
Engelhardt et al. BMCMedical ResearchMethodology 2014, 14:91
http://www.biomedcentral.com/1471-2288/14/91

RESEARCH ARTICLE Open Access

Comparing classification methods for diffuse
reflectance spectra to improve tissue specific
laser surgery
Alexander Engelhardt1, Rajesh Kanawade4, Christian Knipfer2, Matthias Schmid3, Florian Stelzle2

and Werner Adler1*

Abstract

Background: In the field of oral and maxillofacial surgery, newly developed laser scalpels have multiple advantages
over traditional metal scalpels. However, they lack haptic feedback. This is dangerous near e.g. nerve tissue, which has
to be preserved during surgery. One solution to this problem is to train an algorithm that analyzes the reflected light
spectra during surgery and can classify these spectra into different tissue types, in order to ultimately send a warning
or temporarily switch off the laser when critical tissue is about to be ablated. Various machine learning algorithms are
available for this task, but a detailed analysis is needed to assess the most appropriate algorithm.

Methods: In this study, a small data set is used to simulate many larger data sets according to a multivariate Gaussian
distribution. Various machine learning algorithms are then trained and evaluated on these data sets. The algorithms’
performance is subsequently evaluated and compared by averaged confusion matrices and ultimately by boxplots of
misclassification rates. The results are validated on the smaller, experimental data set.

Results: Most classifiers have a median misclassification rate below 0.25 in the simulated data. The most notable
performance was observed for the Penalized Discriminant Analysis, with a misclassifiaction rate of 0.00 in the
simulated data, and an average misclassification rate of 0.02 in a 10-fold cross validation on the original data.

Conclusion: The results suggest a Penalized Discriminant Analysis is the most promising approach, most probably
because it considers the functional, correlated nature of the reflectance spectra.
The results of this study improve the accuracy of real-time tissue discrimination and are an essential step towards
improving the safety of oral laser surgery.
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Background
Oral and maxillofacial surgery is a field where precise cuts
with minimal operative trauma are of particular interest.
Laser scalpels are able to operate much more precisely
than metal scalpels. The development of laser surgery has
brought forward a new method of performing surgery
which reduces the risk of infection that arises when intro-
ducing a metal scalpel in the patient’s body. By using
a laser scalpel instead, this source of infection risk is
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nearly eliminated, because no foreign body is inserted into
the patient’s tissue. Postoperative healing time has been
shown to decrease as well [1]. However, this technology
also introduces a new problem: When using a traditional
metal scalpel, surgeons can feel if they are about to cut a
different type of tissue such as, a nerve—this is called hap-
tic feedback—and are thus able to work around that cru-
cial tissue. Preserving this tissue is of utmost importance,
as irreparable nerve damage is one of the most serious
side-effects of surgery. Especially in oral and maxillofacial
surgery, situations arise where the complex anatomy in the
head and neck region predestinates risks for certain kinds
of surgeries. As an example, removing the parotid gland
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can be a dangerous procedure as branches of the facial
nerve run directly through the gland [2].
Laser scalpels, however, cannot provide haptic feed-

back. For this reason, it is necessary to develop alternative
methods to detect what type of tissue (e.g. fat, nerve,
blood vessels) is being operated on during a surgery. One
possible way, applied in this study, is to illuminate the
region at and near the scalpel’s current position, and to
measure the reflected light spectra. These spectra are
given as smooth real-valued functions over a certain wave-
length range, and are measured at discrete wavelenghts.
Data of this type is called functional data [3]. When
these spectra are measured in between pulses of the laser
scalpel, one can then classify them and find out what
tissue is about to be ablated. Finally, this can then be
assembled into an algorithm that detects when the laser
is about to damage critical tissue and emits a warning sig-
nal to the surgeon or temporarily shuts off the laser as an
automatic feedback mechanism.

