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Abstract

Background: Before considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is
essential that its performance be evaluated in data that were not used to develop the model (referred to as
external validation). We critically appraised the methodological conduct and reporting of external validation studies
of multivariable prediction models.

Methods: We conducted a systematic review of articles describing some form of external validation of one or more
multivariable prediction models indexed in PubMed core clinical journals published in 2010. Study data were
extracted in duplicate on design, sample size, handling of missing data, reference to the original study developing
the prediction models and predictive performance measures.

Results: 11,826 articles were identified and 78 were included for full review, which described the evaluation of 120
prediction models. in participant data that were not used to develop the model. Thirty-three articles described both
the development of a prediction model and an evaluation of its performance on a separate dataset, and 45 articles
described only the evaluation of an existing published prediction model on another dataset. Fifty-seven percent of
the prediction models were presented and evaluated as simplified scoring systems. Sixteen percent of articles failed
to report the number of outcome events in the validation datasets. Fifty-four percent of studies made no explicit
mention of missing data. Sixty-seven percent did not report evaluating model calibration whilst most studies
evaluated model discrimination. It was often unclear whether the reported performance measures were for the full
regression model or for the simplified models.

Conclusions: The vast majority of studies describing some form of external validation of a multivariable prediction
model were poorly reported with key details frequently not presented. The validation studies were characterised by
poor design, inappropriate handling and acknowledgement of missing data and one of the most key performance
measures of prediction models i.e. calibration often omitted from the publication. It may therefore not be surprising
that an overwhelming majority of developed prediction models are not used in practice, when there is a dearth

of well-conducted and clearly reported (external validation) studies describing their performance on independent
participant data.

* Correspondence: gary.collins@csm.ox.ac.uk

'Centre for Statistics in Medicine, Botnar Research Centre, University of
Oxford, Windmill Road, Oxford OX3 7LD, UK

Full list of author information is available at the end of the article

- © 2014 Collins et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B|°Med Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:gary.collins@csm.ox.ac.uk
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Collins et al. BMC Medical Research Methodology 2014, 14:40
http://www.biomedcentral.com/1471-2288/14/40

Background

Prediction models are used to estimate the probability of
presence of a particular disease (diagnosis) or to estimate
the probability of developing a particular outcome in the
future (prognosis). Published in ever increasing numbers,
prediction models are now being developed in virtually all
medical domains and settings [1-3]. Driving the growing
number of published prediction models is the mounting
awareness of the need to have accurate and objective ap-
proaches to combine multiple pieces of information (e.g.
patient and disease characteristics, symptoms, test results,
etc.) for an individual to derive a single estimate of risk.
This is illustrated by their increasing inclusion in clinical
guidelines and recommendation by national bodies [4-6].
Whilst they are not intended to replace clinical judge-
ment, prediction models have a clear role in augmenting
clinical judgement. Studies have shown prediction models
provide more accurate and less variable estimates of risk
compared to more subjectively made predictions [7,8].
However, whilst there is an increased awareness of the im-
portance of prediction models, the majority of published
prediction models are opportunistic and are rarely being
used or even mentioned in clinical guidelines [9]. This
clearly points to considerable waste in research (including
monetary and scientific) [10].

Before considering whether to use a clinical prediction
model, it is essential that its predictive performance be
empirically evaluated in datasets that were not used to
develop the model [11-13]. This is often referred to as
external validation [13,14]. Performance is typically char-
acterised by evaluating a models calibration and dis-
crimination [15]. Calibration is the agreement between
predicted and observed risks, whilst discrimination is
the ability of the model to differentiate between patients
with different outcomes [14]. Reasons for assessing per-
formance in other datasets include quantifying optimism
from model overfitting or deficiencies in the statistical
modelling during model development (e.g. small sample
size, inappropriate handling of missing data) and evalu-
ating the transportability of the model in different loca-
tions consisting of plausibly similar individuals (different
case-mix). External validation is exploring genuine dif-
ferences in characteristics of the cohorts (between the
development and validation cohorts) and examining how
well the models performs. A clear distinction should also
be made between estimating a model’s external perform-
ance done by the authors who developed the prediction
model and done by independent investigators [16],
thereby reducing inflated findings and spin [17,18]. Rep-
licating findings obtained during the original develop-
ment of the prediction model in different data but from
the same underlying target population is key [19-21].

