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Abstract

Background: Studying the effects of medications on endpoints in an observational setting is an important yet
challenging problem due to confounding by indication. The purpose of this study is to describe methodology for
estimating such effects while including prevalent medication users. These techniques are illustrated in models
relating statin use to cardiovascular disease (CVD) in a large multi-ethnic cohort study.

Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) includes 6814 participants aged 45-84 years free of CVD.
Confounding by indication was mitigated using a two step approach: First, the untreated values of cholesterol were
treated as missing data and the values imputed as a function of the observed treated value, dose and type of
medication, and participant characteristics. Second, we construct a propensity-score modeling the probability of
medication initiation as a function of measured covariates and estimated pre-treatment cholesterol value. The effect
of statins on CVD endpoints were assessed using weighted Cox proportional hazard models using inverse
probability weights based on the propensity score.

Results: Based on a meta-analysis of randomized controlled trials (RCT) statins are associated with a reduced risk of
CVD (relative risk ratio=0.73, 95% Cl: 0.70, 0.77). In an unweighted Cox model adjusting for traditional risk factors
we observed little association of statins with CVD (hazard ratio (HR) =0.97, 95% Cl: 0.60, 1.59). Using weights based
on a propensity model for statins that did not include the estimated pre-treatment cholesterol we observed a slight
protective association (HR=0.92, 95% Cl: 0.54-1.57). Results were similar using a new-user design where prevalent
users of statins are excluded (HR=0.91, 95% Cl: 0.45-1.80). Using weights based on a propensity model with
estimated pre-treatment cholesterol the effects of statins (HR =0.74, 95% Cl: 0.38, 1.42) were consistent with the
RCT literature.

Conclusions: The imputation of pre-treated cholesterol levels for participants on medication at baseline in
conjunction with a propensity score yielded estimates that were consistent with the RCT literature. These
techniques could be useful in any example where inclusion of participants exposed at baseline in the analysis is
desirable, and reasonable estimates of pre-exposure biomarker values can be estimated.
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Background

Randomized controlled clinical trials (RCTs) are a com-
mon and useful way to study the effects of medications
on outcomes. Randomization ensures that participants
receiving different treatments are comparable. However,
randomized trials cannot address every possible question
of interest. Observational studies often have different
endpoints (e.g. advanced magnetic resonance imaging of
heart size and function) that may not have been studied
in an RCT, longer follow-up, unique populations, or some
other inherent practical advantage for examining certain
associations. This leads to the challenge of studying medi-
cation effects on endpoints in the observational setting,
where issues of confounding by indication are challenging
to deal with. Participants that receive the medication in
practice differ systematically from those who do not in
terms of outcome risk factors. In the case of statins, a
widely prescribed cholesterol lowering medication [1],
treated participants would on average be those with higher
underlying cholesterol levels and greater cardiovascular
risk factor burden.

An approach to this issue is to use a “new-user” design,
whereby prevalent users of medications at baseline are
excluded. The new-user design has important advantages
such as eliminating bias from time-varying hazards that
arise when including prevalent users. Additionally, the new-
user design allows the pre-treatment participant character-
istics to be used in the analysis to control for confounding
[2]. However, there are several situations where it is ad-
vantageous or even necessary, to include prevalent users
in the analysis. For example, the number of participants
taking medication already may be very large, and exclu-
sion of this subset may be prohibitive in terms of sample
size and power. Another example is the situation where
the endpoint of interest is only measured at one exam,
often the baseline exam, and a cross-sectional analysis in-
cluding prevalent users is the only choice.

A common technique to deal with confounding by in-
dication in observational studies is to use a propensity
score. Propensity scoring is a method of obtaining a
summary score that can be used to control for a collec-
tion of confounding variables in a study [3]. A propen-
sity score for a particular exposure is the conditional
probability that a person will be exposed given a set of
observed covariates. In principle, the effect of the expos-
ure can then be measured among participants who have
the same predicted propensity of treatment, thus control-
ling for the confounding [4]. This has been shown to be
effective at reducing indication bias in other observational
studies [5].

