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Abstract

Background: An inverse relationship between experience and risk of injury has been observed in many
occupations. Due to statistical challenges, however, it has been difficult to characterize the role of experience on
the hazard of injury. In particular, because the time observed up to injury is equivalent to the amount of experience
accumulated, the baseline hazard of injury becomes the main parameter of interest, excluding Cox proportional
hazards models as applicable methods for consideration.

Methods: Using a data set of 81,301 hourly production workers of a global aluminum company at 207 US facilities,
we compared competing parametric models for the baseline hazard to assess whether experience affected the
hazard of injury at hire and after later job changes. Specific models considered included the exponential, Weibull,
and two (a hypothesis-driven and a data-driven) two-piece exponential models to formally test the null hypothesis

that experience does not impact the hazard of injury.

health, Censored data, Frailty models, Survival analysis

Results: We highlighted the advantages of our comparative approach and the interpretability of our selected
model: a two-piece exponential model that allowed the baseline hazard of injury to change with experience.
Our findings suggested a 30% increase in the hazard in the first year after job initiation and/or change.

Conclusions: Piecewise exponential models may be particularly useful in modeling risk of injury as a function of
experience and have the additional benefit of interpretability over other similarly flexible models.

Keywords: Piecewise exponential models, Weibull models, Baseline hazard, Time to event data, Occupational

Background

There is abundant evidence that traumatic injuries occur
more commonly in newly hired workers, suggesting that
inexperience may be a risk factor for occupational injury.
The relationship between experience and risk of injury
has been evaluated in several occupations including
aluminum manufacturing [1,2], farming [3], nursing
[4,5], steel manufacturing [6], railway work [7] and
through analysis of larger injury databases [8,9]. There
are several methodological challenges, however, that
can greatly influence interpretation of results examining
this association. A common approach to addressing this
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question has been to compare rates of injury between
newly hired employees and longer-term employees by
making use of cross-sectional case—control studies
[3-5,7,9-13]. The potential for confounding, however, is
great. New hires are unlikely to be representative of
workers in general. In addition to being younger, various
“negative” characteristics, such as personal instability, poor
work attendance, lesser health, and poor work ethic
among others are likely to be overrepresented in this pool.
Moreover, “first jobs” are also not representative of all
jobs; it is commonplace for newer hires to assume the
least desirable of the tasks, and “graduate” into safer and
more palatable jobs over time.

Importantly, a cross-sectional assessment does not
provide the newly hired employee an opportunity to be
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observed as an experienced employee or vice versa,
allowing each employee to serve as his/her own control.
Longitudinal studies are equipped for this purpose and
many have made use of such designs [6,8,9,14-16]. These
studies, however, did not exploit the longitudinal nature
of the data, but rather dealt with it as a nuisance [6], if
at all. An additional challenge occurs when employees
are followed for varying lengths of time, which affects
the probability of observing injury during the period
studied. Finally, none of the studies have addressed the
complication encountered when employees change jobs
within the same industry, often with exposure to new
and different tasks.

The overall goal of this study is to assess whether ex-
perience affects the risk of acute injury in a population
of hourly factory workers of a global aluminum company
by paying close attention to the statistical issues raised
above. For example, the length of time observed until
injury needs to be considered as well as whether the
employee was injured while observed. As individuals
may or may not be injured during their period of study,
employees may be censored, bringing to mind survival
analytic tools to handle such data. A complication, how-
ever, is that the length of time to injury also defines the
level of experience, making standard semi-parametric
models like Cox proportional hazards (Cox PH) models
inapplicable. To that end, we argue that the parameter
of interest is the baseline hazard of injury itself. In this
paper, we demonstrate the use of comparing competing
parametric survival models for the baseline hazard when
it is the main parameter of interest. In particular we
illustrate the use of piecewise exponential models that
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enable changes in the baseline hazard in order to evaluate
the influence of experience on the hazard of injury [17].
While we are not the first to utilize such models [18,19],
this is a novel application of these methods.

Methods

The systematic determinants of injury in manufacturing
have been an area of substantial investigation and public
health concern. Previous studies by our group in the
aluminum industry have already demonstrated several
important risks including female gender, lower age, high
physical demand, long work hours, obesity and low
worker engagement [1,2,20,21]. Crude data (see Figure 1,
below) have highlighted concern about the relationship
between job experience and risk.