A large number of prediction models are being devel-
oped, but only a small fraction of these ever get evaluated
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on its performance in other participant data. Systematic
reviews evaluating the methodological conduct and report-
ing of studies developing prediction models all conclude
that these studies are characterised by deficiencies in
study design, inadequate statistical methodology, and poor
reporting [1,22-24]. Ultimately one is interested in how
well the prediction model performs in other participants
and thus well conducted and clearly reported external val-
idation studies are essential to judge the prediction model.
However, we are not aware of any systematic reviews
specifically evaluating the methodological conduct and
reporting of external validation studies.

The aim of this article is therefore to report a review
of the methodological conduct and reporting of pub-
lished articles describing the external validation of pre-
diction models. In particular we focus on the design
(including sample size), assessment of predictive per-
formance and the quality of reporting.

Methods

Literature search

PubMed was searched on 02-February-2011 using the
search string described in Additional file 1 to identify
English-language articles that evaluated the performance
of one or more multivariable clinical prediction models.
Searches included articles published in 2010 belonging
to the subset of 119 PubMed journals listed in Abridged
Index Medicus (www.nlm.nih.gov/bsd/aim.html). One
reviewer (GSC) examined the titles and abstracts of all
articles identified by the search string to exclude articles
not pertaining to clinical prediction models. Information
on how the prediction models were developed is import-
ant to place the evaluation of the model in context.
Therefore, for studies where the development of the
model was described in a previous publication, this art-
icle was identified and retrieved, but only if this was
cited in the external validation article. We took this ap-
proach as often there are multiple models known by a
single name (e.g. Framingham Risk Score), multiple
models for the same or similar outcome developed by
the same authors and models get updated or refined.
Therefore a clear reference to the article describing the
development of the prediction was essential.

Inclusion criteria

We focused our review on studies that described some
form of evaluation of a multivariable prediction model,
diagnostic or prognostic, and in data that were not used
to develop the model. We included studies that both de-
veloped a prediction model and subsequently evaluated
it on separate data, as well as studies that only described
the evaluation (validation) of one or more existing pre-
diction models in other participant data. We excluded
articles where authors randomly split a single dataset
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into a development and validation dataset, as this does
not constitute an external validation and is a weak and
inefficient design [12,25]. However, studies that carried
out a temporal or geographical (i.e. non-random) split
were eligible and included as they are considered a par-
ticular type of external validation [13,26].

Data extraction, analysis and reporting

Information was extracted that described aspects of
model development and evaluation. Regarding the devel-
opment of the model, items extracted for this review in-
clude aspects of study design (including dates of data
collection), sample size (and number of events), number
of predictors considered and included in the final model,
whether ranges of any continuous predictors were re-
ported, handling and reporting of missing data, type of
model (including if they developed a simplified model),
whether there was sufficient information to implement
the model and any performance data of the prediction
model. Regarding the evaluation of the model on separ-
ate data, we extracted aspects of study design (including
dates of data collection), sample size (and number of
events), whether any predictors or outcome were defined
differently, type of model being evaluated (i.e. regression
equation or a simplified model), handling and reporting
of missing data and the performance measures calcu-
lated (e.g. calibration and discrimination). Items were
recorded by duplicate data extraction by nine reviewers
independently (AT, GSC, JdG, LMY, MS, MV, OO, RW,
SD), with one reviewer (GSC) extracting information
on all articles. Any disagreements were resolved by a
third reviewer.