An assumption of the propensity score approach is that
all confounding variables (influencing both the exposure
and the outcome) have been measured. In the setting of an
observational cohort study this is a problematic assumption

Page 2 of 10

when using exposure at study baseline. The underlying
value of the biomarker (e.g. cholesterol) is often a primary
determinant of exposure (e.g. statins), and for those ex-
posed (e.g. taking statins) the underlying value is not
measured. Thus, the propensity score will not correctly
eliminate confounding due to the biomarker. To deal with
this issue, we consider the underlying pre-treatment chol-
esterol levels from the subset of participants on lipid-
lowering medications at baseline as “missing” data, then
following the techniques by McClelland et al. [6], impute
the pre-treatment cholesterol levels as a function of ob-
served on-treatment cholesterol levels, medication type,
and dose. Multiple imputation techniques are used to
incorporate the variability induced by the estimation.
The treated cholesterol values are then replaced with
the imputed pre-treatment cholesterol values for those
on lipid-lowering medication. The propensity score is esti-
mated using this new cholesterol variable, in addition to
other covariates. This modified propensity score is then
used to reduce the indication bias in a Cox proportional
hazard model for time to incident cardiovascular disease
(CVD) endpoints where time starts at entry into the study
and where participants are free of CVD at entry. This is
an example where the effects of statins have been exten-
sively studied in numerous RCTs.

Methods

The Multi-Ethnic Study of Atherosclerosis (MESA) data
MESA is a prospective cohort study of the prevalence,
risk factors and progression of subclinical cardiovas-
cular disease in a multi-ethnic community-based co-
hort. The study includes 6814 participants with no
known CVD at baseline, aged 45-84 years who identified
themselves as White, African-American, Hispanic, or
Chinese recruited from six United States communities
between 2000 and 2002. The communities were Forsyth
County, North Carolina; Northern Manhattan and the
Bronx, New York; Baltimore City and Baltimore County,
Maryland; St. Paul, Minnesota; Chicago, Illinois; and
Los Angeles County, California. Each site recruited an
approximately equal number of men and women, according
to pre-specified age and race/ethnicity proportions. All
participants gave informed consent. Details of the sam-
pling, recruitment, and data collection have been reported
elsewhere [7]. Blood lipid measurements were obtained
following an overnight fast. Low-density lipoprotein (LDL)
cholesterol was calculated in plasma specimens having a
triglyceride value of <400 mg/dL using the formula of
Friedewald et al. [8]. Medication use was determined by a
questionnaire. The participant was asked to bring to the
clinic containers for all medications used during the two
weeks prior to the visit. The interviewer then recorded the
name of each medication, the prescribed dose, and fre-
quency of administration from the containers. MESA is an
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ongoing, multi-faceted study, with results spanning many
areas of research.

CVD was ascertained at intervals of 9-12 months by a
telephone interviewer who contacted each participant to
inquire about interim hospital admissions and cardiovas-
cular outpatient diagnoses. Trained personnel abstracted
medical records suggesting possible cardiovascular events,
and two physicians independently classified the events.
The endpoints included in this analysis were incident
hard coronary heart disease (CHD) and incident hard
CVD. Hard CHD is defined as definite or probably myo-
cardial infarction (MI) or CHD death. Hard CVD is de-
fined as hard CHD or stroke. Definite or probable MI
required either abnormal cardiac biomarkers; evolving
Q waves; or a combination of chest pain, characteristic
ECG changes, and abnormal biomarker levels. Fatal CHD
required a documented MI within 28 days of death, chest
pain within 72 hours of death, or a history of CHD with-
out a known non-cardiac cause of death.

Imputation model
The first step in the imputation process is to identify a
subset of participants that have both pre- and post-
treatment (lipid-lowering medication) measurements of
cholesterol. These are the participants who are not on
lipid-lowering medication at baseline and then go on to
start medications at subsequent visits. We refer to this
subset as the new-user cohort and there are N =1286
participants that qualify. The new-user cohort is used to
establish a linear regression relationship between pre-
treatment cholesterol values and post-treated cholesterol
values, medication data and relevant participant charac-
teristics. The variables ultimately chosen for this regression
model are then used to impute pre-treatment cholesterol
levels for participants on lipid-lowering medication at base-
line. Note that unlike traditional missing data imputation
approaches (in which the missing cholesterol of those on
treatment would be imputed based on the observed choles-
terols of other participants at the same exam who were
untreated), we are using an independent subset of new-
users with pre- and post- treatment values to develop
the imputation model. In the absence of such a subset,
one could use medication effects reported in the meta-
analysis literature to estimate pre-treatment values [6].
Post-treatment cholesterol is important in explaining
the variability of the pre-treated cholesterol. In addition,