Spectroscopy
For the purpose of tissue diagnostics, two popular meth-
ods of spectroscopy, diffuse reflectance spectroscopy and
autofluorescence spectroscopy, are available [4,5]. The
most widely used method uses autofluorescence spec-
troscopy to derive a tissue’s characteristics.
When a tissue sample is illuminated with light of spe-

cific wavelengths, certain molecules called fluorophores
(including amino acids, vitamins and lipids) absorb the
light’s energy and subsequently emit light themselves, this
time of lower energy, i.e. longer wavelengths. The concen-
tration of some fluorophores changes in different tissue
types, thus altering the resulting autofluorescence spectra
and enabling tissue discrimination.
This study makes use of diffuse reflectance spectroscopy,

which exploits the differences in absorption and scattering
properties of various tissue types. The tissue is illuminated
with white light, and a spectrometer then measures the
degree of single and multiple backscattering.
The question which method is preferrable has no con-

crete answer as of now. In a breast cancer detection study,
Breslin et al. [5] found that autofluorescence spectroscopy
is the superior method for discriminating benign from
malignant breast tissue. De Veld et al. [4] however found
that the analysis of diffuse reflectance spectra and aut-
ofluorescence spectra performed equally well when dif-
ferentiating oral lesions from healthy tissue, but diffuse
reflectance spectra were better for discriminating benign
from malignant lesions.
Onemight conclude that the twomethods perform sim-

ilarly in cancer detection tasks. However, Douplik et al. [6]
showed that autofluorescence spectra are altered under
laser ablation conditions, suggesting that another method

of spectroscopy might be more viable in a laser surgery
setting.

Existing work
Previous, related studies [2,7-9] that developed a tis-
sue detection algorithm compared the total misclassi-
fication error, i.e. the ratio of falsely classified obser-
vations to all observations, as well as the pairwise
ROC curves [10], which plot the false positive rate
( false positives
false positives+true negatives , equal to 1 minus the specificity
and ranging from 0 to 1) on the x-axis vs. the true positive
rate ( true positives

false negatives+true positives , equal to the sensitivity and
ranging from 0 to 1) on the y-axis. Because an ROC curve
an only compare two tissue types at a time, one has to use
pairwise curves, one for each tissue pair. Lastly, the pair-
wise area under the ROC curve (AUC), which ranges from
0.5 for random guessing to 1.0 for a perfect classification,
was compared.
Stelzle et al. [2,7] used ex-vivo pig heads to measure

and classify the diffuse reflectance spectra of hard and
soft tissue types, namely skin, muscle, mucosa, subcuta-
neous fat, salivary gland, bone, and nerve tissue. They
found that almost all tissue pairs could be differentiated
with high sensitivity and specificity. Many tissue pairs
could be differentiated with sensitivities and specificities
of around 90%. Some sensitivities and specificities were
slightly lower, but the results still show the feasibility of
remote tissue differentiation. One of the problems that
persist in these two studies is that measurements were
taken ex-vivo, i.e. from dead tissue. The fact that blood
flow to this tissue had stopped before measurements were
taken implies that measurements of in-vivo tissue will dif-
fer slightly, depending on the additional light absorption
and scattering properties of blood occuring in live tissue.
In a follow-up study, Stelzle et al. [8] took on the

above mentioned problem of ex-vivo tissue alterations.
The authors classified the diffuse reflectance spectra of
four soft tissue types (skin, fat, muscle, nerve) of live rats.
This study achieved an AUC and a sensitivity as well
as specificity of 1.00 for all tissue pairs except skin/fat.
These results may suggest that, due to the additional
occurence of blood in live tissue, classification perfor-
mance is improved under in-vivo conditions.
Most recently, Stelzle et al. [9] classified the diffuse

reflectance spectra of five tissue types of ex-vivo pig heads.
This study differed in the fact that measurements were
taken before and after the ablation of tissue with a laser
scalpel, comparing the results and drawing conclusions
about the effects of laser ablation on prediction strength.
The study found that after laser ablation, the total classifi-
cation error rose from around 14% to 17%. Only the differ-
entiation between the tissue types nerve/fat was enhanced
under laser ablation conditions.
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All of the mentioned studies reach high sensitivities and
specificities, concluding that a tissue differentiation by dif-
fuse reflectance spectroscopy is feasible, even in live tissue
and under laser ablation conditions.
However, all of the previously listed work used the same

method of analysis: The dimension of the measured spec-
tra was reduced by a Principal Component Analysis (PCA)
[11], and the PC scores were subsequently classified by a
Linear Discriminant Analysis (LDA) [12].
Moreover, the data in the four above-mentioned cases

came from a relatively small number of specimen, where
each animal has beenmeasured many times. This resulted
in a large sample size, but highly correlated spectra within
animals, due to the repeated measurements.