The data extraction form for this review was based
largely on previous systemic reviews of studies describ-
ing the development of multivariable prediction models
[1,2,22,23,27] and can be found in Additional file 2. For
the primary analysis, we calculated the proportion of
studies and the proportion of risk prediction models
for each of the items extracted, where appropriate. To
aid the interpretation of our findings, we precede each
section in the results with a brief explanation of its
importance.

Results

The search string retrieved 11,826 articles in PubMed,
of which 11,672 were excluded on the title or abstract.
The full text of 154 eligible articles was obtained, from
which 76 were excluded leaving 78 eligible for full re-
view (Figure 1). Twenty-one articles (21/78; 27%; 95% CI
18% to 38%) had the term ‘validation’ or ‘validity’ in the
title of the article, whilst four articles used the term ‘ex-
ternal validation’ in the title. Only one article indicated
in the title that it was an external validation carried out
by independent researchers. The 78 eligible articles [Al-
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A78] came from 37 of the core clinical journals, see
Figure 1 for a breakdown of journals. Reference numbers
are preceded by an A to indicate they correspond to the
reference list in Additional file 3.

These 78 studies externally evaluated the performance
of 120 prediction models on different data to that used
in their development. The median number of predictors
in the model was 6 (range 2 to 1096). Nineteen articles
(19/78; 24%; 95% CI 16% to 36%) described a diagnostic
prediction model, whilst 59 articles (59/78; 76%; 95% CI
64% to 84%) described a prognostic model. Most articles
were published in the field of oncology (22/78; 28%; 95%
CI 19% to 40%), followed by cardiovascular diseases (18/
78; 23%; 95% CI 15% to 34%), see Table 1.

Forty-five articles (45/78; 58% 95% CI to 46% to 69%)
described the evaluation (only) of 67 existing published
prediction models (Table 1). Of these, 30 evaluated only
a single model, whilst ten studies evaluated two models,
four studies evaluated three models, and one study eval-
uated five prediction models. Eighteen validation only
articles (18/45; 40%; 95% CI 26% to 56%) included at
least one author who was also an author on the paper
that developed the model being evaluated. Sixty models
(60/120; 50%; 95% CI 41% to 59%) were developed using
logistic regression, 32 using Cox regression (32/120;
27%; 95% CI 19% to 36%); 8 using other statistical
methods (8/120; 7%; 95% CI 3% to 13%), whilst either
no formal statistical modelling (including consensus ap-
proaches to select predictors and their weights) was
used, no reference to the development publication or it
was unclear for 20 models (20/120; 17%; 95% CI 11% to
25%). The median sample size used to develop the pre-
dictions models was 1360 with a median of 189 out-
come events.

Thirty-three articles (33/78; 42%; 95% CI 31% to 54%)
described both the development of a prediction model
and an evaluation of its performance on a separate data-
set. Twelve of these studies (12/33; 36%; 95% CI 21% to
55%) used data from the same centre but from a differ-
ent time-period (temporal validation). Twenty-six of
these studies (26/33; 79%; 95% CI 61% to 90%) did not
compare the new model to an existing model.

Model development: continuous predictors

Applying a prediction model to individuals whose distri-
butions of characteristics or measurements (e.g. predic-
tors and test results) outside the range of those used in
model development is a form of extrapolation and may
compromise a model’s performance. It is therefore im-
portant for authors to clearly report all ranges and
categories for predictors included in the prediction
model to understand a potential decrease or increase in
model performance. Reporting means and standard devi-
ations or interquartile ranges, whilst descriptive, does
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11,826 articles identified through
database searching (core clinical journals
on PUBMED published in 2010)

11,672 articles excluded on title or

A

154 full-text of articles assessed for
eligibility

abstract

76 of full-text articles excluded

Reasons for exclusion:

24 used random split-sample
12 used bootstrapping

12 not validation

A
78 articles eligible for review

e 2] articles describing the
development and external validation of 1
or more prediction models

e 12 articles describing the
development and temporal validation of a
prediction model

e 45 articles describing only the
validation of an existing prediction
model

Figure 1 Flow of included studies.

