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Network-meta analysis made easy: detection of
inconsistency using factorial analysis-of-variance
models
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Abstract

Background: Network meta-analysis can be used to combine results from several randomized trials involving more
than two treatments. Potential inconsistency among different types of trial (designs) differing in the set of treatments
tested is a major challenge, and application of procedures for detecting and locating inconsistency in trial networks
is a key step in the conduct of such analyses.

Methods: Network meta-analysis can be very conveniently performed using factorial analysis-of-variance methods.
Inconsistency can be scrutinized by inspecting the design × treatment interaction. This approach is in many ways
simpler to implement than the more common approach of using treatment-versus-control contrasts.

Results: We show that standard regression diagnostics available in common linear mixed model packages can be
used to detect and locate inconsistency in trial networks. Moreover, a suitable definition of factors and effects allows
devising significance tests for inconsistency.

Conclusion: Factorial analysis of variance provides a convenient framework for conducting network meta-analysis,
including diagnostic checks for inconsistency.

Keywords: Analysis of variance, Baseline contrast, Heterogeneity, Inconsistency, Linear mixed model, Network
meta-analysis, Pairwise treatment contrast, PRESS residual, Studentized residual
Background
Results from several randomized trials can be combined
by meta-analysis methods. In the simplest case, all trials
comprise the same set of treatments, typically only two,
i.e., a new treatment and a control or baseline treatment.
When trials differ in design, i.e., in the sets of treatments
tested, joint analysis may be done by what has come to
be called network meta-analysis (NMA). Such analyses
combine different sources of pairwise treatment compa-
risons across trials, i.e., direct comparisons from trials
that jointly test both treatments of interest and indirect
comparisons from trials that only test one of the two
treatments, but are connected through other treat-
ments via the trial network. A key assumption of many
methods for NMA is consistency of treatment effect esti-
mates across designs, defined by the set of treatments
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tested. In particular, consistency implies agreement be-
tween direct and indirect evidence on a treatment con-
trast. Several methods have been proposed for detecting
inconsistency in trial networks [1-4].
Most methods for analysis of NMA operate on pair-

wise contrasts of treatments with a baseline treatment
or control, henceforth denoted as baseline contrasts.
Some methods for detecting inconsistency in meta-
analysis networks based on baseline contrasts are relatively
complex on account of the fact that baseline treatments
may vary among trials and sources of inconsistency have to
be traced through loops of the network [3-5]. It has been
shown by Piepho et al. [6] that NMA can be greatly simpli-
fied by modelling treatment means rather than treatment
contrasts using factorial analysis-of-variance (ANOVA)
models, and that such analyses can produce identical or
essentially the same results as analyses using baseline
contrasts. The present paper will therefore focus on the
ANOVA approach and illustrate its versatility. Specifically,
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we will explore ways to detect inconsistency using standard
procedures for linear models available in most statistical
packages. The methods will be illustrated using the dia-
betes example published by Senn et al. [7]. This example
has also been used by Krahn et al. [1] to illustrate their pro-
posed methods for detection of inconsistency using a base-
line contrast parameterization, so our results can be
compared directly to that paper in order to appreciate the
degree of agreement between both model formulations
and the resulting tests and diagnostic checks for inconsist-
ency. The presentation assumes that the reader has access
to a mixed model package using restricted maximum likeli-
hood (REML) to estimate variance components and is fa-
miliar with the essentials of the underlying theory [8].
Program code in SAS for all analyses presented is given in
Additional file 1.