Purpose of this study
The objective of this study is to extend the existing work
in two ways: Firstly, the problem of the repeated, cor-
related measurements is tackled by averaging out the
repeated spectra within each animal. Because the variance
of the spectra within each animal is much smaller than
the variance between animals, this procedure reduces the
amount of data without reducing the amount of informa-
tion much, and furthermore removes a possible down-
ward bias when estimating the covariance matrices for
each tissue type. Afterwards, new spectra are simulated
by estimating mean vectors and covariance matrices for
each tissue class separately, and using these estimates to
simulate new spectra according to multivariate Gaussian
distributions. Secondly, the study’s main objective is to
apply a series of classification algorithms to the simulated
data, and find out if other classification methods have
a better prediction strength than the previously applied
LDA.
The insights acquired from this study can be used in

further research and suggest a set of algorithms to con-
centrate on for subsequent studies.

Methods
Data acquisition and preprocessing
Data acquisition
The data consist of diffuse reflectance spectra measured
at a discrete set of wavelengths, taken from different tissue
types of a set of ex-vivo pig heads. The initial data set used
in this study is a merged data frame, combined from the
data sets used in Stelzle et al. [2,7].
Measurements were taken from twelve dissected pig

heads obtained from a slaughterhouse. For each pig head,
eight tissue types were dissected, from each of which
six spots were selected to take reflectance spectra from.
Finally, 30 measurements per spot were made. The many
repetitions were taken because once a tissue sample is
readily lying under the spectrometer, additional measure-
ments are done quickly and cheaply.

Thus, in total, the complete data consisted of 12 ani-
mals · 8 tissue types · 6 spots · 30 repetitions = 17280
diffuse reflectance spectra. The spectra were measured at
1150 discrete wavelengths between 350 nm and 650 nm,
in steps of around 0.26 nm. The tissues were illumi-
nated with a pulsed Xenon lamp, and the reflected spectra
were measured with a backscattering probe that trans-
ferred the measurements to a spectrometer. Refer to
Stelzle et al. [7] for further details on the experimental
set up.

Preprocessing
To bring the data into a structure that is in agreement with
the prerequisites for simulation, the data was thinned out
by averaging over the repetitions and spots. This proce-
dure was justified by looking at 30 measurements of each
spot and tissue type, which showed only minimal varia-
tion, and 6 measurements of each animal and tissue type
at its different spots, which show almost exclusively only a
constant vertical shift.
The averaging was done first and foremost to elimi-

nate redundant information in the data. Secondly, it was
believed that keeping the repetitions would result in a too
small estimate for the covariance matrices within each tis-
sue class, because the data essentially contained 30 copies
of each spectrum. By making sure that each spectrum in
the final data set belongs to a different animal, it can be
assumed that the subsequent simulation of new spectra
generates spectra of new animals instead of new spots.
The preprocessed data set contained 96 observations (8

tissue types · 12 animals) of 1154 columns, described in
Table 1 and shown in Figure 1.

Simulation of new spectra
Since the previous studies were carried out with many
repeated measurements of a small number of specimen,
many of themeasurements were highly correlated, and the

Table 1 A description of the columns in the data

Variable name Description

350.14 Reflectance measured at the wavelength of
350.14 nm. A floating point number typically in the
range from 0 to 60.

350.41 Reflectance measured at the wavelength of 350.41 nm
...

...

649.98 Reflectance measured at the wavelength of 649.98 nm

Specimen The ID of the animal measured (integer between 1
and 12).

