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Abstract

Background: Plasma glucose levels are important measures in medical care and research, and are often obtained
from oral glucose tolerance tests (OGTT) with repeated measurements over 2-3 hours. It is common practice to use
simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures,
and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent
in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore
the clinical usefulness of such information.

Methods: OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women
in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves
by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data.
The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal
component analysis. The resultant functional principal component (FPC) scores were compared with commonly
used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape
index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by
regression analyses of glucose tolerance later in pregnancy.

Results: Over 99% of the variation between individually fitted curves was expressed in the first three FPCs,
interpreted physiologically as “general level” (FPC1), “time to peak” (FPC2) and “oscillations” (FPC3). FPCT scores
correlated strongly with AUC (r=0.999), but less with the other simple summary measures (—0.42<r<0.79). FPC2
scores gave shape information not captured by simple summary measures (—=0.12<r<0.40). FPC2 scores, but not
FPC1 nor the simple summary measures, discriminated between women who did and did not develop gestational
diabetes later in pregnancy.

Conclusions: FDA of OGTT glucose curves in early pregnancy extracted shape information that was not identified
by commonly used simple summary measures. This information discriminated between women with and without
gestational diabetes later in pregnancy.
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Background

Plasma glucose level is one of the most commonly used
metabolic measures, both in research and in clinical set-
tings [1-4]. In persons with normal glucose tolerance
and metabolism, glucose levels rise after a dietary intake,
and usually return to normal, postprandial levels after
2-3 hours [5,6]. For practical purposes, oral glucose tol-
erance test (OGTT) is used to define glucose tolerance
[5,7,8]. Numerous studies have shown that high OGTT
values are associated with an increased risk of adverse
health outcomes [2-4,9], but there is no general agree-
ment with respect to time points for glucose sampling
during OGTT, cut-off values or test duration [1,2,4,10].

OGTT values are discrete, ordered measurements
from an underlying, continuous process; i.e. an indivi-
dual’s glucose regulation. Temporal OGTT measure-
ments are often used to illustrate the underlying glucose
curves, but the information inherent in the shape of
these curves has been the subject of few studies [11-14].
It is common practice to use simple summary measures,
such as fasting value, two-hour (2-h) value or area under
the curve (AUC) to obtain information about an indivi-
dual’s glucose tolerance. Simple summary measures are
also frequently used in studies with continuous glucose
monitoring [15,16]. To gain more information from
OGTT glucose curves, simple shape summaries (shape
indices), have been suggested [11-13]. However, different
OGTT glucose curve trajectories can yield similar simple
summary measures, and information of physiological or
clinical interest may consequently be lost.

Functional data analysis (FDA) is a collection of statis-
tical techniques specifically developed to analyse curve
data [17-19]. When applying FDA, the entire curve is
used as the basic unit of information, instead of the
OGTT measurements at specific time points. FDA has
been applied in some research disciplines during the last
couple of decades, and has yielded novel insights of clin-
ical importance in neuroscience [20], nephrology [21]
and studies of gait [22,23]. An important FDA technique
is functional principal component analysis (FPCA),
which is used to extract the common temporal charac-
teristics of a set of curves [18].

The main aim was to study the usefulness of FDA in
the analysis of OGTT glucose curve trajectories. FDA,
and in particular FPCA, was used to analyse OGTT data
in a Norwegian prospective cohort study of healthy
pregnant women [24]. We extracted temporal infor-
mation from the shape of OGTT glucose curves and
compared this to the information obtained from
standard simple summary measures. By regression
analyses we studied the OGTT glucose curves in re-
lation to body mass index (BMI) categories in early
pregnancy and gestational diabetes mellitus (GDM)
later in pregnancy.
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Methods

Participants and data

The STORK study is a prospective cohort of 1031
healthy pregnant women of Scandinavian heritage who
registered for obstetric care at the Oslo University Hos-
pital Rikshospitalet from 2001 to 2008 [25]. Exclusion
criteria were multiple pregnancy, known history of type
1 or type 2 diabetes mellitus, and severe chronic diseases
(pulmonary, cardiac, gastrointestinal, or renal). The
overall aim of the STORK study was to gain insights into
maternal metabolic syndrome and the determinants of
foetal macrosomia [25]. Results of a 75 g OGTT, age,
height and weight were recorded at inclusion at gesta-
tional weeks 14-16. Fifty-seven women (5.5%) with in-
complete OGTT data were excluded, yielding a study
sample of 974 women. During follow-up, 2-h glucose
values at gestational weeks 30—-32 were available for 930
(95%) women.

Venous blood samples were collected for OGTT in
tubes  containing  Ethylenediaminetetraacetic  acid
(EDTA) between 07:30 and 08:30 after an overnight fast.
Fasting glucose was measured immediately in a drop of
fresh, whole EDTA blood, and further blood samples
were taken every 30 minutes for 2 h, for a total of five
OGTT measurements per woman. Glucose measure-
ments were done by the Accu-Chek Sensor glucometer
(Roche Diagnostics, Mannheim, Germany). Inter-assay
coefficient of variation was <10%. Due to an unexpected
increasing trend in fasting glucose values over the 7 years
of participant recruitment, all glucose measurements
were de-trended prior to the present analyses, as previ-
ously described in detail [26].