7 used cross-validation/jack-knife
4 not a model

e 17 for other reasons (including
neural networks, gene signature, model
development only)

A4
e o o o o

Journals (n = 38)
e Cancer (6 articles)

e Annals of Thoracic Surgery (5 articles)

e American Journal of Cardiology, Annals of
Surgery, Annals of Internals Medicine, Journal of
the American College of Cardiology (4 articles)

e American Journal of Surgery, Blood,
Circulation, Journal of Urology, Neurology (3
articles)

e American Heart Journal, Annals of Emergency
Medicine, Archives of Disease in Childhood, British
Medical Journal, British Journal of Surgery, Chest,
Canadian Medical Association Journal, Journal of
Gerontology, Journal of Trauma (2 articles)

e Remaining 18 journals (1 article each)

not indicate in whom the model is primarily applicable.
For example, when a prediction model developed in par-
ticipants aged 30 to 60 years is evaluated in participants
aged 50 to 80 years, this should be fully acknowledged.
For those using a prediction model, it is important to

Table 1 Summary overview of included articles”

understand the population in whom the model was de-
veloped and in whom the model has been validated.

The ranges of any continuous predictors were only re-
ported in the development of 10 of the models (10/120;
8%; 95% CI 4% to 15%) evaluated in the 78 articles.

Study aim Cardiovascular Oncology Other Aim of prediction model Total articles Number of
(n=18) (n=22) (n=38) Diagnostic  Prognostic (n=78) (:“_)1?3)
(n=19) (n=59) -
Model development with temporal-split validation 3 (4) (1) 8 (10) 2(3) 10 (13) 12 (15) 14 (12)
Model development with external validation 79 6 (8) 8 (10) 34 18 (23) 21 27) 38 (32)
External validation only 8 (10) 15 (19) 22 (28) 14 (18) 31 (40) 45 (58) 68 (57)

“Percentages are in given parentheses.
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Model presentation (development) & evaluation
(validation)

Evaluating the performance of a prediction model in
other individuals requires making predictions for each
individual from the prediction model. Whilst prediction
models are generally developed using regression model-
ling techniques, they are often presented in a simplified
format. For example, the regression coefficients for each
predictor in the model are often rounded to integers,
which are then summed to produce a score. For a cor-
rect evaluation of performance of these simplified
models, notably a model’s calibration, providing a mech-
anism that relates this integer score to an absolute risk
is required. Prediction models are also often presented
as nomograms, which are a graphical representation;
they are not a simplification. However, to efficiently
evaluate the performance of the nomogram, the under-
lying regression model is required (and be published in
the development study), as clearly using the actual
nomogram (for hand calculations) is fraught with poten-
tial problems (e.g. transcription, and rounding) when
used on a large number of individuals.

Sixty-two of the models evaluated (62/120; 52%; 95%
CI 42% to 61%) were presented in the original develop-
ment articles as simplified scoring systems (i.e. regres-
sion coefficients rounded to integers or counting risk
factors) and 42 as regression models (42/120; 35%; 95%
CI 27% to 44%). Ten models (10/120; 8%; 95% CI 4%
to 15%) were presented as nomograms (9/10 in the field
of oncology), whilst the remaining were presented as
regression trees or links to a web calculator. Only nine
(9/62; 15%; 95% CI 7% to 26%) scoring systems (i.e. those
that had been simplified to an integer scoring system) pre-
sented a way to equate the overall integer score from the
model to a predicted risk; 6 presented predicted risks for
each of the integer scores in a lookup table, whilst 3
models presented this information in a plot.

The 10 nomograms were evaluated in four articles that
described both a development and external validation
and in six external validation only studies. Three of the
six external validation studies were based on published
nomograms where the underlying regression model was
not reported in the original publication (only a link to a
web calculator). The other three external validation
studies included authors who were also authors of the
original publication developing the nomogram (thus
having access to the underlying regression model).