Table 1 Structure of the dataset used for imputation
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other participant characteristics such as age, gender, race/
ethnicity and risk factors, and the medication type and
dose are also important. This analysis is principally inter-
ested in the relationship of statins with CVD as they were
the most commonly prescribed lipid-lowering medication
in this population. We observed use of six types: atorva-
statin, fluvastatin, lovastatin, pravastatin, simvastatin, and
rosuvastatin. Other, non-statin, drugs with lipid modifying
effects were used as covariates to impute underlying chol-
esterol levels. The non-statin group was categorized into 4
subclasses, resins, fibrates, niacin, and ezetimibe. Indicator
variables were created for each type of statin and for each
of the subclasses of non-statins. Participants on multiple
medications and those taking combination medications
were assigned indicators for each medication. Medica-
tion dosage was acquired from the prescribed dose (in
milligrams) written on the medication containers, and
medication indicators were assigned a value from 0-2
where 0 = not on drug, 1 = on drug, low dose, and 2 = on
drug, high dose. Those prescribed 240 mg per day of a
given statin (or >20 mg per day of atorvastatin) were
considered to be on high dose. When the high dose group
had less than 10 participants it was collapsed down to a
binary yes/no variable.

From the full MESA cohort (6814) there were 1086
participants (16%) on lipid-lowering medications at base-
line. We refer to this group as the baseline-user cohort
and they are the ones for which pre-treatment choles-
terol will be imputed. In order for the imputation to be
carried out easily using existing software, the new-user
and baseline-user cohort data were stacked as illustrated
in Table 1. All the pre-treated cholesterol levels will be
missing for the baseline-user cohort while the new-user
cohort will have all non-missing data, corresponding to
the observed cholesterol at the exam before they com-
menced taking a lipid-lowering medication. Note that
we are stacking data from different exams for conveni-
ence, since they all represent pre-treatment values. Simi-
larly, the post-treatment values and covariates are stacked,
and the new-user observations correspond to the exam
immediately after starting lipid lowering medication. For
the baseline-user cohort the post-treatment value is always
present and is their observed cholesterol at baseline, and
covariates are also all taken from baseline. Standard im-
putation commands can then be used to generate the
imputations. Once the imputations are constructed, we

Observations Y = Pre-treated cholesterol

X = Post-treated cholesterol Z = Covariates

New lipid-lowering medication users
(N=1286)
medication)

Lipid-lowering medication users at baseline Missing
(N =1086)

Exam dependent cholesterol levels
(exam prior to starting lipid-lowering

Exam dependent cholesterol levels
(exam after starting lipid-lowering
medication)

Exam dependent covariates
(exam after starting lipid-
lowering medication)

Post-treated cholesterol from Baseline covariates from exam 1

exam 1
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then merge these imputed values back in with the base-
line data as the pre-treatment cholesterol value for those
on medication at baseline (e.g. for the 1086 in the baseline-
user cohort). For the remaining participants not on medica-
tion the original observed cholesterol is used. In previous
work by McClelland et al. [6] it was shown that in MESA
baseline statins users and new statin users were comparable
in terms of age, gender, race, body mass index, smoking,
diabetes status, and type and dose of lipid lowering
drug. The new medication users tended to have a higher
rate of hypertension (67.6 versus 62.3 per cent, p = 0.05)
and tended to have treated LDL cholesterol an average
of five units lower (99.5 versus 104.5 mg/dL, p = 0.002).