The study was approved by the Regional Committee
for Medical Research Ethics, Southern Norway, Oslo,
Norway (reference number S-01191), and performed
according to the Declaration of Helsinki. All participat-
ing women provided written informed consent.

Data description

Descriptive statistics were mean, standard deviation (SD)
and range, or frequency and percentage. The study sam-
ple and women with incomplete OGTT data were com-
pared by two-sample £ tests or y* tests.

Functional data analysis

FDA is a common term for statistical techniques specif-
ically developed for analysing curve data [17-19]. In
FDA a temporal set of observations is transformed into
a single, functional object, and statistical analysis is then
performed on this continuous function, rather than on
the original discrete data points. This makes it possible
to extract information from the temporal process as a
whole, instead of merely point-by-point. In a sample of
curves, the mean curve is used descriptively, as in
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traditional statistical analyses, and with proper modifica-
tion, most standard statistical methods can be phrased
in the framework of FDA. The principles of the analyses
are explained hereafter, and technical details are given in
the appendices.

Curve fitting

The five OGTT measurements for the 974 participating
woman were converted into 974 continuous, smooth
curves by subject-specific spline smoothing with B-
splines basis functions [17,19] (Appendix A). These indi-
vidually fitted curves formed the basis for the subse-
quent FDA.

Functional principal component analysis

FPCA was used to study the temporal variation in the
974 fitted curves. FPCA extracts a limited number of
FPC curves that describe the temporal patterns asso-
ciated with the largest proportions of the variation in the
individual, fitted curves [17-19] (Appendix B). The FPC
curves represent independent parts of the overall vari-
ability between the individual, fitted curves. The FPCA
also yield individual FPC scores for each curve. The
score variables are per definition independent, and the
variation within the scores of an FPC quantifies the
magnitude of the total variance explained by this FPC. A
woman’s FPC score for an FPC curve reflects how her
individual curve trajectory corresponds to the general
temporal feature expressed by this FPC curve. By FPCA
it is thus possible to study how OGTT glucose curve tra-
jectories vary from woman to woman. FPC curves are
often illustrated by plots showing how an individual
curve differs from the mean curve if the FPC scores are
high or low, rather than plots of the FPC curves directly
[17-19]. As in traditional principal component analysis,
FPCs may be interpreted and labelled according to the
information they exhibit, which in turn can be related to
more conventional physiological or clinical theories.

Functional principal component scores vs simple
summary measures

The Pearson correlation coefficient (r) was used to as-
sess the associations between FPC scores, original glu-
cose measurements and several simple summary
measures of OGTT: fasting value, 2-h value, AUC and a
simple shape index. We used the most cited simple
shape index for OGTT [12], defined as the 2-h value
minus the 90-min value for curves classified as “mono-
phasic” or “biphasic”, and the 90-min value minus the
60-min value for curves classified as “triphasic”. The clas-
sification of curves, i.e. the determination of the number
of phases within a curve involves an empirically chosen
glucose threshold of 0.25 mmol/l [12]. Curves that did
not meet the criteria for classification into mono-, bi- or
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triphasic were labelled “unclassified” and left out of the
analyses.

Functional analysis of variance

The relation between BMI and simple summary mea-
sures of glucose values is well-known [27]. Functional
analysis of variance (FANOVA), the functional counter-
part of traditional analysis of variance (ANOVA), was
used to analyse the effect of BMI on the shape of OGTT
glucose curves [18], using the fitted curves as responses.
The WHO classification for BMI was utilised (under-
weight (<18.5 kg/m?), normal weight (18.5-25 kg/m?
reference category), overweight (25-30 kg/m?) and obese
(230 kg/m?) [27]) and BMI was entered as a categorical
explanatory variable. The analysis was based on the
shape of the mean curve in each BMI category, and the
temporal differences between these curves (Appendix C).
In FANOVA, the effect estimates are themselves curves
over the same time span as the curves under study, i.e.
OGTT glucose curves. Functional 95% confidence inter-
vals (CIs) and p curves were obtained for the difference
between two mean curves. The FANOVA also gives an
overall p value for the difference between two BMI
categories.

FANOVA vs ANOVA of simple summary measures

The simple summary measures described previously
were compared across the BMI categories using trad-
itional ANOVA, with Bonferroni corrected post hoc
tests.

Curve shape information in regression analyses

There is an on-going discussion about the diagnostic cri-
terion for GDM [28,29]. However, as a new international
consensus has yet to be established, we have kept the
GDM definition which at present is recommended by
the WHO: a 2-h OGTT value of 7.8 mmol/l or higher
[1]. Consequently, the 2-h value is important in current
clinical practice. The impact of the curve shape in early
pregnancy on glucose intolerance later in pregnancy, i.e.
the 2-h value at gestational weeks 30-32, was assessed
by regression analyses, using the FPC scores at gesta-
tional weeks 14—16 as explanatory variables.

To visualise the clinical usefulness of the curve shape
information more clearly, and to account for potential
non-linear relations between variables, the 2-h values at
gestational weeks 30-32 were grouped into seven cat-
egories and multinomial logistic regression was per-
formed [30] using this categorised variable as the
response. The categories were based on the diagnostic
criterion for GDM and on assessments of group size and
percentiles in the sample: <3.27 (2.5t percentile), [3.27,
3.89) (2.5M-10™ percentile), [3.89, 6.39) (10™-75™ per-
centile; reference category), [6.39, 6.90) (75t-85t™h
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percentile), [6.90, 7.8) (85™ percentile to diagnostic cut-
off for GDM) [7.8, 8.84) (GDM diagnosis to ogth per-
centile) and >8.84 mmol/l.