Methods
In this section, we describe the basic models we are
using. In the Results section, minor extensions and asso-
ciated statistics derived from the various models, such as
influence diagnostics, are introduced as needed.
A two-way ANOVA model for meta-analysis can be

written as

ηij ¼ βi þ γ j þ uij ð1aÞ

where ηij is the expected value of the j-th treatment in
the i-th trial, βi is the main effect of the i-th trial, γj
is the main effect of the j-th treatment, and uij is a
trial × treatment interaction effect, which models hetero-
geneity between trials. For implementation it is convenient
to represent the linear model (1a) in symbolic notation
that is akin to model syntax used in linear model packages.
We here use a notation originally proposed by Wilkinson
and Rogers [9], which has hence been used by many
authors [10,11] and has also been implemented in some
linear model packages. The factors used for representing
the model are given in Table 1.
The two-way ANOVA model (1) can be represented

as [9]

S� T ¼ Sþ Tþ S:T ð1bÞ
where × is an operator for crossing two factors or model
terms, S is a factor identifying the individual trial, and
T denotes the treatment factor. Effects in (1b) can be
Table 1 Description of factors used for representing
factorial ANOVA models for NMA

Factor symbol Factor description

G Group of trials, trial type, design

S Study, trial

T Treatment
equated with those in (1a) as follows: S ≡ βi, T ≡ γj,
and S.T ≡ uij.
In NMA, trials can be classified into groups of trials

according to the set of treatments tested. These categories
will henceforth be denoted as designs (Table 1). Procedures
for detecting inconsistency can be easily implemented by
expanding the ANOVA model (1) to reflect the nesting of
trials within designs. The extended model is

ηhij ¼ αh þ βhi þ γ j þ vhj þ uhij ð2aÞ

where αh is a main effect for the h-th design, βhi is an ef-
fect for the i-th trial nested within the h-th design, γj is
the main effect of the j-th treatment, vhj is an interaction
effect for the h-th design and the j-th treatment, and uhij
is an interaction effect for the i-th trial (nested within
the h-th design) and the j-th treatment. The interaction
effect vhj represents inconsistency, whereas uhij repre-
sents heterogeneity as in model (1) [6,12]. Using the fac-
tor G to represent the design (Table 1), the symbolic
version of the extended model (2a) is

G=Sð Þ � T ¼ Gþ G:Sþ Tþ G:Tþ G:S:T ð2bÞ
where / is a nesting operator [9]. Note that the nesting
relation G/S in (2b) is resolved as G/S = G +G.S. This
structure is then fully crossed with T, as indicated by the
crossing operator × on the left-hand side of eq. (2b). Ef-
fects in (2a) and (2b) can be equated as follows: G ≡ αh,
G.S ≡ βhi, T ≡ γj, G.T ≡ vhj, and G.S.T ≡ uhij.
Linear predictors (1) and (2) can be used either in

models for individual patient data or in models for
treatment summaries per trial (e.g., empirical logits or
treatment means) [6]. When individual patient data are
modelled, then depending on the outcome variable it may
be appropriate to use the linear predictor in a generalized
linear (mixed) model [GL(M)M], e.g., when the response
is binomial so that a logit or probit link is required. When
summary measures are available, it is customary to model
the response by a linear (mixed) model assuming normal-
ity and accounting for possible heterogeneity in precision
by weighting. In the diabetes example by Senn et al. [7],
we have at our disposal mean responses per treatment and
trial as well as the associated sample standard deviations
and sample sizes, from which the variance of a mean can
be computed. Thus, the models used for our analyses are
of the form

y ¼ ηþ e ð3Þ
where y is the observed treatment mean in a trial, η is
the linear predictor, modelled, e.g., using (1) or (2), and e
is the random normal error associated with the observed
mean. The errors are modelled to have zero mean and
variance var(e) equal to the observed squared standard
error of a mean, assumed to be a known constant when



Table 2 Ten treatment groups of the diabetes example of
Senn et al. [7]

Four-letter abbreviation of treatment Treatment

acar Acarbose

benf Benfluorex

metf Metformin

migl Miglitol

piog Pioglitazone

plac Placebo

rosi Rosiglitazone

sita Sitagliptin

SUal Sulfonylurea alone

vild Vildagliptin

Table 3 Wald-type chi-squared tests for heterogeneity (uij)