Multiple imputation techniques following the algorithm
of Van Buuren et al. [9] as implemented and described by
Royston [10,11] are used to incorporate the extra variability
induced from the imputation. Essentially, rather than im-
pute one single pre-treatment cholesterol level for partici-
pants on lipid-lowering medication we generate 10. For
each realization, the corresponding set of complete data is
analyzed in a standard manner and the results are pooled
using a set of rules proposed by Rubin [12]. The im-
putation method regresses pre-treated cholesterol with
post-treated cholesterol and specified covariates and then
random draws are taken from the conditional distribu-
tion of the missing cholesterol variable given the post-
treated cholesterol and covariates. McClelland et al. [6]
showed that this multiple imputation technique yields
more realistic parameter estimates than other traditional
approaches to missing data. Imputation is performed with
Stata 11.2 using the ice (imputation by chained equations)
routine written by Royston [11].

An assumption in multiple imputations is that of miss-
ing at random (MAR) [13]. Essentially, MAR means the
probability of missingness may depend on the data that
was observed but not on data values that are missing [14].
In our case the missingness in pre-treated cholesterol was
predetermined based on whether or not that participant
was on lipid-lowering medication at baseline.

Propensity score model

The propensity score is obtained from a logistic regression
model and is the conditional probability of being on treat-
ment given a set of covariates: e(X) = Pr(Y = 1|X), where
X = cholesterol, clinic site, age, gender, race/ethnicity, body
mass index, systolic and diastolic blood pressures, heart
rate, hypertension status, hypertension medication use,
smoking status, pack-years of cigarette smoking, alcohol
use, family history of MI, diabetes, education, income,
health insurance, marital status, general health, depres-
sion, intentional exercise, coronary artery calcification
(CAC), common and internal carotid intimal-medial
thickness (IMT), creatinine, fibrinogen, and high sensi-
tivity C-reactive protein (hs-CRP). CAC and IMT were

Page 4 of 10

natural log transformed and continuous variables were
centered about their means. Estimated propensity scores
were created for each of the 10 imputations. For com-
parison, a propensity score was also created following a
new-user design [2] where prevalent users at exam 1 are
excluded and the propensity is based on those who start
statins at exam 2.

Stabilized inverse probability of treatment weights (SW)
were created for each of the propensity scores to be used
in the weighted regression models. Inverse probability
weighting can be used to estimate the exposure effects
by appropriately adjusting for confounding and selection
bias [15]. The weighting creates a pseudo-population in
which the exposure is independent of the measured con-
founders. In such a pseudo-population one can regress
the outcome on the exposure using conventional regres-
sion techniques [16]. We use stabilized inverse probability
weights as suggested by Xu et al. [17] who found that
it'’s possible to preserve the sample size in the pseudo-
population close to the original data and produce a rea-
sonable estimation of the variance of the main effect while

maintaining an appropriate type I error rate. SWs are de-
1-p
1-2(X)

not on statins, where é(X) = estimated propensity score
and p = observed proportion of statin users. In order to
limit the influence of extreme weights, the SWs were set to
.10 for weights less than .10 and to 10 for weights greater
than 10 [18]. For sensitivity, non-truncated weights were
also generated as well as different thresholds for truncating.

fined as SW= % for those on statins and for those

Endpoint models

We use weighted Cox proportional hazard models with
SWs to estimate the exposure effect of statins on CVD
endpoints using robust standard errors. For each CVD end-
point we generate four separate Cox models. One model
will be unweighted and adjusted for traditional cardiovas-
cular risk factors (TRF), while the others will utilize SW's
from different propensity model specifications. One specifi-
cation does not include any cholesterol adjustment, one
adjusts for observed cholesterol for those not on lipid-
lowering medications at baseline and imputed pre-treatment
cholesterol for those on lipid-lowering medications at base-
line. Additionally, a new-user design is also implemented
where prevalent statin users are excluded and weights de-
rived from the propensity of being a new-user of statins at
exam 2. Multiple imputation techniques are used for the
Cox models that use weights based on the imputed choles-
terol. Kaplan-Meier plots were generated to illustrate the
differences across weighting schemes and models.