Five different models were fitted. Model 1 included
BMI and the three independent FPC score variables
from gestational weeks 14—16 as covariates, while mod-
els 2-5 included BMI and either the fasting value, the 2-h
value, the AUC or the shape index, all from gestational
weeks 14—16, as covariates. These simple measures were
included one at a time in models 25, due to colinearity.
Other covariates were not included in the models. It is
beyond the scope of the article to build an extensive
prediction model or to adjust for variables possibly on
the causal pathway to the outcome. All covariates were
continuous.

Software

EDA, ie. curve fitting, FPCA and FANOVA, were per-
formed using the fda package in R 2.13.0 [31]. The
multinomial regression was done by the mlogit package
in R 2.13.0 [31]. The R script is available as supplemen-
tary material [see Additional file 1]. All other analyses
were performed in SPSS 19.

Table 1 Sample characteristics
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Results

Data description

Characteristics of the study sample at gestational weeks
14-16 are shown in Table 1. The women in the study
sample were not significantly different from those with
incomplete OGTT data (0.11<p<0.94). The number of
women with a GDM diagnosis increased from 3 (0.3%)
at gestational weeks 14—16 to 51 (5.5%) at gestational
weeks 30—-32 (Table 1).

Curve fitting

The individually fitted, smooth OGTT glucose curves at
gestational weeks 14—16 showed large variations be-
tween the individual curves (Figure 1).

Functional principal component analysis

The essential modes of temporal variation between the
fitted curves were extracted by FPCA (Figure 2). The
first FPC (FPC1, Figure 2a) explained 88.1% of the vari-
ation between the fitted curves, the second FPC (FPC2,
Figure 2b) 8.6% and the third FPC (FPC3, Figure 2c)
2.4%, respectively. The corresponding physiological
interpretations were the general glucose level (FPCI,
“general level”), the time to peak for glucose (FPC2,

Characteristic Study sample, n=974%

Excluded®, n=57° Total cohort, n=1031°

Range
Gestational weeks 15.8 (1.3) 12.1-22.0 16.0 (1.4) 15.8 (1.3)
Age 314 19-42 314 314
Para 0 517 (54%) 28 (50%) 545 (53%)
Daily smoker® 7 (3%) 1 (2%) 8 (3%)
Height (cm) 169 (6) 150-184 169 (6) 169 (6)
Weight (kg) 69.9 (12.0) 446-123.1 68.2 (12.5) 69.8 (12.0)
BMI (kg/mz) 245 (3.9) 17.2-440 234 (3.8) 245 (3.9)
Birth vveightd (9 3588 (570) 600-5420 3554 (671) 3586 (576)
Blood glucose (mmol/l), first trimester
Fasting 4.0 (04) 26-53 40 (04)
30 min 57(1.2) 25-97 57012
60 min 50(14) 2.0-109 49 (14)
90 min 4502 2.0-10.1 4502
2h 4.1 (1.1) 12-7.8 41 (1.0)
GDM®: 2-h valuez7.8 mmol/I 3 (0.3%) 3 (0.3%)
Blood glucose (mmol/l), third trimester
2h 55(1.3) 1.9-10.3 55(13)
GDM®: 2-h valuez7.8 mmol/I 51 (5.5%) 54 (5.5%)

Data are mean (SD) or frequency (%).

2 Numbers may not add up to total due to missing data for some variables.
® Women excluded due to incomplete OGTT data.

€ >1 cigarette/day.

9 Birth weight of offspring.

¢ Gestational diabetes mellitus.
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Figure 1 Observed OGTT data and individually fitted curves at gestational weeks 14-16. a shows the observed OGTT data (light grey)
and individually fitted curves (dark grey) for the first five women in the study. The straight lines indicate measurements from the same woman.
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b shows the 974 individually fitted curves (grey) and the mean of these curves (black).
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Figure 2 Results from the FPCA. a-c shows the mean of the fitted curves (solid line) and how the shape of an individual curve differs from the
mean curve if a multiplum of the principal component curve (not shown) is added to (+ +) or subtracted from (- —) the mean curve. The
multiplums correspond to one SD of the FPCT, FPC2 and FPC3 scores, respectively. d-f shows the mean of the fitted curves (black), and the
individual curves for the five women with the highest positive scores (dark grey) and the five with the lowest negative scores (light grey) for each

of the three FPCs.
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“time to peak”) and the oscillations in OGTT glucose
curves (FPC3 “oscillations”), respectively. Women with
high FPCI scores had generally high glucose levels com-
pared with the mean glucose level (Figure 2a). Women
with high FPC2 scores had a longer than average time to
peak, and it took longer for their glucose levels to return
to normal postprandial levels (Figure 2b). Women with
high FPC3 scores had curves that oscillated faster than
the mean (Figure 2c). The plots of the five women with
the highest and lowest scores for each of the FPCs
(Figure 2d-f) highlighted these physiological interpreta-
tions. In sum, more than 99% of the total variation be-
tween the individual curves was explained by the first
three FPCs, and further analyses were therefore
restricted to these three FPCs.