Design Wald
statistic

Number of
studies

Degrees of
freedom

p-value

benf:plac 4.38 2 1 0.0363

metf:plac 42.16 3 2 <0.0001

migl:plac 6.45 3 2 0.0398

rosi:plac 21.27 6 5 0.0007

rosi:metf 0.19 2 1 0.6655

Tests are given for five designs represented by more than one trial in the
diabetes example of Senn et al. [7].
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fitting (3). This analysis is easily performed using linear
mixed model software with weighting facility by defining
the inverse of var(e) as weight and fixing the residual
variance at unity [13]. The approach is fully efficient, be-
cause the variance-covariance matrix of the vector of
means y is diagonal with elements equal to var(e) [14].
Following Krahn et al. [1], we will initially consider

analyses by models (1) and (2) when all effects in the
linear predictor (eq. 1b or 2b) are taken as fixed. Subse-
quently, we will consider analyses that model heterogen-
eity [i.e., the interaction effects S.T and G.S.T in eqs.
(1b) and (2b), respectively] as random, which is common
practice (see, e.g., [6] and [15]). One may argue that if
heterogeneity is detected, then the effect for heterogen-
eity may be used as an error term for testing inconsist-
ency because heterogeneity effects are nested within the
effects for inconsistency. This leads to an analysis with
random interaction effects S.T or G.S.T. Conversely, one
may insist that heterogeneity be modelled as a fixed
effect. Then if heterogeneity is detected, it may be con-
cluded that there is no further basis for testing inconsist-
ency because of the nested structure of effects for
heterogeneity in relation to inconsistency. In this situ-
ation, one may try to find subsets of trials that do not dis-
play heterogeneity and analyse these subsets separately
[2]. This philosophy is in agreement with that put for-
ward by Nelder [16], who argued that testing main effects
in a two-way fixed-effects ANOVA is justified only when
the interaction is deemed to be absent and the model is
reduced accordingly. Here, we will present results for
both approaches (interactions for heterogeneity fixed or
random) and compare the results. Our favoured ap-
proach is to model heterogeneity as random when per-
forming checks and tests for inconsistency as well as when
comparing treatment means.

Results
The diabetes data comprise a total of 26 trials, most of
which involve a glucose lowering agent added to a base-
line sulfonylurea therapy. The continuous outcome vari-
able is blood glucose change as measured by the marker
HbA1c in patients with type two diabetes. There were
fifteen different designs, including one three-armed trial
and fourteen trials involving only two treatments. The
network provides direct evidence for fifteen out of 45
possible pairwise contrasts. Eight of these contrasts in-
volve the placebo. The ten different treatments are given
in Table 2.

Fitting models (1) and (2)
We start by fitting models (1) and (2) as purely fixed ef-
fects models, which is equivalent to the models used by
Krahn et al. [1]. Generally, throughout the example, we
adhere to the order of effects as stated in models (1) and
(2) and use sequential (incremental) fitting of terms, cor-
responding to Type I hypotheses in linear model proce-
dures of the SAS system, which is used for all analyses
presented in this paper. There are five designs that have
more than one trial and so allow testing for heterogen-
eity. Thus, we first fit model (1) separately to each of
these designs. The resulting Wald-type chi-squared sta-
tistics for significance of the trial × treatment interaction
(uij), along with the associated p-values, are shown in
Table 3. There is significant heterogeneity for four out of
five designs.
An overall test for heterogeneity is obtained by fitting

model (2). The trial × treatment interaction (G.S.T) yields a
chi-squared statistic of 74.45 on 11 d.f. (p < 0.0001). This
chi-squared statistic for overall heterogeneity is equal to
the sum of the chi-squared statistics for heterogeneity for
the five designs in Table 3. When dropping the effect G.T
from the model, the Wald-test for the effect G.S.T be-
comes a joint test for inconsistency and heterogeneity. The
chi-squared statistic for this test equals 96.98 on 18 d.f.
(p < 0.0001), and it is equal to Generalized Cochran’s Q
[1]. Further note that the model T + S + T.S produces
the same overall Q of 96.98. At this point, we can con-
clude that there is significant heterogeneity.
All chi-squared statistics presented so far are identical