Tissue Which tissue type was measured (categorical
variable, possible values are Fat, Mucosa, Muscle,
Nerve, Skin, Cortical Bone, Salivary Gland,
Cancellous Bone)
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Figure 1 All 96 spectra, 8 tissue types for each of the 12 animals, after preprocessing has taken place. This is the data set with which the
simulation has been carried out. Each of the spectra is actually an average over six spots and 30 repetitions, i.e. 180 of the spectra of the original data
set have been averaged into one line of this figure.

authors remarked that the sample size was actually rather
small, considering the degree of redundancy in the data
set.
For that reason, the data set was first shrunk by aver-

aging out the repetitions, and subsequently enlarged via
simulation. The simulation created spectra that can be
interpreted as measurements from new animals rather
than additional repetitions of the same animal.
After preprocessing, the remaining data set consisted of

N = 96 spectra, each belonging to one of C = 8 tis-
sue types. The number of spectra in each of the C tissue
classes is denoted by nc, c ∈ 1, . . . ,C, and is constant in
this data set, nc = 12 ∀ c.

Simulation procedure
The simulation was conducted by using the following
procedure:
First, split the data frame of the spectra (denoted by X)

into C = 8 subsets, one for each tissue type c. Denote the
resulting matrices of reflectance spectra by Xc ∈ Rnc×p.
Assume in each of the C tissue classes c ∈ 1, . . . ,C,

each one of the nc spectra follows a p-dimensional multi-
variate normal distribution with mean μc and covariance
matrix �c,

xj ∼ Np(μc,�c), j = 1, . . . , nc.

One can then obtain simple parameter estimators μ̂c
and �̂c for every class c separately:

μ̂c = 1
nc

⎛
⎜⎝

∑nc
i=1 xi1
...∑nc

i=1 xip

⎞
⎟⎠ (1)

�̂c = 1
nc − 1

X�
c Xc (2)

We can subsequently use the obtained estimators to
simulatemc additional observations in each class c:

x∗
j ∼ Np(μ̂c, �̂c) , j = 1, . . . ,mc,

where μ̂c and �̂c are the respective estimates for μc
and �c.



Engelhardt et al. BMCMedical ResearchMethodology 2014, 14:91 Page 5 of 15
http://www.biomedcentral.com/1471-2288/14/91

The estimation data sets
Using the estimated means μ̂c and covariances �̂c, new
data was simulated to obtain a distribution of error rates.
We generated 1000 data sets of 800 observations (mc =
100) each. These data sets were used to train classification
algorithms and generate boxplots of their misclassifica-
tion rates, and to compute confusion matrices to allow for
more detailed insights in where misclassification occurs.
Figure 2 summarizes the data manipulation process.

For the subsequent analyses, the original 96 spectra were
neglected for simplicity; only simulated spectra were
considered.

Dimension reduction with Principal Component Analysis
(PCA)
Because the measured spectra consist of many highly
correlated input variables which can lead to instable

parameter estimates, a PCA [11] was applied as a method
of dimensionality reduction.
To allow a comparison between using a PCA and using

the original spectra, the classification algorithms were
each carried out first with the original spectra, and subse-
quently with only a number of PC scores.
The computation of the principal components relies

heavily on the (sample) covariance matrix � of the data X,
which is the row-wise matrix composed of the n observa-
tions xi. The k-th principal component is given by zk =
α�
k x, where αk is the eigenvector of � corresponding to

the k-th largest eigenvalue λk of �.
The idea of a PCA is to use a small number q � p of

principal components that still explain a sufficient pro-
portion of the total variance, thus reducing the number
of input variables while losing only a minimal amount of
available information.

10800 spectra
Stelzle et al. (2010)

8640 spectra
Stelzle et al. (2011)

17280 spectra
combined data

96 spectra
averaged data

800 spectra
bootstrap set #1

800 spectra
bootstrap set #1000

remove 2160 duplicate nerve spectra

average away spots and repetitions

simulate with multivariate normal distribution

concatenate

Figure 2 A flowchart that summarizes how the data was manipulated.
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To choose the number q of principal components
for further analyses, a multitude of methods is avail-
able. In this study, the average eigenvalue criterion was
applied because it is an objective, computationally low-
cost method which has shown good results according to
Valle et al. [13]. With the average eigenvalue criterion, one
selects all PCs with an associated eigenvalue greater than
the average eigenvalue of all PCs.