For the majority of the women (89%), the entire OGTT
glucose curve was between 2.5 and 7.8 mmol/l, while 6%
had hypoglycaemic levels (values <2.5 mmol/l [32]) and
three women were diagnosed with GDM. The 974 individ-
ual, fitted curves are grouped according to the lower and
upper quartiles of the FPC1 and FPC2 scores in Figure 3.
Women with high scores for both FPC1 and FPC2 had
the highest glucose levels (Figure 3c), and these included
the three women with GDM. Several women had OGTT
glucose curve trajectories similar to those of the three
GDM cases, but their curves descended below the GDM
diagnosis threshold just before 2 h (Figure 3c).

Functional principal component scores vs simple
summary measures

The FPCA transformed the five correlated OGTT mea-
surements (0.40<r<0.84) into three uncorrelated FPC
scores reflecting three distinct temporal features (Table 2).
In contrast to fasting value, the 2-h value was positively
associated with all three FPC scores (0.37<r<0.79). AUC
was highly correlated with the FPC1 scores (r=0.999) but
not with the FPC2 and FPC3 scores (r=-0.01 and r=0.05,
respectively). The shape index was calculated as the 2-h
value minus the 90-min value for 587 (60%) women, and
as the 90-min value minus the 60-min value for 124 (13%)
women. A total of 263 (27%) curves failed to meet the
classification criteria of the shape index and were left out
of these analyses. The shape index was most strongly asso-
ciated with the FPC3 score (r=0.67). Pairwise scatter plots
of these bivariate associations (not shown) showed that
the three women classified as having GDM did not exhibit
unusual FPC scores. Their FPC1 and FPC2 scores were
high, but 33 other women had FPC1 scores in the same
range, and 12 of them also had FPC2 scores above the
upper quartile.

Functional analysis of variance
The means of the fitted curves differed between the four
BMI categories (Figure 4a). While the curvature was
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similar, there were clear vertical shifts between the mean
curves for normal weight, overweight and obese women.
The functional Cls for the differences between under-
weight, overweight and obese women, as compared to
normal weight women, are shown in Figure 4b. Pairwise
comparisons of BMI categories showed the time periods
of OGTT where the mean curves differed, as illustrated
by the p curves in Figure 5. We found overall statistically
significant differences between obese and overweight
women (p<0.001), obese and normal weight women
(p<0.001) and overweight and normal weight women
(p<0.001). No statistically significant difference was
found between underweight and normal weight women
(p=0.26).

FANOVA vs ANOVA of simple summary measures

The results from ordinary ANOVA comparing the BMI
categories in regard to fasting value, 2-h value or AUC
were similar to those of the FANOVA comparisons. How-
ever, the shape index was only significantly different be-
tween obese and normal weight women (data not shown).

Multinomial regression with FPC scores

The means of the fitted curves at gestational weeks 14—16
for the seven pre-defined categories of 2-h values at gesta-
tional weeks 30-32 are shown in Figure 6. The women in
the two upper categories (n=51) were all diagnosed with
GDM at gestational weeks 30—32, but the mean curves in
these two subgroups displayed different pathophysiology
at gestational weeks 14—16. All women in the five lowest
categories had a 2-h value below 7.8 mmol/l at gestational
weeks 30-32, and were thus not diagnosed with GDM,
but there were clear vertical shifts between their mean
OGTT glucose curves at gestational weeks 14—16.

The results of the multinomial logistic regression ana-
lyses are shown in Table 3. The FPC1 scores and the AUC
(Models 1 and 4, respectively) yielded nearly identical
results, thus the results for AUC are not shown. We found
that the mean FPC1 scores (and AUC) in the reference
category were significantly different from the mean FPC1
scores in all other categories (all p<0.001), but that the
mean FPC1 scores in subgroups of women with GDM
were not significantly different (p=0.40). Also, the mean
FPC1 scores in the lowest GDM category were not signifi-
cantly different from the mean FPC1 scores in the closest
non-GDM category (p=0.59). Similarly, no significant dif-
ferences were found for fasting value, 2-h value or shape
index in the three upper categories, i.e. between subgroups
of women with and without GDM. In contrast, FPC2
scores discriminated between women who did and did not
develop GDM, and between subgroups of women diag-
nosed with GDM later in pregnancy. The means of the
FPC2 scores were significantly different between the three
upper categories, p=0.01 and p=0.02, respectively. We also
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grey lines in Figure 3c.

found a difference in the FPC3 scores between the two
GDM categories (p=0.05) (Table 3).

Discussion

The present study demonstrated how information inher-
ent in the shape of OGTT glucose curves can be
extracted. The FDA approach yielded quantifiable shape

entities with physiologically interpretable information
that was not contained in the traditional simple sum-
mary measures. The extracted shape information dif-
fered significantly between women who did and did not
develop GDM, and between subgroups of women diag-
nosed with GDM later in pregnancy, while various sim-
ple summary measures did not.



Froslie et al. BVIC Medical Research Methodology 2013, 13:6
http://www.biomedcentral.com/1471-2288/13/6

Page 8 of 15

Table 2 Pearson correlation coefficients for OGTT measurements, FPC scores and simple summary measures (n=974)

OGTT OGTT FPC scores
Fasting 30min 60 min 90 min 2h  FPC1: “General level” FPC2: “Time to peak” FPC3: “Oscillation”

Fasting 1.00 044 040 041 042 047 -0.12 042
30 min 1.00 0.77 0.66 0.55 0.85 -047 0.19
60 min 1.00 0.84 0.70 0.96 —0.04 -0.22
90 min 1.00 0.80 093 031 —-0.01
2h 1.00 0.79 040 037
AUC 0.50 0.86 0.95 0.92 0.81 0.999 —0.01 0.05
Simple shape index® -0.10 -034 -049 -041 0.12 -042 0.21 0.67

@ n=711. Calculated as 2-h value minus 90-min value, or 90-min minus 60-min value [12].