to those in Table 3 of Krahn et al. [1], who used a model
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based on baseline contrasts. We also obtain their chi-
squared statistic for inconsistency, when we fit G.S.T
as fixed and test the effect G.T (chi-squared = 22.53,
d.f. = 7, p = 0.0021). But we favor a mixed model analysis
with random trial × treatment interaction (G.S.T), be-
cause we consider it the major error term for testing the
design × treatment interaction (G.T), which assesses in-
consistency. At the same time, the trial effect needs to be
modelled as fixed in order to maintain equivalence with
the baseline contrast approach [6,7]. When we take the
interaction effect for heterogeneity (G.S.T) as random,
assuming a constant variance for this effect, the chi-
squared statistic for inconsistency (G.T) drops to 2.27.
The REML estimate of the variance for heterogeneity is
σ̂ 2
u ¼ 0:06932. Note that this estimate corresponds to half

the variance for heterogeneity with the baseline contrast
approach [6,15] (usually denoted as τ2). Since the test for
inconsistency now involves an estimated variance com-
ponent, we use the Kenward-Roger method for approxi-
mating the denominator d.f. of a Wald-type F-statistic
[17]. We find F = 0.32 on 7 numerator and 11 denomin-
ator d.f. and p = 0.9268. By this analysis, there is no sig-
nificant inconsistency, which is in contrast to the analysis
with fixed effects for G.S.T. Note that this analysis treats
the residual variances of the individual trials as known
constants, although they are, in fact, estimated when ana-
lysing individual trials. The added uncertainty associated
with these variance estimates could be accounted for by
using the Kenward-Roger method in a single-stage ana-
lysis modelling individual patient data [14], but differ-
ences compared to the two-stage analysis employed here
are expected to be small so long as the sample sizes per
treatment and trial are large enough, as is usually the
case.
A very simple further check for inconsistency is to fit

both G.T and G.S.T as random. The best linear unbiased
predictors (BLUPs) of the G.T effects give a direct indi-
cation which treatment × design combinations contribute
most to the inconsistency. With the diabetes example, the
variance component for G.T is estimated to be zero, so the
BLUPs for all G.T effects are zero, which is in agreement
with the non-significant Wald-test for inconsistency.

Locating inconsistency by detachment of individual
designs
Locating inconsistency in the network may be based on
a detachment of an individual design from the others by
a suitable model formulation that allows testing the con-
tribution of that individual design to inconsistency in
the network as well as the inconsistency that remains
after detaching that design. Krahn et al. [1] showed how to
code a detachment model for baseline contrasts. Here, we
show how to implement this approach based on a straight-
forward extension of the factorial model (2).
To illustrate, consider the first design in the diabetes
example, which has fifteen designs, coded by a factor G.
We may define a new factor D1 for the first design,
which has two levels, one for the first design and an-
other common level for the remaining fourteen designs
(Table 4). Obviously, factors D1 and G have a hierarch-
ical relationship, with G nested in D1. Thus, the inter-
action effect G.T, which assesses inconsistency, may be
partitioned as

D1=Gð Þ:T ¼ D1:Tþ D1:G:T ð4Þ

Fitting both effects on the right-hand side of (4) simul-
taneously, the effect D1.T captures the contribution of
the first design to the overall design × treatment inter-
action, i.e., to overall inconsistency, while the remainder
of the interaction/inconsistency after detachment of the
first design is captured by the effect D1.G.T. Using the
syntax of Wilkinson and Payne [9] and observing the
nesting of factors D1, G and S, the full model can be de-
veloped as follows:

D1=G=Sð Þ � T ¼ D1þ D1:Gþ D1:G:Sþ T
þ D1:Tþ D1:G:Tþ D1:G:S:T ð5Þ

The same partitioning can be done, in turn, for each
of the other fourteen designs. The coding for factors Dk
[k ∈ (1,…,15)], where k indexes the designs, is shown in
Table 4. Table 5 shows the results of analysis by model
(5) for the eleven out of fifteen designs which contribute
to the design × treatment interaction of the network.
The analysis was done taking the interaction for hetero-
geneity (D1.G.S.T) either as fixed or random. Note that
in case of a fixed effect for heterogeneity the Wald-type
chi-squared statistics for D1.T and D1.G.T in (5) (see
Table 5) add up to the chi-squared statistic for overall
inconsistency (G.T) in (2) (chi-squared = 22.53), but not
when heterogeneity is modelled as random. When the
heterogeneity effect is modelled as fixed, there are five
designs with a significant contribution to the inconsist-
ency (Table 5). The strongest contribution comes from
the design rosi:SUal, which was also detected by Krahn
et al. [1] as being the major source of inconsistency. For
this design, as well as for the design metf:SUal, the test
of the remainder of the inconsistency (Dk.G.T) is non-
significant, suggesting that one of these designs could be
removed to instate consistency. When heterogeneity is
modelled as random, however, there is no indication of
inconsistency for any of the designs.

Using influence diagnostics for design × treatment means
In order to detect influential or outlying observations
in the network, we use a two-stage approach. In the
first stage, we compute design × treatment means using



Table 4 Definition of detachment factors for testing inconsistency [Dk.T; k ∈ (1,…,15)]

Design
(factor G)

Design
no. (k)

Factor for
detachment

Level of factor for the fifteen designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

acar:plac 1 D1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

acar:SUal 2 D2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

benf:plac§ 3 - - - - - - - - - - - - - - - -

metf:plac 4 D4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

metf:acar:plac 5 D5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

metf:SUal 6 D6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

migl:plac§ 7 - - - - - - - - - - - - - - - -

piog:plac 8 D8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

piog:metf 9 D9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

piog:rosi 10 D10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

rosi:plac 11 D11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

rosi:metf 12 D12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

rosi:SUal 13 D13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

sita:plac§ 14 - - - - - - - - - - - - - - - -

vild:plac§ 15 - - - - - - - - - - - - - - - -

Factors are defined for eleven designs in the diabetes example of Senn et al. [7] (due to the network structure, the other four designs do not contribute to
the inconsistency).
§These designs do not contribute to the overall inconsistency interaction design × treatment (G.T).
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model (2). In the second stage, we fit an additive two-way
model of the form G+T to the design × treatment means.
From this analysis, we can obtain residual and influence
diagnostics [18,19] by standard procedures with most
linear mixed model packages. The key idea is that observa-
tions contributing substantially to inconsistency will dis-
play strong G.T interaction effects, which in turn will be
captured by the residuals of the additive model G +T.
Table 5 Wald-type chi-squared tests for inconsistency using d

Design Design
no. (k)

Number of
studies

Degrees of
freedom for
Dk.T

Effect

Dk.T

Wald
statistic

p-val

acar:plac 1 1 1 0.09 0.76

acar:SUal 2 1 1 0.01 0.90

metf:plac 4 3 1 0.46 0.49

metf:acar:plac 5 1 2 0.15 0.92

metf:SUal 6 1 1 15.02 0.00

piog:plac 8 1 1 5.28 0.02

piog:metf 9 1 1 5.40 0.02

piog:rosi 10 1 1 0.05 0.82

rosi:plac 11 6 1 6.24 0.01

rosi:metf 12 2 1 0.01 0.91

rosi:SUal 13 1 1 15.76 <0.00

Tests are reported for eleven detached designs in the diabetes example of Senn et
to the inconsistency). The effect Dk.G.S.T was taken either as fixed or as random. Te
§Based on Wald-type F-test with denominator d.f. computed by Kenward-Roger me
Three different options are considered for handling
the effect for heterogeneity (G.S.T) in the first-stage ana-
lysis based on model (2): (i) taking it fixed, (ii) taking it
random and (iii) dropping it. It turns out that with op-
tions (ii) and (iii), the treatment means of designs 3, 4, 7,
11 and 12 are correlated, meaning that weighting by
the inverse of the squared standard errors is only an
approximate method (note that the designs in question
etachment factors [Dk.T; k ∈ (1,…,15)]