Classification methods
The simulation and analyses were carried out with the
open programming environment R, version 3.0.0 [14]. The
following additional packages were used:

• For linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA): The MASS package [15].

• For penalized discriminant analysis (PDA): The mda
package [16].

• For Random Forests: The randomForest package
[17].

• For classification and regression trees (CART): The
rpart package [18].

• For Neural Networks: The nnet package [15].
• For k-nearest-neighbor: The class package [15].
• For the graphics: The reshape and ggplot2

packages [19,20].

Where possible, each classification algorithm was exe-
cuted with both the original spectra as well as the PC
scores. For some classifiers, one of the methods was either
impossible or nonsensical:

• For LDA and QDA, highly correlated covariates (as is
the case for discretized functions) lead to unstable
estimates. For that reason, only PC scores were
analyzed with LDA and QDA.

• PDA has its strength in the case of many correlated
covariates. It thus makes little sense to analyze a set
of PC scores with that algorithm, which is why only
the spectra were considered for PDA.

The classification algorithms used in this study are
described only briefly here. Some of the algorithms can be
run out-of-the-box, whereas others depend on some tun-
ing parameters or hyperparameters, which influence the
course of action of the algorithm. Where necessary, these
tuning parameters are described, as well. Refer to Hastie
et al. [12] for an extensive description of all algorithms
discussed here.

k-nearest-neighbor
A k-nearest-neighbor classifier [21] takes a new observa-
tion vector x∗, and finds its k nearest neighbors in the
training sample. The definition of closest point is sub-
ject to some chosen distance metric, most commonly

the euclidean distance, which is defined as d(u, v) =√∑k
l=1 (ul − vl)2 for two vectors u and v. The predicted

class for x∗ is then the majority vote of the response
variable of the nearest neighbors.
The k-nearest-neighbor algorithm has only one hyper-

parameter, namely k.

Linear discriminant analysis (LDA)
Linear discriminant analysis [22] is based on imposing a
multivariate Gaussian mixture model upon the training
data i.e. it assumes:

• A class probability πc for each class c, subject to∑C
c=1 πc = 1.

• In each class c the input data xi follow a multivarate
Gaussian distribution:

f (x|Y = c) = 1
(2π)p/2 |�c|1/2

exp
(

−1
2
(x − μc)

��−1
c (x − μc)

)
.

• Linear (as opposed to quadratic) discriminant
analysis assumes the covariance matrices within all
classes are equal, i.e. �c = � ∀ c.

After estimating the πc, μc and � from the training data
set T , the decision rule can be described with a set of
discriminant functions

δc(x∗) = (
x∗)�

�−1μc − 1
2
μ�
c �−1μc + log (πc) .

LDA owes its name to the fact that these discriminant
functions are linear in x∗. The fitting function is then
Ŷ (x∗) = argmaxc δc(x∗).

Quadratic discriminant analysis (QDA)
In some situations (the simulation in this study is an exam-
ple), the covariance matrices �c are not equal throughout
all classes. In that case, a QDA [22] is an appropriate
solution. The discriminant function δc(x) has a quadratic
form, and the decision boundaries between two classes
c1 and c2 are described by quadratic equations {x : δc1
(x) = δc2(x)}. In particular, the discriminant functions are
defined by

δc
(
x∗) = − 1

2
log |�c| − 1

2
(x∗ − μc)

��−1
c

(
x∗ − μc

)
+ logπc,

and are thus quadratic in x∗.

Penalized discriminant analysis (PDA)
A PDA [23,24] is a penalized version of the LDA, which is
a sensible extension in the case of a large number of highly
correlated covariables such as discretized spectra.
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Mathematically, many correlated covariables will result
in a singular, i.e. non-invertible covariance matrix �,
thus making the classification very instable or even
infeasible. Hastie et al. [23] replace � by a regularized
version, � + λ�, where � is a roughness-penalizing
matrix and λ is a smoothing parameter that adjusts the
amount of smoothing. The classification then proceeds
much like an LDA, but with the penalized covariance
matrix.
The choice of � determines the type of penalization

used. Common choices are a second-order difference
structure that effectively penalizes second derivatives, or
a simpler choice of � = λIp that results in a penaliza-
tion similar to ridge regression [24]. We chose the latter
matrix, � = λIp, for regularization.