Results
Participants who had non-missing CVD and covariate
data were included (N =6035) in the endpoint analysis.
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The mean age of included participants was 62 years
(range 45-84): 53% were women, 39% were Caucasian,
26% were African-American, 22% were Hispanic, and
13% were Chinese American. To be consistent with the
RCT literature on statin effects, follow-up for the CHD
analysis was truncated at 5-years. During this time
period there were 119 incident hard CHD events and
190 incident hard CVD events. After excluding partici-
pants with missing covariate data there were 968 (16%)
participants taking lipid lowering medication at baseline,
of which 885 were taking a statin. As anticipated, partici-
pants taking statins had more adverse CVD risk factors
at baseline and a higher burden of subclinical calcified
atherosclerosis than those not taking statins (Table 2).

Table 3 contains the parameter estimates for the im-
putation model. The model has an adjusted R*=0.44.
Based on this model 10 imputations of pre-treatment
cholesterol were created for each participant in the
baseline-user cohort. On average the imputed pre-
treatment total cholesterol was 39.1 mg/dL(SD = 34.2)
higher than the measured post-treatment value. Imput-
ation of pre-treatment high-density lipoprotein (HDL-c)
demonstrated only a small treatment related shift. Rather
than introduce the additional variability we used observed
HDL-c values for the remainder of the analysis.

The propensity models were evaluated by comparing
the balance of the covariates between statin users at
baseline both before and after weighting. All the covari-
ates after weighting were balanced as is shown in Table 2
for the first imputation. When comparing the baseline
total cholesterol levels, new-users (n=471) had a mean
of 220.1 mg/dL. (sd =35.4) and we estimated the pre-
treated total cholesterol levels for the prevalent-users (n =
888) as 224.0 mg/dL. (sd = 24.7). This suggested that once
we account for statin therapy, the two groups are not
greatly different in the level of dyslipidemia at baseline.

From a meta-analysis of 9 statin RCTs with over
47,000 subjects with and without prior clinical cardio-
vascular disease Cheung et al. [19] found that statins are
associated with a reduced risk of CHD with an estimated
relative risk ratio of 0.73 (95% confidence interval (CI):
0.70, 0.77). There was a relatively consistent protective
trend in other meta-analyses of statin RCTs despite the
varying demographics and different definitions of CVD
endpoints. For example, Thavendiranathan et al. [20]
used only CVD free participants from 7 trials (n=
42,848) and found the RR of major coronary events and
revascularization to be 0.71. The Cholesterol Treatment
Trialists’ (CTT) Collaborators [21] looked at 27 random-
ized trials (n = 134,537) and observed a 0.79 reduction in
major vascular events (non-fatal MI or coronary death),
strokes, or coronary revascularizations. Kostis et al. [22]
looked at 18 trials (n=141,235) with sex-specific out-
comes and various definitions of CVD endpoints and
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found women and men had similar statin effects at 0.81
and 0.77 respectively.

We analyzed the relationship between statin use and time
to CVD endpoints using Cox proportional hazard models,
which are summarized in Table 4. In an unweighted model
adjusted for TRFs statins appear to have little association
with CVD risk, with a Hazard Ratio (HR) =0.97, 95% CI:
0.60, 1.59. Using stabilized weights from a propensity model
that did not include any cholesterol adjustment the HR was
slightly more protective (HR =0.92, 95% CI: 0.54-1.57)
though still closer to the null than expected. The results
using the new-user design showed a similar association
(HR =091, 95% CIL: 0.45-1.80). When stabilized weights
were used from a propensity model that included imputed
pre-treatment cholesterol we found the HRs for statins to
be protective of CHD with a HR=0.74, 95% CIL: 0.38,
1.42.. These results are consistent in direction and magni-
tude from what was found by Cheung [19] and others in
the meta-analyses of statins.

There were between 4-8 participants that had their
weights truncated for each of the 10 imputations using
the <.1 and >10 thresholds. For sensitivity to truncating
and chosen thresholds we also looked at using the non-
truncated weights and various thresholds. We found that
when using the non-truncated weights there was a shift
in the HR from 0.74 to 0.59. The choice of thresholds af-
fected the estimates less with HRs ranging from 0.64 to
0.74 with a range of 4 to 179 participants being trun-
cated for the various thresholds.