Model validation: study design

Details on study design are key pieces of information to
judge the adequacy of a model’s external validation. This
includes knowing dates for the period in which study
participants were recruited, to place the study in a his-
torical context, particularly in relation to the period
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when the prediction model was developed. Also and
more importantly, it is essential to know details regard-
ing number of participants and in particular the number
of outcome events, which is the effective sample size
[1,28].

Nine studies (9/78; 12% 95% CI 6% to 21%) failed to
report study dates for when the data were collected. 16
articles (16/78; 21% 95% CI 13% to 31%) failed to report
the number of events in the validation datasets, see
Table 2. Six studies reported only the proportion of
events. One study did not report the sample size. The
median sample size was 795 (range 49 to 1,117,123). For
studies that reported the number of events, the median
number of events was 106 (range 6 to 42,408). Forty-
eight percent of datasets used to evaluate the prediction
models had less than a previously recommended mini-
mum of 100 events [28]. Seventeen studies (17/78; 22%)
presented flow diagrams to describe how individuals
were included.

Model validation: handling of missing data

Missing data is common in all types of medical research,
including prediction modelling studies [1,22,29]. Omit-
ting individuals with missing data, and conducting a so-
called complete-case analysis not only reduces sample
size but can also lead to invalid results. Of particular
concern is if those omitted are not representative of the
whole population, that is the reason for the missingness
is not completely at random [30]. It is therefore import-
ant to know whether individuals were omitted, and how
many were omitted. If those with missing values were
retained in the analyses, then it is important for the
reader to know how they were handled in the analysis,
including whether methods such as multiple imputation
were used [31].

Table 3 describes how missing data were handled.
Forty-two studies (42/78; 54%; 95% CI 42% to 65%)
made no explicit mention of missing data. Fifty studies
(50/78; 64%) either explicitly or implicitly (in the ab-
sence of indicating otherwise) conducted complete-case
analyses. Twenty-three studies (23/78; 29%; 95% CI 20%
to 41%) reported the number of individuals with missing
data; 18 validation only studies and 5 combined develop-
ment and validation studies. Only 8 studies (8/78; 10%;
95% CI 5% to 20%) reported the number of missing
values per predictor. Seven studies used multiple imput-
ation to replace missing values. One study that had no
information recorded for one predictor imputed a value
of zero for all individuals.

Model validation: outcome definition

The outcome to be predicted in an external validation
study may be defined differently from how it was defined
in the original publication describing the development of
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Development & validation articles (n=33)

Validation only

Development Validation (n=45)
Sample size
Explanation of sample size reported Information not extracted 2 (6) 4 (9)
Articles where the number of participants were reported 33 (100) 32 (97) 44 (98)
Median number of participants (range) 1360 (68, 17589824) 1041 (87, 1117123) 694 (49, 797373)
Articles where the number of events were reported 28 (85) 26 (79) 36 (80)

Median number of events (range)

189 (12, 90324)

100 (14, 3623) 108 (6, 42408)

TPercentages are in given parentheses.

the prediction model. The outcome definition may be
intentionally different (e.g. diabetes determined from
using a oral glucose tolerance test or self-report [32]).
Similarly, a model developed to predict an outcome at
one particular time point may be evaluated to see if it is
also predictive at a different time point [33].

Seventeen of the 45 validation only studies (17/45;
38%; 95% CI 24% to 53%) evaluated the performance of
prediction models for outcomes (intentionally) defined
differently from the original outcome definition. In six
validation only studies (6/45; 13%; 95% CI 6% to 27%) it
was unclear whether the definition of the outcome was
the same as the original outcome definition.

Reference to the original prediction model

Seven of the 45 validation only studies (7/45; 16%; 95%
CI 7% to 30%) did not cite the original article that de-
scribed the development of any of the prediction
models evaluated; including one study that cited a non-
existent article, cited as in-press, but has to date not
been published.