Study population

Our study population included 81,301 hourly production
workers of a global aluminum company at 207 US facil-
ities (90 with >250 employees) employed during the time
period spanning January 1, 1996 through December 31,
2007. Data were obtained from a variety of administra-
tive sources including a real time incident management
system capturing every injury since 1989, and the elec-
tronic human resources data. These datasets are described
in greater detail in previous publications [1,2,21]. Notably,
there is no reliance on any self-report or survey data.

Definition of acute injury

Acute injuries included events such as chemical/ther-
mal burns, bruises, cuts/abrasions, fractures, instantan-
eous musculoskeletal injuries, and other acute incidents.
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Chronic conditions or events that were cumulative in na-
ture, classified as “near-misses” or not directly related to
work did not meet the criteria for acute injury.

Statistical methods

Primary outcome

The primary outcome was time in months from the start
of a particular job to injury on that job, where multiple
injuries may occur. Non-injured employees were censored
at the time corresponding to the earliest occurrence of
the following: change of job within the corporation,
death, termination from the company, or the end of the
observation period, December 31, 2007. Individuals
with multiple jobs (ie, who changed jobs during the
observation period) and/or multiple injuries on a par-
ticular job had multiple outcomes reflecting the length
of time from the start of a particular job to observed
injury on that job. Once a job change was initiated, the
employee was newly considered inexperienced, where a
job change involved a significant change in job title. In
sensitivity analyses, we considered restricting injuries
to those of greater severity.

Potential confounders

We considered the following important confounders:
age and overall company tenure at job initiation, gender,
race, physical demand of the job, union status of the
plant, plant type (e.g., whether it included a smelting
facility), and socio-demographic characteristics.

Comparison of competing models for investigating research
question

To evaluate the association between the hazard of injury
and experience, we modeled the hazard of injury as a
function of time on the job (i.e., experience) and other
relevant confounders using the Andersen-Gill approach
for incorporating recurrent events and time-varying co-
variates [22,23]. Cox PH models were not applicable for
our purposes, as our main parameter of interest was
the baseline hazard itself; assessing whether the hazard
for injury changes with experience was equivalent to
addressing whether the baseline hazard of injury, 1y(2),
was constant over the time on the job (i.e., whether 1,
(t)=Ay, the form of an exponential baseline hazard).

Our approach to addressing the research question,
therefore, was to compare competing baseline hazards.
As described above, a parametric model that assumes a
constant baseline hazard is the exponential model, where
Aitx)=Loexp(x’;5). We assumed this model under the
null hypothesis (ie., that experience does not affect the
hazard of injury).

Three models are considered under the alternative
hypothesis: the Weibull and two piecewise exponential
models. These models were chosen for their flexibility
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and convenience, as the null model is nested within each
alternative. Specifically, a Weibull distribution has a two-
parameter baseline hazard that allows the baseline haz-
ard to change over time, and reduces to the exponential
distribution when the scale parameter is equal to one.
A Kaplan-Meier log-log survival curve plot was utilized
to gauge appropriateness of the Weibull as a baseline
hazard. K-piece exponential models allow the hazard to
change at K distinct time points, but constrain the hazard
to be constant within each interval.

The two two-piece exponential models were formu-
lated for different purposes and were not to be directly
compared. The first was hypothesis-driven; we set the
cut point 7; at 12 months to address the specific hypoth-
esis that the hazard changes after one year of experience.
The second was data-driven and estimated the optimal
time of change (7;) under a 2-piece exponential model,
for example, to address up to what time point would a
hypothetical intervention be useful. To estimate 7; we
utilized an approach similar to one employed by Tarres
et al. [18] where the cut point that yielded the largest
likelihood value was chosen over all possible cut points.
Bootstrap methods were used to estimate the variability
of 7; by re-sampling with replacement 400 data sets
each with 10,000 employees [24].

For computational purposes, piecewise exponential
models can be rewritten as Poisson models [25], greatly
simplifying estimation. Specifically, the term representing
change in baseline hazard in the model can be subsumed
into the vector of parameters as a dummy variable that
represents change in hazard [25], making these models
straightforward to fit.