The challenge of extracting shape information from
glucose curves has been addressed by others [11-14], but
these studies have focused on either simple shape indices
or advanced parametric modelling. The present study is
the first to use statistical tools and corresponding avail-
able software developed specifically for curves, to ana-
lyse OGTT data.

Our results were based on a large and relatively
homogenous sample of healthy, pregnant women, but on
a small number of glucose measurements per woman, as
compared to those of an intravenous glucose tolerance
test. One might expect to find even more physiologically
interesting details and discriminating features of OGTT
glucose curves, e.g. a larger number of FPCs with a sub-
stantial percentage of explained variability and more tem-
poral details in the FPCs, in a more heterogeneous
population with a more frequent OGTT sampling. For in-
stance, our fitted curves could not reveal more than two
peaks, but curves based on more densely sampled mea-
surements over a longer time period than 2 h would likely
show decreasingly oscillating curves rather than purely bi-
phasic trajectories [14]. We therefore proposed the term
“oscillating” as a qualitative description of OGTT glucose

curves with more than one peak rather than using the
term “biphasic”, which has been used by others [12,14].
Furthermore, the classification of OGTT glucose curves as
“biphasic”, “monophasic” or “unclassified”, involves several
ad hoc conditions [12]. In the present study, we used FPC
scores as continuous variables, as per general statistical
recommendations, as this is the first choice of analysis in
order to retain information and statistical power [33].

The mean of the fitted curves obtained from FDA
(Figures 1, 2, 3) corresponded well with the familiar gen-
eral shape of OGTT glucose curves [6,34,35]. In the lit-
erature in general, figures and analyses are usually based
on the means at selected time points, with variability
quantified by the SD or SE at the same time points, e.g.
when comparing glucose responses [6]. In general, as
seen in Figures 1, 2 and 3, the temporal mean under-
communicates the temporal variability. Although indi-
vidual glucose curves have been presented in several
publications [14,35,36], the variability in curve trajector-
ies is highly under-reported, and thus largely unknown.
As a result, the information indicated by the shape of
OGTT glucose curves is rarely used in clinical practice,
and only occasionally in research, although the standard
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Figure 4 Results of the FANOVA. a shows the means of the fitted glucose curves for the BMI categories underweight (n=17, light grey curve),
normal weight (n=588, bold grey curve), overweight (n=274, dark grey curve) and obese (n=87, black curve). b shows the estimated functional
regression coefficients with corresponding Cls (shaded) and with normal weight as the reference category.
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Figure 5 p curves for pairwise comparisons of BMI categories using functional permutation tests. The dashed line is the significance level of 0.05.
. J

practice of taking repeated blood samples during OGTT
suggests a focus on the curve. We have presented the in-
dividual, fitted curves in order to emphasise the hetero-
geneity between our study women and to provide a
reference for OGTT glucose curves in healthy, pregnant
women.

While a FPCA will decompose the variation between
individual curves into a set of uncorrelated, temporal
features, the clinical usefulness of this analysis depends
on how the FPCs are interpreted. In this study, current
insight into metabolism supported the interpretations of
the FPCs as plausible and important physiological fea-
tures. FPC1, which represented the general level and was
the most important temporal feature of the curves, was
almost perfectly correlated with AUC, and was signifi-
cantly higher in women with high BMI. The fasting
value and the 2-h value were also correlated with FPC1,
but not as strongly as AUC. This is to be expected as a
single measurement from a temporal phenomenon
rarely describes the most essential temporal feature of
the corresponding curve satisfactorily. Moreover, AUC is
much better than the widely used fasting, or 2-h value in

capturing the essential temporal information of OGTT
glucose curves, which is consistent with results from
previous studies [37-39]. The strongest association be-
tween the shape index and the FPC scores was found for
FPC3 scores, which explained the smallest proportion of
the total variance. This proportion was so small that
FPC3 could have been left out of the analyses. We chose
to include FPC3 for the comparison of FDA with the
shape index. The shape index is based on an a priori
classification of curves, involving an ad hoc set threshold
for change. Many curves (27%) failed to meet the classi-
fication criteria and were left out of the analyses, res-
ulting in a severe reduction of power and a biased
representation of metabolic profiles in the study sample.
Another, recently suggested shape index [13] is based on
a rough approximation of the mean of the second order
derivatives in the intervals between the measurements
during the OGTT, giving a rough approximation of the
total curvature. In the present study, FPC3 scores, repre-
senting the smallest proportion of the variance, quanti-
fied the amount of curvature. The shape feature of FPC3
was however less clear than for the first two
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Figure 6 Means of glucose curves in first trimester, for different
glucose categories later in pregnancy. The figure shows the
means of the fitted glucose curves at gestational weeks 14-16, for
different categories of 2-h values at gestational weeks 30-32. Darker
lines indicate higher 2-h values. The 2-h glucose categories are <327,
[327,3.89), [3.89, 6.39), [6.39, 6.90), [6.90, 7.8), [7.8, 8.84) and 2884 mmol/I.

components, and although it is possible that the third
component might explain a larger part of the total vari-
ation if the sampling was more frequent and over a
longer time period, this component should be used and
interpreted with caution.