Dk.G.S.T fixed Effect Dk.G.S.T random

Dk.G.T Dk.T Dk.G.T

ue Wald
statistic

p-value Wald
statistic

p-value§ Wald
statistic

p-value§

99 22.45 0.0010 0.02 0.8889 2.25 0.8782

91 22.52 0.0010 0.01 0.9430 2.26 0.8765

76 22.07 0.0012 0.04 0.8379 2.22 0.8814

97 22.39 0.0004 0.07 0.9634 2.18 0.8129

01 7.52 0.2758 1.63 0.2343 0.92 0.9835

15 17.25 0.0084 0.43 0.5299 1.96 0.9062

01 17.13 0.0088 0.43 0.5318 1.94 0.9081

80 22.49 0.0010 0.01 0.9065 2.27 0.8751

25 16.30 0.0122 0.74 0.4112 1.87 0.9168

99 22.52 0.0010 0.01 0.9276 2.25 0.8795

01 6.77 0.3424 1.79 0.2146 0.66 0.9930

al. [7] (due to the network structure, the other four designs did not contribute
sts significant at the 5% level are boldfaced.
thod [17].
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are precisely the ones represented by several trials).
An exact analysis requires carrying the full variance-
covariance matrix of design × treatment means forward
and specifying this as the residual variance-covariance
matrix of the model fitted at the second stage [14].
This is easily done in SAS using the REPEATED state-
ment with the option TYPE = LIN(1). Note that option
(iii) is in line with common practice when the baseline
contrast formulation is used [1] and heterogeneity is
Table 6 Studentized residuals and PRESS residuals

Design Observation Treatment

G.S.T fixed

PRESS
residual

Studentiz
resid

1 1 acar 0.0545 0.2

2 plac −0.0545 −0.2

2 3 acar −0.0234 −0.1

4 SUal 0.0234 0.1

3 5 benf

6 plac .

4 7 metf 0.0547 0.3

8 plac −0.0547 −0.3

5 9 acar −0.0894 −0.2

10 metf −0.0276 −0.0

11 plac 0.1359 0.3

6 12 metf 0.6807 3.6

13 SUal −0.6807 −3.6

7 14 migl .

15 plac .

8 16 piog −0.4337 −2.5

17 plac 0.4337 2.5

9 18 metf −0.4719 −2.9

19 piog 0.4719 2.9

10 20 piog −0.1074 −0.5

21 rosi 0.1074 0.5

11 22 plac −0.2802 −1.9

23 rosi 0.2802 1.9

12 24 metf −0.1105 −0.5

25 rosi 0.1105 0.5

13 26 rosi −0.7077 −3.7

27 SUal 0.7077 3.7

14 28 plac .

29 sita .

15 30 plac .

31 vild .

Residuals for diabetes example of Senn et al. [7] were obtained by fitting the mode
assumptions regarding the effect for heterogeneity (G.S.T).
deemed absent. But heterogeneity was found to be sig-
nificant for the diabetes data, so one may argue that
this effect should be in the model for checking consistency.
If the effect is in the model and taken as fixed (option i),
effectively all trials are given the same weight, whereas
when the effect is dropped (option iii), each trial is
weighted according to the variances of the means,
which explains the differences in results. Both analyses
are not fully satisfactory because heterogeneity is not
Model for heterogeneity

G.S.T random G.S.T dropped

ed
ual

PRESS
residual

Studentized
residual

PRESS
residual

Studentized
residual

443 0.0785 0.1453 0.0642 0.2925

443 −0.0785 −0.1453 −0.0642 −0.2925

022 0.0619 0.1056 −0.0259 −0.1142

022 −0.0619 −0.1056 0.0259 0.1142

. . . . .

026 −0.0781 −0.2282 −0.0814 −0.6783

026 0.0781 0.2282 0.0814 0.6783

408 −0.1507 −0.2601 −0.1137 −0.3070

930 0.0036 0.0075 0.0060 0.0205

615 0.1193 0.2273 0.1057 0.2833

726 0.6095 1.1614 0.6910 3.8755

726 −0.6095 −1.1614 −0.6910 −3.8755

. . . . .

. . . . .