Correlation of outcomes within employee and among
employees within plant

As workers contributed multiple outcomes, we applied
frailty models, which included a random employee-
specific multiple of the baseline hazard, to adjust for the
expected correlation of responses within the same worker.
We assumed the frailty terms followed a Gamma distri-
bution. Similarly, employees from the same plant may be
more similar in their outcomes than employees across
plants. To address this issue we assessed the robustness of
the results to a variety of models that 1) considered plant
a random effect, 2) considered plant a fixed effect, with
inclusion of plant-level covariates or 3) solely included
plant-level covariates as fixed effects. Results were ex-
amined for heterogeneity. If results did not differ, the
simplest method (3) was chosen.

Handling of missing data

The physical demand of a particular job was a key con-
founder of the relationship between injury and experi-
ence. This variable was missing for a large proportion of
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workers; these data were previously measured by the
employer for jobs at only 11 of the 207 plants. Availabil-
ity of physical demand data was related to a number of
plant-level and individual-level characteristics. For ex-
ample, those with physical demand data were 90% male,
87% Caucasian, and at the start of a job, are approxi-
mately 43 years old and employed by the company for
about 10 years. In contrast, the full cohort was 78%
male, 70% Caucasian, and at the start of a job, approxi-
mately 39 years old and employed by the company for
about 3.5 years. In addition a higher proportion of severe
injuries are observed among those in jobs with physical
demand data, where these employees are more likely to
work at a union plant that performs smelting.

Excluding subjects missing at least one variable in-
cluded in the model (or a complete-case (CC) analysis)
would exclude 84% of the data set. Further, validity of
results from a CC analysis relies on an assumption that
the data are missing completely at random, which we
have demonstrated is violated. In order to minimize bias
in describing how the hazard of injury varies with ex-
perience, we employed multiple imputation (MI) tech-
niques, which provide statistically valid results when the
data are missing at random (MAR), a less stringent as-
sumption about missingness that allows missingness to
be correlated with observed variables only (e.g., gender)
[26]. Conditional on relevant covariates (e.g., an indica-
tor for whether the employee worked for a union plant
or whether the employee worked at one of the smelting
facilities), this is a reasonable assumption here. We
employed the fully conditional specification approach
for MI, one of the two main approaches for doing MI,
described in detail by van Buuren [27]. We used m =4
imputations, and as suggested by the missing data litera-
ture, confirmed the appropriateness of this number by
examining stability of estimates.

Model selection

Comparisons across models were performed using cross-
validation techniques. More specifically, the data were
randomly partitioned into two pieces where two-thirds
of the employees are randomly selected to be in the
“learning set”, while the remaining one-third serves as
the “test set”, on which all models are compared. Such an
approach allowed for model development such as estima-
tion of r; for the optimally chosen two-piece exponential
model and fair comparisons on an untouched data set.
Final results, however, were presented on the entire data
set. Detailed steps for model selection and fitting were
provided in Appendix.

Data cleaning was performed using SAS v9.3. Model
selection, model fitting and multiple imputation were
performed using STATA 11.2, specifically with STATA’s
ice() program [28]. All analyses were conducted after
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receiving approval from the Institutional Administrative
Panels on Human Subjects in Medical Research (IRB).

Results
Table 1 describes characteristics of the 81,301 employees
and their corresponding 191,692 jobs. Each employee
provided data on a median number of two jobs. The
distribution of number of injuries was heavily skewed, as
most employees experienced no injuries (mean =0.39
and median =0). The cohort was heavily male (78%),
and largely white (70%). On average employees were 39
years old, and had been employed an average number of
eight years at the company.

Table 2 describes characteristics of the 31,456 relevant
injuries reported by severity and type. The majority
(72%) were classified as “first-aid” injuries, 15% required

Table 1 Demographics of hourly production workers at
207 U.S. facilities of a global aluminum company employed
between January 1, 1996 and December 31, 2007

Entire cohort

Physical demand cohort

Cohort Count Percent / Count Percent /
demographics Mean (SD) Mean (SD)
Median Median

Total jobs 191 692 33427

Total unique 81 301 13 427

employees

Number of jobs 236 (230) 2 399 (2.88) 3

per employee

Number of 039 (096) 0 098 (1.49) 1

injuries per

employee

Gender
Male 63 233 7778 12 105 90.15
Female 18 006 2215 1319 9.82
Unknown/ 72 0.09 3 0.00
Missing