Figure 1 contains a plot of the hazard ratios for statins
by endpoint for each of the imputations. The point esti-
mates are consistent in sign and magnitude across the
imputations and the within-imputation variability ap-
pears to be greater than the between imputation variabil-
ity. In Figure 2 we illustrate the effects of the various
weighting schemes with Kaplan-Meier plots [23]. The
first imputation was used for illustration purposes when
imputed values were used. This imputation was repre-
sentative of the general pattern across imputations. The
proportion free of incident CHD appears on the y-axis,
with separate curves for statin users and non-users at
baseline. In the unweighted version, statin users appear
to be at increased risk of CHD. If one weights using
traditional risk factors other than cholesterol or weights
based on the new-user design then we observe a slightly
protective effect of statins on CHD. When the weights
are based on the imputed pre-treatment cholesterol
there is a clear protective association of statin use on
CHD consistent with previous RCTs.

Discussion

When studying the effects of medications in the setting
of an observational study it is extremely important to re-
duce bias to the greatest extent possible. The assumption
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Table 2 Participant characteristic by baseline statin use

Baseline statin use

Non-weighted Weighted using stabilized IPTW'

Characteristics No (N=5150) Yes (N =885) No (N=5150) Yes (N =885)

Mean (SD) or n (%) Mean (SD) or n (%) P-value Mean (SD)or n (%) Mean (SD) or n (%) P-value
Age, Mean (SD), y 61.3 (10.3) 65.9 (8.8) <.001 62.0 (10.2) 62.9 (9.7) 0.141
Male 2441 (47 4%) 417 (47.1%) 0.879 2530 (47.7%) 401 (50.8%) 0.308
Race/ethnicity
White 1976 (38.4%) 385 (43.5%) 0.004 2069 (39.0%) 351 (44.5%) 0.156
Chinese 672 (13.1%) 99 (11.2%) 650 (12.3%) 74 (9.4%)
Black 1323 (25.7) 235 (26.6%) 1355 (25.6%) 186 (23.6%)
Hispanic 1179 (22.9%) 166 (18.8%) 1226 (23.1%) 178 (22.6%)
Body mass index, kg/m2 28.1 (5.5 28.7 (5.0) <.001 282 (54) 285 (5.2) 0.235
Current smoker 690 (13.4%) 83 (9.4%) 0.001 659 (12.4%) 84 (10.6%) 0394
Pack years smoking 11.0 (22.3) 129 (22.4) 0.021 11.1 (22.2) 109 (21.5) 0.880
Current alcohol use 2902 (56.4%) 507 (57.3%) 0.603 2997 (56.5%) 479 (60.7%) 0.128
Diabetes 534 (10.4%) 191 (21.6%) <001 729 (13.8%) (111 (14.0%) 0.897
Family history of Ml 1952 (37.9%) 427 (48.3%) <.001 2153 (59.4%) 334 (42.4%) 0.542
Hypertension 2082 (40.4%) 543 (61.4%) <.001 2301 (43.4%) 358 (45.3%) 0492
Hypertension Meds 1645 (32.0%) 520 (58.8%) <001 1941 (36.6%) 309 (39.2%) 0323
Total cholesterol, mg/dL 196.7 (35.7) 224.1 (364) <.001 2064 (50.9) 2044 (41.2) 0.611
Systolic BP, mm Hg 1255 (21.3) 129.7 (21.6) <.001 126.1 (21.1) 1273 (22.3) 0.286
Diastolic BP, mm Hg 720 (104) 71.2 (96) 0.038 719 (103) 720 (99 0.727
Health insurance 4644 (90.2%) 861 (97.3%) <.001 4789 (90.4%) 741 (93.9%) 0.109
Income
<$25K 1586 (30.8%) 285 (32.2%) 0.165 1679 (31.7%) 229 (29.0%) 0592
$25 K-$49 K 1492 (29.0%) 250 (28.3%) 1558 (29.4%) 237 (30.0%)
$50 K-$99 K 1375 (26.7%) 212 (24.0%) 1351 (25.5%) 8 (25.1%)
$100 K+ 697 (13.5%) 138 (15.6%) 712 (13.4%) 5 (15.9%)
Education
< High school 914 (17.8%) 143 (16.2%) 0.164 941 (17.8%) 4 (15.7%) 0.381
High school 2352 (45.7%) 420 (47.5%) 2475 (46.7%) 366 (46.4)
College 937 (18.2%) 142 (16.1%) 914 (17.3%) 4 (15.8%)
Graduate school 947 (18.4%) 180 (20.3%) 970 (18.3%) 4 (22.1%)
Married 3160 (61.4%) 546 (61.7%) 0.850 3246 (61.3%) 502 (63.6%) 0.406
Intentional exercise (met-min/wk) 1583 (2396) 1527 (2130) 0480 1644 (2421) 1692 (2477) 0.705
Creatinine, mg/dL 0.94 (0.23) 1.01 (041) <.001 0.97 (0.31) 0.97 (0.30) 0.778
Fibrinogen, mg/dL 3426 (72.8) 3574 (74.6) <001 3513 (83.8) 3564 (88.0) 0.530
hs-CRP, mg/L 37 (58) 32 (4.8) 0.004 36 (54) 42 (73) 0.396
CAC (Agatston) 122 (367) 240 (522) <.001 149 (400) 161 (444) 0.525
Common carotid (mm) 0.86 (0.19) 091 (0.19) <.001 0.87 (0.19) 0.88 (0.19) 0.195
Internal carotid (mm) 1.03 (0.57) 1.25 (0.67) <.001 1.08 (0.61) 1.13 (0.66) 0.139
Heart rate (bpm) 63.0 (9.5 63.6 (9.8) 0.066 63.3 (9.8) 63.8 (104) 0455

