750e-03 2.582951e-01 3.893159e-01
1.233049e-01 7.445499e-31 9.236701le-36
[8] 5.797042e-26 7.522277e-19 1.943696e-38 9.250903e-15

5.762506e-10 4.727443e-86 2.893224e-05

[15] 7.788308e-01 5.494515e-01 8.853680e-01 3.384748e-12
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According to the results of the ROL model, female
physicians preferred items 1 and 4, and private physi-
cians did not prefer items 1, 2, and 7.

Assume that we want to predict the preference of a list
of physicians with known covariates g4covtest. One pos-
sible method is to assign the utility ranks of the seven
items for these physicians using the parameters obtained
from the ROL model. Another method is to use the local
k-nearest neighbor algorithm with the R code local.knn(q4,
g4dcovtest,gdcov,knnk = k). The value of k must be pre-
specified. The pmr package provides the cross-validation
version of the local k-nearest neighbor local.knn.cv(q4,
q4covtest,qdcov). By default this uses 10-fold cross valid-
ation and tests the cross-validation prediction error of k
(defined as the total Kendall’s distance) from 1 to 20.

Conclusions

In this paper, we presented the pmr R package, the first
package for analyzing and modeling ranking data. The
package provides insight to users through descriptive
statistics of ranking data. Users can also visualize rank-
ing data by applying a thought multidimensional prefer-
ence analysis. Various probability models for ranking
data are also included, allowing users to choose that
which is most suitable to their specific situations. Be-
sides the models introduced in this paper, there are
other functions included in the pmr package that have
not been presented here due to scope limitations, in-
cluding the Analytic Hierarchy Process model (a/p)
[26,43], multidimensional preference analysis (mdpref),
and rank plots (rankplot) [44]. Details of these functions
can be found at http://cran.r-project.org/web/packages/
pmr/pmr.pdf. Future works on developing the package
will include the incorporation of latent class models.

In the pmr package, we aimed at including trad-
itional ranking models like the Luce model and
distance-based model, and many recently-developed
models for ranking data were not included (examples
included decision tree models for ranking data [18,45,46]
and multistage models [47,48]). Nevertheless, since many
of these models belong to extensions of traditional ranking
models, we believe that the development of new ranking
models can rely on the programming code provided by
package pmr.

Availability and requirements

Project name: Probability Models for Ranking Data

Project home page: http://cran.r-project.org/web/packages/
pmr/index.html

Operating system(s): Platform independent

Programming language: R

Other requirements: R 2.15.0 or above

License: GPL-2

Any restrictions to use by non-academics: none
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