Race/Ethnicity
White 55 709 7046 11 669 86.92
Black 12 371 15.65 1242 9.25
Hispanic 8340 10.55 386 2.88
Asian 1786 226 46 034
American 610 0.77 66 049
Indian
Mixed 247 031 16 0.12
(more than
one reported)
Unknown/ 2238 2.75 2 0.01
Missing

Age (years) at 3937 (11.32) 4261 (10.19)

start of job 3923 43.24

Tenure (years) 843 (10.25) 13.27 (11.96)

at start of job 3.62 9.60
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Table 2 Characteristics of injuries in hourly production
workers at 207 U.S. facilities of a global aluminum
company employed between January 1, 1996 and
December 31, 2007

Entire cohort Physical demand

cohort

Injury characteristics Count Percent Count Percent

Injuries 31 456 9549

Case Category
First Aid 22748 7232 6187 64.79
Medical Treatment 4598 14.62 1861 1949
Restricted Work 3585 1140 1328 1391
Lost Work Day 525 1.67 173 1.81

Injury Description

Abrasion 2591 8.24 715 749
Burn 4054 12.89 1099 11.51
Contusion 6983 2220 2131 2232
Foreign body 2270 7.22 625 6.55
Fracture 940 2.99 334 3.50
Laceration 5620 17.87 1427 14.94
Acute musculoskeletal 6283 19.97 2342 24.53
Other 2696 857 875 9.16
Missing 19 0.06 1 0.01

medical treatment, 11% resulted in restricted work, and
2% resulted in a lost workday.

Figure 1 provides an aggregated look at the rate of
injuries as a function of months on the job. The plot
demonstrates decreasing injury rates (with increasing
variability) over time on the job. Figure 2 compares
injury free curves based on the “test” set across the four
proposed models to that of the observed (estimated
using the Kaplan-Meier (K-M) method). The K-M curve
indicates a steep decline initially and then a slowing
down in injuries. Under the null hypothesis, one expects
the rate of decline to be constant over time. The curve
from the exponential model, however, visually fits that of
the observed least well, declining too slowly initially, and
too quickly after about two years. While an improve-
ment over the exponential model, the Weibull model
appears graphically inferior to the two-piece exponential
models. Note that the data-driven two-piece exponential
estimated the cut point at 19 months (mean 25.32, SD
13.47). Figure 3 shows the data-driven and hypothesis-
driven two-piece exponential models only, which appear
largely comparable, although such a comparison is not
directly relevant to our research question.

Table 3 presents results comparing the four fits from
the models on the “test” set. All models considered
under the alternative hypothesis prove superior to the
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exponential model, favoring rejection of the null that ex-
perience does not matter and that the hazard is constant
over one’s time on the job. While the Weibull model
proves superior to the exponential, this comparison pro-
duces the least impressive likelihood ratio test (LRT).
Using graphical evidence and Bayes factors to compare
each two-piece exponential to the Weibull, we find
evidence in favor of the two-piece models. We did not
compare the data-driven and hypothesis-driven two-
piece models, as this was not a comparison of interest
since the models address different hypotheses.

Tables 4 and 5 presents the results based on fitting the
two-piece exponential models. We provide both the
results based on the full data set from a CC analysis,
which includes 33,427 jobs on 13,427 employees, and
those from an MI-based analysis, which includes 191,692
jobs on 81,301 employees. All models adjusted for the
pre-specified confounders listed above. Accounting for
the correlation of responses among employees within
the same plant across the three methods described does
not yield different estimates of the parameter of interest
(results not shown). We therefore chose the simplest
approach, including indicators for union and smelter
status as terms in the model, which also allowed for the
assessment of their impact on risk. Accounting for the
correlation of responses within employee, however, yielded
point estimates attenuated toward the null relative to
those obtained assuming independence. A CC analysis
using a frailty model and two-piece exponential baseline
hazard allowing the baseline hazard to change after one
year of experience estimated a 32% increase in the hazard
of injury during the first year of experience (See Table 4).
Similarly, a CC analysis using a frailty model for the
optimally-chosen model indicated a 41% increase in haz-
ard up to 19 months (See Table 5). The MI-based analyses
yielded comparable findings, with the exception of the
point estimate corresponding to whether the plant was
one of the original founding plants. This makes sense, as
the complete-case cohort consisted of only 11 plants with
little heterogeneity in this variable. As a consequence, no
association was observed between injury and being
employed by an original plant in the complete-case
cohort, whereas an increased risk in injury was observed
in the MI-based analysis.