Classification trees
Classification trees [12] work by partitioning the covari-
ate space into rectangles and fit simple models (mostly
a constant) in each rectangle. The gradual partition-
ing can be visualized through a decision tree, that
yields a path along the tree resulting in a constant,
i.e. a predicted response (or an above-mentioned sim-
ple model) for every new observation. Different meth-
ods are available, for example the CART and C4.5
algorithms.
This analysis used CART trees, which are restricted to

binary splits at each splitpoint and uses the Gini index as
an impurity measure.
To control when the tree stops growing and the model

is considered as finished, many hyperparameters can be
used. One hyperparameter limits the depth of the tree
to some maximum number. Furthermore, one can deter-
mine the minimum number of observations that must
exist in a node for another split to be attempted, and/or
the minimum number of observations in any terminal
leaf node. Alternatively, one can set a minimum factor
by which the lack of fit has to be decreased in order to
execute the next split.
This procedure, however, might stop a tree too early,

when e.g. the next split is of little importance, but a
subsequent split could lead to a large increase in classi-
fication accuracy. Thus, one usually employs a strategy
called pruning, where first a large tree is grown, and
subsequently splits of little importance removed, keeping
possible better splits further down the tree. A hyperpa-
rameter α controls how good a split has to be so that
it is kept in the final, pruned tree. In the case of α = 0
the solution is the full tree, for α = 1 a degenerated
tree with zero splits results. Since α is the minimum
factor by which the lack of fit must be decreased in
order for the next split to be executed, it makes sense
to only search for α in the low end of the possible
interval [ 0, 1].

Random forests
Random forests [25] are an ensemble method, construct-
ing a large number of simple classification trees to obtain
a majority vote for the predicted response class. They
work because simple trees are high-variance yet unbiased
methods, and the “averaging” reduces that high variance.
In short, a random forest is constructed by drawing

B bootstrap samples from the training data and fitting
a tree to each of them, randomly selecting a subset
of covariates at each splitpoint. The predicted class for
new observations is then the majority vote of the B
fitted trees.
Hyperparameters for random forests include the stop-

ping criteria for each tree, explained above, as well as
the total number B of trees to grow, and the number
of variables that are randomly sampled as candidates at
each split. The last parameter is the most influential one
regarding the final goodness of fit.

Neural networks
A neural network for classification [12] is (for the most
common case of one hidden layer) a two-stage classifica-
tion model, consisting of a hidden layer, which in turn is
made up of M so-called hidden units (or neurons) Zm =
σ(α�X), where X is the covariate matrix. The output layer
gc(T), where T = β�Z, is the second step in the two-
stagemodel. The predicted class for an observation is then
the class c with the largest respective value of gc(T). Neu-
ral networks are inspired by the workings of neurons in
a brain, where they get their name from. The sequen-
tial interconnection between the covariates, the neurons
and the output layer models the interconnected nature of
neurons.
When considering only single layer networks, the main

parameter is the number M of hidden units in this layer.
Furthermore, the activation function σ(v) can be speci-
fied, although it is mostly the sigmoid function, σ(v) =
1/(1+e−v). Finally, the output function gc(T) can be spec-
ified, but for classification purposes, it is most commonly
the softmax function, gc(T) = eTc∑C

γ=1 e
Tγ

.

Hyperparameter selection
Some classifiers depend on additional hyperparameters
which have to be set before the algorithm is run. This
section describes which paramters were tuned and how
they were chosen.
For a real data set of limited size, the most common

method to determine hyperparameters is to execute a
cross validation [26], because it most effectively utilizes a
limited amount of data. In this simulation setting however,
the theoretical possibility to generate data of arbitrary
size makes cross validation unnecessary, and so, for each
estimation data set, a simple split into one training set
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(50% of the observations) and one test set (the other 50%
of the observations) was carried out. The best hyper-
parameter was then determined by comparing the total
misclassification rate in the test set for a reasonable set
of different values for the hyperparameters and choosing
the parameter with the lowest respective misclassification
rate.
The following hyperparameters were determined:

• For k-nearest-neighbor classification, the parameter
k was determined by splitting the data into training
and test data, computing a fit for all k ∈ {1, . . . , 10},
and choosing for subsequent analysis the value for k
which resulted in the smallest test set error.