Glucose tolerance early in pregnancy has been found
to predict glucose tolerance later in pregnancy [40]. The
EPC1 scores, 2-h values and AUC differed significantly
between groups of women without a GDM diagnosis at
gestational weeks 30-32. However, only FPC2 scores
were significantly different between women with and
without GDM and only FPC2 and FPC3 scores differed
significantly between diabetic women with the highest
and second highest 2-h values in the third trimester.
Thus, FPC1 or AUC alone did not capture all of the es-
sential information about the differences in glucose me-
tabolism. To distinguish curve trajectories reflecting
deviating glucose tolerance from those considered nor-
mal, the information from FPC2 and FPC3 was neces-
sary. A study of type 1 diabetes mellitus patients with
islet transplantations showed that increased glucose
AUC and time to peak C-peptide after metabolic testing
were metabolic markers of islet allograft dysfunction [41],
supporting the physiological importance of both FPC1
and FPC2 scores. The timing of the peak C-peptide was
also found to be predictive of progression to type 1 dia-
betes mellitus in the Diabetes Prevention Trial [42].

The alternative to data-driven approaches such as
FPCA for analysing full glucose curves is parametric
modelling based on differential equation models of
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physiological mechanisms. Current concepts of blood
glucose dynamics have been summarised in such models
[14,43-45]. For instance, blood glucose levels and, hence,
the shapes of glucose curves are affected by a number of
key organs and physiologic processes that regulate the
entry and removal of glucose from the blood [12,46]. A
major disadvantage of parametric models is that estimat-
ing each person’s individual parameters requires many
measurements, often based on intravenous test proce-
dures [47]. Although the use of OGTTs is debated [48],
it is the simplest and most frequently used test proced-
ure in larger studies because “gold-standard” intravenous
procedures such as the euglycaemic clamp [49] are time-
consuming, invasive and labour intensive.

Another important issue with parametric models of
blood glucose regulation is the “closed loop” assumption,
which can be hard to justify when modelling biological
processes in the body because such processes are usually
also susceptible to external influences. Diet, physical ac-
tivity, obesity, changes in weight or visceral fat deposits,
smoking and stress have all been shown to affect blood
glucose levels [35] and external factors can have long-
term effects on metabolism [50]. The genetic disposition
of each individual adds to this complexity [51]. Finally,
pregnancy causes alterations in a wide range of variables,
including hormonal changes, insulin resistance and
alterations in daily life habits. Nevertheless, parametric
models seldom adjust for confounding by external vari-
ables [14,44,45]. Hence, even when parametric models
seem to fit the data well, the error term for fit can in-
clude structural information not addressed in the pre-
defined model, including information on the long-term
effects of diet and the endocrine changes caused by
pregnancy itself. This can make it difficult to validate the
physiological theories underlying parametric models.

Although FDA or parametric modelling are the most
natural approaches to glucose data for the study of glu-
cose curves as single entities, there are alternatives to
these analyses for the data presented in this article. For
instance, the relation between BMI and glucose values
could have been examined with a classical longitudinal
data analysis with five repeated measurements per
woman, with random effect of woman and modelling of
the covariance structure. Also, instead of scores from
FPCA, ordinary PCA scores based on the five glucose
variables could be used as input to the regression ana-
lysis of glucose tolerance later in pregnancy. With only
five measurements per curve, and measurements taken
at the same time points for each woman, such traditional
multivariate methods would be expected to extract simi-
lar information as the FDA. However, FDA is easier to
apply in situations with more frequent sampling, sam-
pling at unequal time points and missing data. In
addition, FDA emphasizes the basic assumption about