Our findings are consistent regarding previously iden-
tified correlates of injury risk [1,2]. Previous studies have
indicated that females and Caucasians are at an in-
creased risk of injury. As anticipated, a 1-unit increase
in the scale of physical demand increased risk of injury
by 25%. Similarly, those working at a smelter plant had
hazards that are 1.2 times as great as those in non-
smelter plants and those at union plants had hazards
that are 1.2 times those at non-union plants. For every
1-year increase in age, we observed a decrease in hazard,
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as previously reported. Importantly, the reduction in
hazard of injury by experience persisted even after ad-
justment for age.

A sensitivity analysis that included calendar year in
the model to account for secular trends in injury during
the study period did not affect inference regarding
experience. A second sensitivity analysis restricting the
outcome to injuries reportable to the Occupational Safety
and Health Administration (OSHA) supported the conclu-
sion that less than one year of job-specific experience
yielded an increase in the hazard of injury; here, the mag-
nitude of association was increased (HR=1.62 vs. 1.32).

Discussion

This paper illustrates the novel use of a flexible statis-
tical approach for evaluating the association between job
experience and hazard of injury. By identifying the base-
line hazard as the main parameter of interest, we were
able to address the research question by comparing com-
peting models for the baseline hazard. We found the
piecewise exponential model to be particularly useful in
this context with respect to goodness of fit, interpretabil-
ity, as well as computational ease. Further our approach is

applicable to other contexts where the baseline hazard is
the main focus. After formulating our general analytic
approach, we still faced a number of methodological chal-
lenges. These included correlation of observations and
missing data. We addressed these issues by including a
frailty term in the model to account for correlated re-
sponses among employees and through multiple imput-
ation techniques to handle the missing data. Using our
selected model, our findings demonstrated a 30% increase
in the hazard of injury prior to accumulating one year of
experience and even higher when only more serious,
OSHA reportable injuries are included.

Models for consideration

Because the outcome, the length of time to injury, was
equivalent to the predictor of interest, experience, this
precluded the use of the commonly applied Cox PH
model to evaluate how experience affected hazard of
injury and directed the focus to the baseline hazard. For
this reason, we compared various competing parametric
models for the baseline hazard. Relevant comparisons
were drawn between models under the alternative
(Weibull and two-piece exponential models) and the
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Table 3 Fit statistics and comparison of models by LRT
statistic and Bayes factors using the test set

Exponential Weibull Data-driven  Hypothesis-
2-piece driven 2-piece
exponential exponential

Fit statistics

Number of 8 9 9

Parameters

Log-likelihood  —32576.2 —325736 —32447.3 —32468.2

BIC (Smaller 65263.6 652722 65019.6 65061.5

is better)

Model comparison

LRT Statistic

Bayes Factor

Exponential NA 5.21% 257.9%%* 216.0%%*

1.000 0.996 0.997

Weibull 5.21% NA  Not nested Not nested
1.000 0.996 0.997

Data-driven 2- 257.9%* Not nested NA Not nested

Z)’;‘:ﬂ ential 1.004 1.004 1,001

Hypothesis- 216.0*** Not nested  Not nested NA

:;';’j,',' ei'g;‘fce 1.003 1.003 0.999

Note: * denotes significance at the 0.05 level, ** denotes significance at the
0.01 level, and *** denotes significance at the 0.001 level.

model under the null (exponential model). Favoring the
more flexible model was an indication that the hazard
varied by time on the job and thus, that experience
mattered. Other models that we could have considered
for the baseline hazard include several in the accelerated
failure time family such as the log-logistic, log-normal,
and generalized gamma models [29]. Other flexible ap-
proaches involving splines could have been considered
as well [30]. Our approach however was to identify alter-
native models to the exponential that were both more
flexible and that included the exponential model as a
special case.