• For random forests, the parameter mtry, i.e. the
number of covariates randomly selected for each tree
split, was searched for using the procedure tuneRF
in the randomForest-package. It compares
different values of mtry with their respective
out-of-bag errors, but does not try every possible
value for mtry, instead it multiplies or divides mtry
by a constant factor (2 in this study) at each iteration.

• For classification trees, the complexity parameter α

was searched for by first growing a large tree with
α = 10−6. This tree contains a table of
cross-validation errors for several values of α larger
than 10−6, and the optimal value of α was extracted
from this table and used as the pruning complexity
parameter.

• For neural networks, the number of hidden units in
the middle layer was searched for from 1 to 4 in the
case of spectra, and from 1 to 10 in the case of PC
scores. The range for number of units was limited in
the case of spectra for computational reasons.

• For PDA, the smoothing parameter λ was searched
for from 10i, i = −6, . . . , 3.

Performance evaluation
All algorithms were applied on each of the 1000 estima-
tion data sets. The classifiers were trained on a sample set
(50% of each data set, i.e. 400 of the 800 observations),
and their performance was subsequently evaluated on an
independent test set (the remaining 400 observations).

Distribution estimation of themisclassification rate
The variation of the misclassification rate was of central
interest in this study. The 1000 estimation data sets were
generated for that reason. The classification algorithms
were applied to the training data of each of these data sets
and subsequently evaluated on the test data.
The misclassification rate is the percentage of observa-

tions for which a wrong class was predicted. Denoting the
covariates (i.e. the spectra) in the test set by xi, and their

respective tissue type by yi, the misclassification rate is
defined by

1
n
#{i : Ŷ (xi) �= yi}

for a test set with n observations.
To estimate a distribution of the misclassification rate,

for each of the 1000 data sets the classifiers were trained
and tested, yielding a sample of misclassification rates.
These samples were used to create boxplots of the mis-
classification rates to allow for a better performance
judgment.

Averaged confusionmatrices
To obtain insights into the specific type of mistakes made
in the classification, an average of the confusion matrices
of the 1000 simulated data sets was computed. Its C =
8 rows and C = 8 columns are the specific tissue types,
and the percentages show what ratio of tissues of type c
get classified into group d. These insights can be helpful
to find out what type of tissues are especially difficult to
discriminate.

Results
Principal component analysis
For all of the the 1000 estimation data sets, the aver-
age eigenvalue criterion selected 6 principal components.
Therefore, classification of PC scores was always carried
out with 6 covariates.

Averaged confusion matrices
For each of the algorithms, 1000 confusion matrices were
generated, one for each of the estimation data sets. Shown
are the averages for each investigated algorithm. The con-
fusion matrices show the actual tissue types yi in the
columns, and the classified tissue types Ŷ (xi) in the rows.
Therefore, (only) the row percentages sum up to 1.

k-nearest-neighbors
For k-nearest neighbors, the PC scores of fat and the sali-
vary gland get confused most often (for 20 and 25 percent
of all their respective observations).
Looking at the original spectra, cortical bone and the

salivary gland get misclassified most often, both of them
into similar tissue types (muscle, nerve, and fat, as well as
the respective other tissue type).
Table 2 shows the confusion matrix for this algorithm.

LDA
An LDA also has problems in discriminating fat from the
salivary gland, making similar mistakes as a k-nearest-
neighbors analysis of the PC scores. Also, cortical bone
tissue is hard to classify, and is most often misclassified
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Table 2 The average confusionmatrices for the KNN algorithm

PC scores Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S. Gland Skin

Cancellous Bone 0.94 0.01 0.00 0.00 0.00 0.00 0.00 0.04

Cortical Bone 0.04 0.69 0.05 0.00 0.03 0.06 0.11 0.02

Fat 0.00 0.02 0.71 0.01 0.00 0.01 0.25 0.00

Mucosa 0.00 0.00 0.02 0.86 0.00 0.09 0.01 0.01

Muscle 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Nerve 0.00 0.03 0.00 0.04 0.00 0.85 0.05 0.02