Comparison of case-mix

Thirty-one of the 78 studies (31/78; 40%; 95% CI 29% to
51%) compared or discussed the characteristics of both

Table 3 Handling of missing data*

the development and validation cohorts. Nine of the val-
idation only studies (9/45; 20%; 95% CI 10% to 35%)
compared (either numerically or descriptively) the char-
acteristics of the development and validation cohorts.

Model validation: model performance measures
The two key components characterising the perform-
ance of a prediction model are calibration and discrim-
ination [14,15,34]. Calibration is the agreement between
prediction from the model and observed outcomes and re-
flects the predictive accuracy of the model. Discrimination
refers to the ability of the prediction model to separate in-
dividuals with and without the outcome event; those with
the outcome event should have a higher predicted risk
compared to those who do not have the outcome event.
Table 4 describes how the performance of the prediction
models was evaluated. Fifty-three articles (53/78; 68%;
95% CI 56% to 78%) did not report evaluating a prediction
model’s calibration, which can (arguably) be considered as
the key performance measure of a prediction model. Fif-
teen studies (15/78; 21%; 95% CI 12% to 30%) calculated
the Hosmer-Lemeshow goodness-of-fit test, and only 11
studies (11/78; 14% 95% CI 8% to 24%) presented a cali-
bration plot. It was often unclear whether the reported
performance measures were for the full regression model

Single development &
validation articles® (n = 33)

Separate development
& validation articles

Development Validation Development Validati*gn

cohort cohort paper paper

(n = 66) (n = 45)

Studies with no mention of missing data 13 (39) 21 (64) 30 (45) 21 (47)
Studies reporting number of participants with missing data Information not extracted 5(15) Information not extracted 18 (40)
Studies reporting number of missing values for each predictor  Information not extracted 3(9) Information not extracted 5071)
Studies carrying out complete-case analysis'" 26 (79) 30 91) 43 (65) 20 (44)
Studies explicitly mentioning carrying out multiple imputation  Information not extracted 2 (6) Information not extracted 7 (16)

*Percentages are in given parentheses.

SArticles that developed a new model and also evaluated the performance on a separate dataset.
“Articles that only described the evaluation of a previously published prediction model.
™In the absence of clear reporting, those studies that did not mention how missing data were handled were assumed to have conducted a

complete-case analysis.
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Table 4 Model performance measures reported in the
78 studies

Performance measure n (%)
Calibration
Not assessed 53 (68)
Calibration plot 11(14)
Hosmer-Lemeshow test” 16 (21)
Discrimination
Not assessed/not reported 21 (27)
c-index 57 (73)
ROC curve 23 (29)
Overall performance measures
Brier score 5(6)
R 13(17)

Clinical utility (e.g. decision curve analysis) 1(1)

“Including one study calculating Grannesby and Borgan goodness-of-fit test
(for survival data).

or for the simplified models, and therefore this could not
be evaluated further. Fifty-seven articles (57/78; 73%; 95%
CI 62% to 82%) reported an evaluation of model discrim-
ination (e.g. c-index). Of these 57 articles, 17 (17/57; 30%;
95% CI 19% to 44%) did not report confidence intervals.
The mean validation c-index in studies conducted by
authors who also developed the prediction model (ei-
ther in the same paper which developed the model or a
subsequent external validation) was 0.78 (IQR 0.69,
0.88) compared to 0.72 (IQR 0.66, 0.77) in external val-
idation studies carried out by independent investiga-
tors, see Figure 2.

Twenty-three articles (23/78; 29%; 95% CI 20% to
41%) presented Receiver Operating Characteristic (ROC)
curves, yet only four articles labelled the curve at spe-
cific points enabling sensitivity and specificity to be read
off at these points.