934 −0.2802 −0.5585 −0.3638 −2.2987

934 0.2802 0.5585 0.3638 2.2987

147 −0.2927 −0.5779 −0.3467 −2.3246

147 0.2927 0.5779 0.3467 2.3246

173 −0.0073 −0.0141 −0.0445 −0.2173

173 0.0073 0.0141 0.0445 0.2173

593 −0.2100 −0.6391 −0.3181 −2.4974

593 0.2100 0.6391 0.3181 2.4974

920 −0.0616 −0.1610 −0.0179 −0.1005

920 0.0616 0.1610 0.0179 0.1005

022 −0.6733 −1.2693 −0.7424 −3.9701

022 0.6733 1.2693 0.7424 3.9701

. . . . .

. . . . .

. . . . .

. . . . .

l G + T to design × treatment means computed from model (2) with different



Figure 1 Case-deletion plot of treatment means. Case-deletion
means based on a fit of the model G + T using design × treatment
mean estimates obtained from fitting model (2) taking heterogeneity
G.S.T as random. To obtain diagnostics for treatment means (factor T),
we prevented an intercept from being fitted and imposed a
sum-to-zero restriction on the design effects G.

Table 7 Adjusted means for the ten treatments

Treatment Adjusted mean Letter grouping

rosi 0.212 c

piog 0.317 b c

metf 0.318 b c

migl 0.496 b c

acar 0.605 b c

benf 0.709 a c

vild 0.746 a c

sita 0.876 a c

SUal 1.029 a b

plac 1.446 a

Means for the diabetes example of Senn et al. [7] were computed from model (2),
dropping the design × treatment interaction (G.T) and modelling heterogeneity
(G.S.T) as random. Pairwise comparisons at a family-wise Type I error rate of 5%
by Edwards-Berry [20] test. Means with a common letter are not significantly
different. The letter display was obtained by the method of Piepho [21].
Treatments are sorted in ascending order of means for ease of interpretation.
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appropriately taken into account. Taking heterogeneity
as random (option ii) is common practice in meta-
analysis [6,15], and this is also our preferred approach
over option (i) for the reasons stated at the end of the
Methods section.
To compute influence diagnostics in stage two, we

here use the output generated by the INFLUENCE op-
tion to the MODEL statement of the MIXED procedure
of SAS (Version 9.4). The PRESS residuals and studen-
tized residuals are shown in Table 6. The PRESS residual
for the m-th observation is the raw residual when the
m-th observation has been deleted for estimating the
fitted value. Large residuals indicate design × treatment
combinations contributing substantially to the overall in-
consistency. When in the first stage the effect for hetero-
geneity in model (2) (G.S.T) is modelled as fixed, or
when the effect for heterogeneity is dropped, then de-
signs 6 and 13 stand out as having conspicuously large
studentized residuals relative to the standard normal dis-
tribution and relatively large PRESS residuals, which is
in agreement with the tests in Table 5 and also with the
results by Krahn et al. [1]. When heterogeneity is mod-
elled as random, however, the studentized residuals of
all designs are inconspicuous, which also agrees with our
results in Table 5. The agreement of results based on
PRESS residuals with the tests in Table 5 is expected be-
cause the Dk factor essentially invokes a deletion oper-
ation that separates the effect of the k-th design from
the rest, which is exactly the effect of PRESS residuals
computed here (Table 6). It is noted that the residuals of
two-treatment designs are equal in absolute value and of
opposite sign, as expected. Observations with no resid-
uals correspond to designs that do not contribute to the
design × treatment interaction in the network.
A further set of useful diagnostic statistics are the

case-deletion estimates of treatment means. Figure 1
shows a case-deletion plot for all treatment means against
observations that contribute to the design × treatment
interaction. The analysis is based on design × treatment
means computed with random effects G.S.T in (2). The
plot identifies the same observations as influential that also
showed up by relatively large studentized and PRESS resid-
uals in Table 6. For example, the treatment mean for SUal
is largely driven by observations 12 and 13 from design 6
(metf:SUal) and observations 26 and 27 from design 13
(rosi:SUal). Also, the mean of treatment piog is mostly gov-
erned by observations 16 to 19 from designs 8 (piog:plac)
and 9 (piog:metf).