Table 3 Results from four multinomial logistic regression analyses

Model 1: FPC1, FPC2 and FPC3 scores, gestational weeks 14-16*

2-h value, n FPC1 scores® FPC2 scores FPC3 scores
‘?vf:;:b“a' Mean (SD) OR (95% Cl) p p° Mean (SD)  OR (95% Cl) p p° Mean (SD) OR (95% Cl) p p°
30-32
28.84 19 126 (13.5) 1.08 (1.04,1.13) <0.001 040 57 (5.1) 1.36 (1.20,1.53) <0.001 0.01 —0.7 3.0) 0.87 (0.68,1.10) 0.23 0.05
[7.8,8.84) 32 11.1 (13.1) 1(1.07,1.14) <0.001 0.59 1.8 (4.7) 1.14 (1.04,1.25) 0.01 0.02 0.5 (1.6) 1.14 (0.95,1.37) 0.16 041
(6.90,7.8) 83 94 (12.8) 0(1.07,1.12) <0.001 0.02 -0.1 (3.0) 1.01 (0.95,1.08) 0.69 0.60 02 (1.9 1.05 (0.93,1.19) 047 0.57
[6.39,6.90) 94 49 (9.6) 1.06 (1.04,1.09) <0.001 -0.5 (3.8) 0.99 (0.93,1.06) 0.79 0.1 (1.8) 1.00 (0.89,1.13) 0.98
[3.89,6.39) 601 -18(9.7) 1 Ref -0.2 (34) 1 Ref 0.1 (1.8) 1 Ref
[3.27,3.89) 70 —6.9 (8.7) 0.94 (0.91,0.98) <0.001 <0.01 0.0 (3.0 0.98 (0.90,1.06) 0.62 0.07 -0.5(1.7) 0.85 (0.74,0.98) 0.03 063
<327 23 —12.0 (9.8) 0.83 (0.78,0.90) <0.001 -09 (3.8) 0.85 (0.73,098) 0.02 -0.8 (24) 0.80 (0.62,1.01) 0.07
Model 2: Fasting value gestational weeks 14-16* Model 3: 2-h value gestational weeks 14-16* Model 5: Simple shape index® gestational weeks 14-16*
Mean (SD) OR (95% Cl) p p° Mean (SD)  OR (95% Cl) p p° Mean (SD) OR (95% Cl) p p°
28.84 19 4.1 (0.5 2.00 (0.57,6.86) 0.28 0.55 5504 340 (2.24,5.18) <0.001 0.71 —-0.80 (1.3) 0.53 (0.30,092) 0.03 0.36
[7.8,8.84) 32 4.1(03) 7 (1.22,801) 0.02 0.54 53(14) 311 (2.24/4.33) <0.001 0.07 —047 (0.8) 0.73 (046,1.17) 0.19 092
(6.90,7.8) 83 42 (04) 443 (2.26,7.71) <0.001 0.03 49 (1.1) 2.25 (1.79,2.84) <0.001 0.01 -047 (0.8) 0.71 (0.52,097) 0.03 0.84
(6.39,6.90) 94 4.1 (04) 7 (0.99,3.25) 0.04 44(09) 1.58 (1.26,1.98) <0.001 —-0.51(0.7) 0.74 (0.55,1.00) 0.05
[3.89,6.39) 601 4.0 (04) 1 Ref 40 (09) 1 Ref —-0.29 (0.7) 1 Ref
[3.27,3.89) 70 38(03) 0.32 (0.15,0.65) <0.01 0.63 35(08) 0.57 (0.42,0.78) <0.001 <0.01 —-0.28 (0.7) 0.95 (0.66,1.37) 0.80 0.18
<327 23 38(04) 0.23 (0.09,0.93) 0.01 29 (04) 0.24 (0.14,041) <0.001 -0.33(1.1) 0.60 (0.34,1.07) 0.09

@ The FPC1 scores in model 1 and the AUC in model 4 yielded nearly identical results and the AUC results are thus not shown.

b p values from pairwise comparison between adjacent groups.
€ n=711. Calculated as 2-h value minus 90-min value, or 90-min minus 60-min value [12].

* Categories of 2-h values in the third trimester is the response variable and OGTT characteristics in gestational weeks 14-16 are explanatory variables. All models are adjusted for BMI in gestational weeks 14-16.
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continuity of the underlying process and its derivatives,
and opens for analysis of the derivatives of the curves.

Contrary to general statistical advice [33], we have cate-
gorised two continuous variables in the analyses. An important
aim of the present work was to introduce FDA and its benefits
to a clinical audience. To ease the presentation of FDA, we
chose to categorise BMI and the 2-h glucose at gestational
weeks 30-32, based on the use of these variables in clinical
practice. Different BMI categories are assumed to represent
different risk groups [27], and BMI categories are frequently
reported in clinical literature. The categorised BMI variable
was therefore used in the analyses, although functional regres-
sion with BMI as a continuous variable would be preferable
from a statistical point of view [33], especially as there were
no obvious signs of nonlinearity (Figure 4a). The categorisa-
tion of the 2-h glucose value at gestational weeks 30-32, in
contrast, revealed important non-linear relations (Figure 6). As
an alternative to the multinomial logistic regression model, a
regression model with the 2-h value as a continuous response
variable could have been used.

The women in the cohort underwent two OGTTs, but
only one was considered functional in the present work. We
chose the 2-h value in third trimester as the main outcome
instead of the entire curve in third trimester, due to the clin-
ical relevance of this value in pregnancy care. As glucose
curves are not commonly used, inference about the 2-h value
would better illustrate the usefulness of information from
FDA for a maternal pregnancy outcome in clinical practice.

Continuous glucose monitoring devices allow for more
frequent glucose sampling over longer periods and
might increasingly be used in future studies and in indi-
vidual patient care to obtain OGTT measurements and
measurements of glucose profiles in daily life. An in-
creasing use of continuous glucose monitoring advocates
the use of statistical tools that can properly analyse the
continuous stream of data by providing curves that may
be subjected to FDA as illustrated in the current work.

Furthermore, comparison of curve shape information
from individuals with insulin resistance or beta cell fail-
ure might reveal whether curve features can distinguish
between these two main processes that lead to the devel-
opment of diabetes. Also, the curve shape information
as obtained by FPCA in early pregnancy has the poten-
tial to predict complications in later pregnancy better
than simple summary measures.

Our work shows that the FDA approach worked well,
despite the very limited number of measurements for
each participant. Dynamic, physiological processes will
often be represented by scarcely sampled measurements,
especially when repeated blood samples are required. In
addition to glucose regulation, other examples where an
FDA approach can be valuable include diurnal measure-
ments of hormone regulation, metabolic changes during
or after meals, or after physical exercise. The presented
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techniques should therefore also be explored in studies
of metabolic disorders in non-pregnant populations.