Consideration of two different two-piece exponential models
The two two-piece exponential models were considered
for slightly different purposes. The two-piece exponen-
tial that allowed the baseline hazard to change at 1 year
directly addressed whether the hazard changed signifi-
cantly after 1 year (an a priori specified time point of
interest), suggesting that targeting an intervention prior
to this period may reduce risk. The optimally-defined
two-piece exponential model was fit to assess where the
maximized difference in hazard under a two-piece model
occurred. This provided insight into when one could be
considered optimally experienced from an injury-hazard
perspective, and/or up to what time point a hypothetical
intervention could be considered useful. A K-piece expo-
nential model with K > 2 may have better fit the data, as
it would have allowed for even greater flexibility. Our



Kubo et al. BMC Medical Research Methodology 2013, 13:89
http://www.biomedcentral.com/1471-2288/13/89

Table 4 Results from CC and Ml frailty models for 2-piece
exponential model with 12 month cut point (hypothesis-
driven model)

Complete case
analysis (N=33 427
jobs for 13 427

Multiple imputation
(N=191 692 jobs for
81 301 employees)

employees)
HR (95% ClI) P-value HR (95% Cl) P-value

0-12 Months 1.32 <001 1.25 <001

(inexperienced period) (1.26, 1.38) (1.23,1.28)

Male gender 0.62 <.001 0.71 <.001
(0.57, 0.68) (0.68, 0.73)

Non-White 1.08 0.061 097 0.073
(1.00, 1.17) (0.93, 1.00)

First job at company 0.88 0.017 0.90 <.001
(0.79, 0.98) (0.87,093)

Age at start of job 0.98 <001 0.99 <001
(0.98, 0.99) (0.98, 0.99)

Physical demand 1.25 <001 1.26 <.001
(1.22,1.29) (1.24,1.29)

Smelter plant 1.25 <.001 1.30 <.001
(1.18,1.33) (1.24,1.29)

Union plant 1.15 0.008 1.30 <.001
(1.04, 1.27) (1.23,1.37)

Original plant 1.01 0.952 1.58 <.001
(0.83,1.22) (1.50, 1.65)

Table 5 Results from CC and Ml frailty models for 2-piece
exponential model with 19 month cut point
(data-driven model)

Complete case analysis Multiple imputation
(N=33 427 jobs for (N=191 692 jobs for
13 427 employees) 81 301 employees)

HR(95%Cl) P-value HR(95%Cl) P-value

0-19 Months 141 <001 133 <.001

(inexperienced (1.35,147) (1.29, 1.36)

period)

Male gender 062 <001 0.71 <001
(0.57, 0.68) (0.68, 0.73)

Non-White 1.08 0.070 097 0.067
(099, 1.17) (0.93, 1.00)

First job at company 0.88 0.017 0.90 <.001
(0.79, 0.98) (0.88,0.93)

Age at start of job 0.98 <001 0.99 <001
(0.98, 0.99) (0.98, 0.99)

Physical demand 1.25 <.001 1.26 <.001
(1.21, 1.29) (1.24,1.29)

Smelter plant 1.24 <.001 1.30 <.001
(1.17,1.32) (1.24, 1.36)

Union plant 1.16 0.006 1.30 <001
(1.04, 1.28) (1.23,1.38)

Original plant 1.01 0.942 157 <.001
(0.83,1.22) (1.50, 1.65)
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questions were addressed, however, with these 2-piece
models. Another approach would be to use cross-
validation measures to optimize K and then estimate
changes in hazard given the optimal K. This would answer
a slightly different question, although still a potentially
interesting one.

Comparing competing models

Comparisons between the Weibull and exponential
models demonstrated the Weibull model as the better
fit, indicating sufficient evidence to reject the null that
the hazard is constant over time. Similarly comparisons
between the exponential and each two-piece demon-
strated the need for such flexibility. These comparisons
addressed our first question of whether the hazard was
non-constant over time (i.e., whether there is a relation-
ship between experience and injury risk). We did not
formally compare the Weibull to each two-piece model
using a LRT as neither model is nested within the other
and thus, the behavior of the LRT statistic is not known
in this case. Graphical evidence, however, suggests the
superior fit of each two-piece model to the Weibull.
Additionally, the likelihood values corresponding to the
two-piece models were considerably larger than that of
the Weibull, while the number of parameters estimated
was the same. From an interpretability standpoint, the
two-piece models were more appealing as they yielded
parameter estimates that directly corresponded to changes
in hazard at the specified time point, which may be useful
in targeting interventions (while the parameter estimates
for a Weibull model describe the shape of the baseline
hazard, which is not directly meaningful).