Presenting multiple comparisons of treatment means
Since the inconsistency has been found to be non-
significant when modelling heterogeneity as a random
effect, we drop the inconsistency interaction (design ×
treatment) from model (2) and then compute adjusted
treatment means. We perform all pairwise comparisons
using the simulation-based method of Edwards and
Berry [20] at a family-wise significance level of 5%.
Results are shown in Table 7. For ease of interpretation,
we also compute a letter display using the algorithm de-
scribed in Piepho [21]. According to the letter display,
means sharing a common letter are not significantly dif-
ferent. It is seen that treatments acar, metf, migl, piog
and rosi are significantly different from the placebo.
Among these superior treatments, rosi has the smallest



Table 8 Pairwise differences of the ten treatment means

benf metf migl piog plac rosi sita SUal vild

acar −0.1045 (0.3659) 0.2870 (0.2504) 0.1085 (0.3280) 0.2880 (0.3054) −0.8414 (0.2384) 0.3924 (0.2526) −0.2714 (0.4165) −0.4238 (0.2568) −0.1414 (0.4159)

benf 0.3915 (0.3153) 0.2130 (0.3575) 0.3925 (0.3492) −0.7369 (0.2776) 0.4968 (0.3038) −0.1669 (0.4401) −0.3194 (0.3622) −0.0369 (0.4395)

metf −0.1785 (0.2703) 0.0010 (0.2176) −1.1284 (0.1494) 0.1053 (0.1600) −0.5584 (0.3727) −0.7109 (0.2272) −0.4284 (0.3721)

migl 0.1795 (0.3093) −0.9499 (0.2253) 0.2839 (0.2569) −0.3799 (0.4091) −0.5324 (0.3238) −0.2499 (0.4085)

piog −1.1294 (0.2119) 0.1043 (0.2163) −0.5594 (0.4019) −0.7119 (0.2914) −0.4294 (0.4013)

plac 1.2337 (0.1235) 0.5700 (0.3414) 0.4175 (0.2326) 0.7000 (0.3408)

rosi −0.6637 (0.3631) −0.8162 (0.2290) −0.5337 (0.3624)

sita −0.1525 (0.4132) 0.1300 (0.4824)

SUal 0.2825 (0.4126)

Means for the diabetes example of Senn et al. [7] computed from model (2), dropping the design × treatment interaction (G.T) and modelling heterogeneity (G.S.T) as random. Table reports pairwise mean differences
(and associated standard errors).
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estimated mean, but this is not significantly different
from the other treatments outperforming the placebo.
In order to emphasize that the ANOVA implementa-

tion also yields estimates of pairwise treatment contrasts
and the associated standard errors, as does the baseline
contrast implementation, we report these statistics in
Table 8. This information is part of the standard output
of mixed model packages, but is not convenient for rou-
tine reporting in case of a larger number of treatments.
The table of treatment means and the associated letter
display provide a more compact summary of the net-
work meta-analysis.

Discussion and conclusions
This paper has illustrated how a factorial ANOVA ap-
proach can be used to perform NMA and to locate in-
consistency in a given network. It was shown in Piepho
et al. [6] that this analysis is either fully equivalent
(summary measures, normal response in case of individual
patient data) or very similar (individual patient data with
non-normal responses and non-identity link functions in a
GL(M)M framework) to the more commonly used ap-
proach to meta-analysis based on baseline contrasts. We
think that the ANOVA approach has some practical
advantages. Interpretation of results is facilitated by the
focus on t treatment means rather than on t(t − 1)/2 pair-
wise contrasts. Standard procedures for multiple compari-
son of treatment means further aid the communication of
results. Also, the approach may be appealing to those fa-
miliar with ANOVA of factorial experiments. It has been
demonstrated that standard diagnostic procedures for lin-
ear models can be used to identify influential designs in
the network and to detect sources of inconsistency. The
results obtained for the diabetes example agree very
closely with those obtained using recently proposed proce-
dures based on a baseline-contrast approach [1]. We hope
that this paper will help to popularize the ANOVA ap-
proach as a viable and easy-to-use approach to NMA.
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