! Comparisons for the first imputation.
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Table 3 Parameter estimates from the linear regression model for total cholesterol

Adjusted R*=0.44 Cholesterol e treated (N = 1286)

Covariates B (95% Cl) P-value
Cholesterolyest-reated (Mg/dl) 0.53 (0.46,0.60) <001
Age (years) -0.18 (-0.35,-0.01) 0.033
Gender — Male -10.32 (-13.66,-6.98) <001
Race/ethnicity

White - - -
Chinese -6.21 (-11.71-0.72) 0.027
Black -7.62 (-11.63,-3.60) <001
Hispanic -1.21 (-5.32,2.90) 0.565
Diabetes

Normal - - -

IFG 0.23 (-3.80,4.26) 0.910
Untreated diabetes 2.69 (-9.46,14.85) 0.664
Treated diabetes -9.00 (-12.91,-5.10) <001
Hypertension Meds - Yes -543 (-8.79,-2.08) 0.002
HDLpost-reated 0.12 (-0.03,0.26) 0.107
triglycerides 0.03 (-0.00,0.05) 0.069
Atorvastatin

Yes — Low dose 2831 (18.19,38.42) <.001
Yes — High dose 4284 (31.99,53.69) <.001
Fluvastatin

Yes — Low dose 18.24 (1.01,35.47) 0.038
Yes — High dose 25.83 (13.15,38.51) <001
Lovastatin

Yes — Low dose 1941 (861,30.21) <.001
Yes — High dose 34.80 (20.87,48.74) <001
Pravastatin

Yes — Low dose 2023 (8.69,31.77) 0.001
Yes — High dose 23.72 (8.71,38.73) 0.002
Simvastatin

Yes — Low dose 4546 (22.98,67.94) <.001
Yes — High dose 19.16 (-16.64,54.96) 0.294
Simvastatin*Cholesterolyosi-treated INteraction

Yes — Low dose -0.12 (-0.25,0.01) 0.071
Yes — High dose 0.11 (-0.11,032) 0320
Rosuvastatin — Yes 3836 (26.43,50.29) <.001
Fibrate — Yes 7.00 (-3.76,17.77) 0.202
Resin - Yes -7.76 (-31.48,15.96) 0.521
Niacin — Yes -29.12 (-56.25,-2.00) 0.035
Niacin*Cholesterolpositreated INteraction 0.12 (-0.02,0.27) 0.101
Ezetimibe - Yes 12.10 (2.27,21.94) 0.016
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Table 4 Hazard ratios for statins from cox proportional hazards models for incident CHD
CHD, Hard CVD, Hard
(Events =119) (Events = 190)
Model (N =6035) HR (95% Cl) p-value HR (95% Cl) p-value
Unweighted1 0.97 (0.60,1.59) 0915 0.92 [0.62,1.36] 0.676
Weighted
Propensity model
No cholesterol 0.92 [0.54,1.57] 0.767 0.82 [0.54,1.26] 0373
Imputed cholesterol? 0.74 [0.38,1.42] 0363 0.72 [043,1.21] 0215
New-user analysis (N = 4886) 0.91 [0.45,1.80] (Events=100) 0.777 0.71 [0.38,1.30] (Events = 153) 0.265
Sensitivity analysis>
No truncating 0.59 [0.27,1.32] 0.199 062 [0.34,1.15] 0.130
<2 &>20 068 [0.34,1.36] 0.275 069 [0.40,1.17] 0.166
<3 &>30 0.64 [0.30,1.34] 0.238 0.66 [0.38,1.16] 0.152
<3&>10 0.74 [0.39,1.42] 0370 0.73 [044,1.21] 0.220