Conclusions

In conclusion, the FDA approach was superior to trad-
itional analyses of OGTT data in terms of providing
physiologically interpretable and important temporal in-
formation, and in terms of differentiating between women
who did and did not develop GDM during pregnancy. We
recommend the FDA approach for the analysis of glucose
data sampled repeatedly during glucose tolerance testing,
or continuous glucose monitoring, to capitalise on import-
ant information that would otherwise be lost.

Appendix A

A.1. Curve fitting in functional data analysis

Let y;(t;) be the measurement from individual i at time
t,i=1,..,nmand j=1,...,J. In our OGTT data, n =974
and J=5. To each individual set of observations, y(t),
j =1,...,J, we fit a continuous, smooth function x(%),
spanning the observed time range. In our OGTT data,
t€ [0, 120]. The estimation of the continuous curves x;(t)
from data points y(f) is based on the measurement
model

5i(4) = #:(4) + &5, (1)

where x,(f)) is x; evaluated at time ¢; and &; ~ N(0, ) is
an error term. It can be shown that a smooth curve is
well approximated by a linear combination of a set of
smooth basis functions ¢ (), k=1, ..., K,

1(6)= I cude(6) = " 0(0) @

where ¢, is the coefficient for the k™ basis function,

c;= (c1y.-Cxi)y and @t) = (1), ..., di(t)). We apply
B-spline basis functions, placing a knot at each of the
J time points. With ¢(Z) denoting the K™ basis func-
tion evaluated at time #;, substituting (2) into (1) yields

Fl('tl) yn(tl):| {4)1(11) ¢K(tl)} {C{l C%n:|
J’l@) yn(f/) ¢1ﬁt1) ¢Kkt1) G

€11 &1
+| N
€1 EKm

which in matrix notation reads

(3)

Y = ®C +E,

with Y, @, C and E defined from (3). Here Y is the
Jx n matrix of observed blood glucose measurements;
@ is the Jx K matrix of the values of the K basis func-
tions evaluated at times £, and E the Jx#» matrix of
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error terms. Finally, C is the Kx n matrix of unknown
linear coefficients ¢;;, which we estimate by minimising
the penalised least squares expression

(Y-®C)" (Y-®C) + \CTRC.

The penalty term, A\C'RC, where 1 is a smoothing par-
ameter that defines the degree of regularisation, is added
to compensate for random error, and is based on the
total curvature of the fitted curve,

R = [D*$(s)D*$” (s)ds,

where D?*¢(s) is the second derivative of the vector of
basis functions ¢(£). The smoothing parameter A € [0, o)
is estimated by optimising a generalised cross-validation
criterion. For more detail, see publications by Ramsay
et al [17,18].

Appendix B

B.1. Functional principal component analysis

Functional principal component analysis (FPCA) can be
viewed as rotating functional data to optimal empirical
continuous basis functions, referred to as functional
principal component (FPC) curves [17,18]. Associated
with each FPC curve are individual FPC scores. These
quantify how much the individual, fitted curves differ
from the mean curve, in terms of the temporal pattern
described by each FPC curve.

An FPC curve & (¢) and its corresponding FPC scores
Zw» K=1,...,K, for individuals i=1,...,n, are estimated
simultaneously by finding a weight function &(¢) defined
over the same range of ¢ as the functional data x,(¢),
maximising the variance of the corresponding individual
FPC scores z;, given by z; = [ £(t)x,(t)dt, subject to con-
straints. The first FPC, &;(¢), is found by maximising the
variance of the principal component scores z;; subject to
the constraint| &(¢)’dt=1. Consecutive FPCs are
defined similarly under the additional constraint of being
orthogonal to the already extracted FPCs. For more de-
tail, see publications by Ramsay et al [17,18].

Appendix C

C.1. Functional analysis of variance

Functional analysis of variance (FANOVA) is a method
for studying the difference between the functional means
of fitted curves in mutually exclusive subgroups of the
study sample.

Consider a categorisation of the study sample into
g = 1,...,G categories, e.g. BMI categories. Let L, be
the sample size in category g. We model the ™ OGTT
glucose curve, [ =1, ..., L, in the g™ category, x4(2), as

xig (1) = Prer(t) + By (t) + e(2).
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Here B(t) is the mean of the fitted curves in the
reference category, f,(¢) the difference between the mean
curve in the g™ category and the reference category, and
£,(t) the individual residual curve. The estimated group

mean curve differences [gg(t), g=1,..,G, called the

FANOVA coefficients, are based on the fitted curves
described in Appendix A. They are also functions over
the same ¢ range.

Differences between categories can be evaluated by
functional ClIs for the FANOVA coefficients, corre-
sponding p(£) curves and overall p values from permuta-
tion F tests. The presented permutation tests are based
on 1000 permutations of the fitted curves in two differ-
ent categories. The CIs and p(¢) curves are calculated
point-wise over the t range, using the estimated F-ratio

FR(t) = 3eszie)
ance, MRS(t), to predicted variance, MSE(t). The permu-
tation distribution is found for the point-wise F-statistic,
giving Cls and p(t) curves over the ¢ range, and for the
maximal value of the point-wise F-statistic, giving an
overall p value. For more detail, see publications by

Ramsay et al [17,18].

calculated as the ratio of residual vari-

Additional file

Additional file 1: R script for functional data analysis of glucose
curves.
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