Discussion

We believe this is the first study that has systematically
appraised the methodological conduct and reporting of
studies evaluating the performance of multivariable pre-
diction models (diagnostic and prognostic). Evaluating
the performance of a prediction model in datasets not
used in the derivation of the prediction model (external
validation) is an invaluable and crucial step in the intro-
duction of a new prediction model before it should be
considered for routine clinical practice [12,13,26,35]. Ex-
ternal or independent evaluation is predicated on the full
reporting of the prediction model in the article describ-
ing its development, including reporting eligibility cri-
teria (i.e. ranges of continuous predictors, such as age).
A good example of a prediction model that has been in-
adequately reported, making evaluations by independent
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investigators impossible [36,37], yet appears in numer-
ous clinical guidelines [4,38] is the FRAX model for pre-
dicting the risk of osteoporotic fracture [39].

We assessed the methodological conduct and report-
ing of studies published in the 119 core clinical journals
listed in Abridged Index Medicus. Our review identified
that 40% of external validation studies were reported in
the same article that described the development of the
prediction model. Of the 60% of articles that were solely
evaluating the performance of an existing published pre-
diction model, 40% were conducted by authors involved
in the development of the model. Whilst evaluating one’s
own prediction model is a useful first step, this is less
desirable then an independent evaluation conducted by
authors not involved in its development. Authors evalu-
ating the performance of their own model are naturally
likely to err on being overly optimistic in interpreting re-
sults or selective reporting (possibly selectively choosing
to publish external validation from datasets with good
performance and omitting any poorly performing data).

The quality of reporting in external validation studies
included in this review was unsurprisingly, very poor.
Important details needed to objectively judge the quality
of the study were generally inadequately reported or not
reported at all. Little attention was given to sample size.
Whilst formal sample size calculations for external valid-
ation studies are not necessary, there was little acknow-
ledgement that the number of events is the effective
sample size; 46% of datasets had fewer than 100 events,
which is indicated, though from a single simulation
study, as a minimum effective sample size for external
validation [28]. Around half of the studies made no ex-
plicit mention of missing data. The majority (64%) of
studies were assumed to have conducted complete-case
analyses to handle missing values, despite methodo-
logical guidance to do the contrary [40-44]. Multiple im-
putation was conducted and reported in very few studies
and the amount and reasons for any missing data were
poorly described. The analyses of many of these studies
were often confusingly reported and conducted, with nu-
merous unclear and unnecessary analyses done as well
as key analyses (e.g. calibration) not carried out. Some
aspects identified in this review are not specific to pre-
diction modelling studies (e.g. sample size, study design,
dates), it is therefore disappointing that key basic details
on study are also often poorly reported.

Key characteristics, such as calibration and discrimin-
ation, are widely recommended aspects to evaluate
[9,12-15,26,45,46]. Both components are extremely im-
portant and should be reported for all studies evaluating
the performance of a prediction model, yet calibration,
which assesses how close the prediction for an individual
is to their true risk, is inexplicably rarely reported, as ob-
served in this and other reviews [1,23,47]. With regards
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Figure 2 Prediction model discrimination (c-index) from the development and external validation.

to calibration, preference should be to present a calibra-
tion plot, possibly with the calibration slope and inter-
cept in rather than the Hosmer-Lemeshow test, which
has a number of known weaknesses related to sample
size [48]. For example a model evaluate on a large data-
set with good calibration can fail the Hosmer-Lemeshow
test, whilst a model validated on a small dataset with
poor calibration can pass the Hosmer-Lemeshow test.
Arguably, more important than calibration or discrimin-
ation, is clinical usefulness. Whilst a formal evaluation of
clinical usefulness in terms of improving patients out-
comes or changing clinician behavior [26,49] are not
part of external validation, indicating the potential clin-
ical utility can be determined. New methods based on
decision curve analysis (net benefit) [50] and relative
utility [51] have recently been introduced. Only one
study in our review attempted to evaluate impact on
using a model [52], which included an author who de-
veloped the particular methodology [50]. However, since
this review, interest and uptake of these methods have
slowly started to increase. In instances where the valid-
ation is seeking to evaluate the clinical utility, issues
such as calibration (which can often be observed in a de-
cision curve analysis) may not be necessary. However,
most studies in our review were attempting to evaluate
the statistical properties and thus as a minimum, we ex-
pect calibration and discrimination to be reported.