! Adjusted for traditional risk factors: Age, gender, race/ethnicity, BMI, diabetes status, family history of heart attack, smoking status, hypertensive medications,

systolic BP.

2 Multiple imputations were used for models where imputed cholesterol was used in creating the weights. Weights <.1 were set to 0.1 and weights >10 were set

to 10.
3 Using non-truncated stabilized weights and various thresholds for truncating.

of no unmeasured confounders is essential to techniques
such as propensity score reweighting. In the setting of ob-
servational cohort studies, this assumption is not satisfied
if one intends to make use of the baseline data. A com-
mon technique to deal with this is the new-user design
[2]. The new-user design has limitations and may not al-
ways be possible. For example, there will be a decrease
in sample size and power and depending on the percentage
of prevalent medication users this could prove problem-
atic. In our new-user analysis our sample size decreased

by over 1000 participants and 37 CVD events. This will
pose an even larger problem when medications are
more prevalent than what was observed for statins in
MESA. To illustrate, in MESA nearly half the partici-
pants are prevalent anti-hypertensive medication users
at baseline so excluding this subset would drastically cut
sample size and power. Furthermore, the first exam in a
longitudinal observational study is often more extensive
and certain costly or exploratory measures may only be
available at that exam. If the outcome of interest is only
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Figure 1 Hazard ratios from cox proportional hazards models with multiple imputations by CVD endpoint.
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available at the baseline exam then a new-user design is
not possible and one would be required to utilize preva-
lent users in order to answer the question of interest.

In this paper we have restricted attention to statin use
at baseline as the exposure of interest. In the models for
incident CVD we could have updated exposure status
over time, however, this would have induced some com-
plexity that is not central to the methods described here.
That is, a second source of confounding known as time
dependent confounding would have to be considered. In
basic terms, this occurs when the exposure (e.g. statin
use in our example) varies over time, and there is a bio-
marker (e.g. cholesterol) that is both a predictor of future
exposure use (making it a confounder), and on the causal
pathway between past exposure and outcome (making it a
mediator). Simple adjustment for the biomarker at each
time point handles the confounding, but adjusts out a
large part of the medication effect. Traditional approaches
to handling this problem include G-estimation and mar-
ginal structural models (MSM) [24,25]. There is no reason
in principal that the imputed pre-treatment cholesterol
for baseline users could not be incorporated into the in-
verse probability of treatment weights at the baseline

exam in an MSM if baseline medication users were to
be included.

For this paper we have restricted our analysis to the
continuous pre-treatment risk factor variable cholesterol.
Further research will be necessary to address how the im-
putation and outcome models would be affected if the
pre-treatment risk factor is categorical or binary.

Conclusions

In our examples we illustrated that traditional approaches
to reducing indication bias such as standard propensity
score weighting [5] and new-user designs [2] produced
effect estimates for statins that were attenuated in terms
of coronary heart disease risk. The imputation of pre-
treated cholesterol levels for participants on lipid-lowering
medication at baseline in conjunction with a propensity
score yielded estimates that were consistent with the meta-
analysis literature and which appeared to be much more
successful at mitigating the indication bias and the
effects of unmeasured confounding. These techniques
could be useful in any example where inclusion of partici-
pants exposed at baseline in the analysis is desirable, and
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reasonable estimates of pre-exposure biomarker values
can be estimated.
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