Limitations
There are some limitations to the study that merit
mention. First, we have not accounted for the variable
number of hours worked each month (hence opportun-
ity for an injury) across individuals. We expect variability
across employees because of business cycles, overtime
and vacation schedules [4,20]. Incorporating this vari-
ability is challenging because of data limitations. An-
other potential concern is that we did not adjust for
changes in injury risk over secular time during the study
period, given that nationally and over the course of this
study, injury rates have improved at the company. We
have explored the implications of this by refitting our
candidate models with the inclusion of time-varying
indicators for calendar year. While the relationship
between calendar year and the hazard of injury is as
expected, after adjusting for secular trends, the influence
of experience on the hazard of injury did not change
(data not shown).

In addition, physical demand, an established risk factor
for injury in this workforce [2], was measured in a non-
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representative sample of plants inducing missing data in
our cohort of employees eligible for study. We utilized
multiple imputation techniques to address this issue that
relied on assumptions plausible for our data set.

Finally, we acknowledge that this employer and work-
force may be unique; aluminum manufacturing is intrinsic-
ally more dangerous than average for the manufacturing
sector while the studied employer is observably more
injury-adverse than the sector average. Generalizing to
manufacturing more broadly, or beyond to such domains
as construction, mining or service work, while tempting,
may be unjustified.

Strengths

Although there were several limitations to our study,
our goal was to illustrate the application of flexible para-
metric methods for studying this association in the
presence of several statistical challenges. In addition
our approach has application to other contexts where
the focus is the baseline hazard [17-19]. As our findings
are demonstrated on this large longitudinal population
using rich high-quality administrative data, our analysis
lends confidence that previous concerns about higher
injury risk among inexperienced workers are well founded,
at least in our setting. Our result is highly consistent with
the prevailing literature, but is the first to characterize the
reduction in hazard while managing many of the meth-
odological issues previously ignored. Moreover, our find-
ings are not confined to newly hired workers, but extend
also to those longer tenured who change jobs to ones
demanding new tasks. Previous studies typically equate
“new” with newly-hired, whereas we considered employees
as newly inexperienced for subsequent job change. As job
changes are typically more frequent in the manufacturing
workplace than new hires, especially in the present eco-
nomic climate, we would propose that efforts to control
the risks of inexperience be focused not just on new hires
but on all workers “new to the job”.

Conclusions

In summary, we have demonstrated that piecewise expo-
nential models offer the flexibility of modeling changes
in the hazard of injury with ease in interpretation. They
are particularly useful in the context in which the base-
line hazard is primarily of interest and where Cox PH
models are inapplicable. While the Weibull model
demonstrated that experience mattered, it did not pro-
vide a simple characterization of the change in hazard.
In particular, the reduction at a specific time point was
not described, nor was the ideal time point at which
change occurred. Both of these features were easily ac-
cessible through the two formulated (hypothesis-driven
and data-driven) two-piece exponential models. We en-
courage analysts to consider use of piecewise exponential
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models, which allow flexibility for changes in the hazard,
are easy to fit, and provide meaningful interpretation.

Appendix

Step 1. Randomly partition the employees into the learn-
ing (two-thirds of subjects) and test sets (remaining one-
third of subjects). The Full Cohort contains the same
respective employees.

Step 2. Estimate 7; for the two-piece exponential
model using the learning set.

Step 3: From the learning set, re-sample with replace-
ment 400 data sets of 10,000 employees and for each, es-
timate 7; to obtain an estimated variance for 7.

Step 4. Make relevant comparisons among proposed
models on the test set using the likelihood ratio test
(LRT) statistic for nested models (e.g., Weibull and ex-
ponential) and the Bayesian Information Criterion (BIC)
for non-nested models (e.g., Weibull and two-piece ex-
ponential models). The two-piece models are not com-
pared as they address different hypotheses.

Step 5. Fit the chosen model(s) with a frailty term on
the Full Cohort performing a complete-case and MI-
based analysis adjusting for pre-specified confounders.

Abbreviations
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