Many of the prediction models were developed and
presented as simplified scoring systems, whereby the re-
gression coefficients were rounded to integers and then
summed to obtain an overall integer score for a particu-
lar individual. These scores are often then used to create
risk groups, by partitioning the score into 2 or more
groups. However, these groups are often merely labelled
low, medium or high risk groups (in the case of 3
groups), with no indication to how low, medium or high
was quantified. Occasionally, these risk groups may be
described by reporting the observed risk for each group,
however, these risk groups should be labelled with the
predicted risks, by typically reporting the range or mean
predicted risk. Authors of a few of the scoring systems
presented lookup tables or plots which directly trans-
lated the total integer score to a predicted risk, making
the model much more useable.

Terminology surrounding prediction modelling studies
is inconsistent and identifying these studies is difficult.
Search strings developed to identify prediction modelling
studies [53-55] inevitably result in a large number of
false-positives, as demonstrated in this review. For ex-
ample, whilst the term validation may be semantically
debatable [13], it is synonymous in prediction modelling
studies as referring to evaluating performance, yet, in
the studies included in this review, only 43 papers (55%)
included the term in the abstract or title (24% in the title
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alone). To improve the retrieval of these studies we rec-
ommend authors to clearly state in the title if the article
describes the development or validation (or both) of a
prediction model.

Our study has the limitation that we only examined
articles published in the subset of PubMed core clinical
journals. We chose to examine this subset of journals as
it included the 119 of the most widely read journals
published in English, covering all specialties of clinical
medicine and public-health sciences, and including all
major medical journals. Our review also included stud-
ies published in 2010, yet since no initiative to improve
the quality of reporting of prediction modelling studies
has been put in place, we feel, that whilst methodology
may have evolved there is no belief that reporting will
have improved.

Systematic reviews of studies developing prediction
models have identified numerous models for predicting
the same or similar outcome [1,56-59]. Instead of devel-
oping yet another new prediction model for which sev-
eral already exist, authors should direct their efforts in
evaluating and comparing existing models and where ne-
cessary update or recalibrate, rather than disregard and
ultimately waste information from existing studies. Jour-
nal editors and peer reviewers can also play a role by
demanding clear rationale and evidence for the need of
a new prediction model and place more emphasis on
studies evaluating prediction models. Recently, develop-
ments have been made that combine existing prediction
models, thereby improving the generalisability, but im-
portantly not wasting existing research [60,61].

Conclusions

The conclusions from this systematic review are consist-
ent with those of similar reviews that have appraised the
methodological conduct and quality of reporting pub-
lished studies describing the development of multivari-
able prediction models [1,2,22,23,27]. The focus on
prediction modelling studies has tended to be on how
prediction models were developed, yet this is undeniably
of secondary importance to assessing predictive accuracy
of a model on participant data. Nonetheless, despite the
obvious importance of evaluating prediction models on
other datasets, this practice is relatively rare and for the
majority of published validation studies, the method-
ology quality and reporting is worryingly poor.

Currently no reporting guidelines exist to assist au-
thors, editors and reviewers to ensure that key details on
how a prediction model has been developed and vali-
dated are clearly reported to enable readers to make an
objective judgment of the study and the prediction
model. A recent initiative, called TRIPOD (Transparent
Reporting of a multivariable model for Individual Prog-
nosis Or Diagnosis), will soon publish a consensus
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statement (along with an Explanatory document) on
the minimal details to report when developing or valid-
ating a multivariable diagnostic or prognostic predic-
tion model [62]. This initiative if adopted by journals
publishing prediction modelling studies will hopefully
raise the reporting standards. The results from this sys-
tematic review, will therefore also act as a baseline to
compare against after the implementation of the TRI-
POD guidelines.
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