S.Gland 0.00 0.06 0.20 0.00 0.01 0.07 0.65 0.01

Skin 0.04 0.00 0.00 0.01 0.00 0.01 0.00 0.93

Spectra Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.95 0.01 0.00 0.00 0.00 0.00 0.00 0.03

Cortical Bone 0.04 0.71 0.04 0.00 0.02 0.06 0.11 0.01

Fat 0.00 0.02 0.78 0.01 0.00 0.01 0.19 0.00

Mucosa 0.00 0.00 0.02 0.87 0.00 0.09 0.02 0.01

Muscle 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Nerve 0.00 0.03 0.00 0.04 0.00 0.86 0.05 0.02

S.Gland 0.00 0.07 0.13 0.00 0.01 0.07 0.72 0.01

Skin 0.04 0.00 0.00 0.01 0.00 0.01 0.00 0.94

into cancellous bone and muscle tissue. The confusion
matrix is shown in Table 3.

Neural networks
Analyzing the PC scores with neural networks, the com-
mon mistake made by other classifiers, i.e. confusing the
salivary gland and fat tissues, is also visible here. Cor-
tical bone is again hard to classify, but seems to get
misclassified into other tissues with equal frequencies.
When running a neural network on the original spectra,

the confusionmatrix appears as if it were producedmostly
by random guessing. Only cancellous bone was recog-
nized with an increased frequency of 0.40. See Table 4 for
the confusion matrix.

PDA
A penalized discriminant analysis made almost no mis-
takes and correctly classified nearly all of the samples in
the test set. A small amount of misclassification occured
but is not visible in the confusion matrices due to round-
ing. This can have a number of reasons, including the
nature of the simulation procedure or simply its intrin-
sic advantage when dealing with functional data. The
confusion matrix is shown in Table 5.

QDA
A quadratic discriminant analysis of the PC scores made
almost no mistakes, merely misclassifying some cortical
bone, fat, nerve, and salivary gland tissues. See Table 6 for
the confusion matrix.

Table 3 The average confusionmatrix for the LDA algorithm, analyzing PC scores

PC scores Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.93 0.03 0.00 0.00 0.00 0.00 0.00 0.04

Cortical Bone 0.10 0.74 0.03 0.00 0.06 0.03 0.03 0.01

Fat 0.00 0.01 0.83 0.00 0.00 0.02 0.15 0.00

Mucosa 0.00 0.05 0.00 0.93 0.00 0.02 0.00 0.00

Muscle 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Nerve 0.00 0.06 0.01 0.00 0.00 0.85 0.07 0.01

S.Gland 0.00 0.01 0.09 0.00 0.00 0.01 0.89 0.00

Skin 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.97
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Table 4 The average confusionmatrix for the neural net algorithm

PC scores Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.92 0.04 0.00 0.00 0.01 0.00 0.00 0.03

Cortical Bone 0.07 0.78 0.04 0.01 0.02 0.04 0.03 0.02

Fat 0.00 0.04 0.81 0.01 0.00 0.03 0.11 0.00

Mucosa 0.00 0.01 0.01 0.94 0.00 0.03 0.00 0.01

Muscle 0.00 0.01 0.00 0.00 0.98 0.00 0.00 0.00

Nerve 0.01 0.04 0.02 0.02 0.00 0.86 0.04 0.01

S.Gland 0.00 0.02 0.11 0.00 0.00 0.03 0.82 0.01

Skin 0.04 0.01 0.00 0.02 0.00 0.01 0.01 0.91

Spectra Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.40 0.06 0.07 0.08 0.14 0.07 0.07 0.11

Cortical Bone 0.13 0.09 0.14 0.12 0.16 0.14 0.12 0.09

Fat 0.07 0.07 0.20 0.16 0.11 0.17 0.15 0.08

Mucosa 0.08 0.07 0.17 0.20 0.12 0.15 0.13 0.09

Muscle 0.15 0.07 0.11 0.11 0.26 0.11 0.10 0.09

Nerve 0.07 0.07 0.18 0.15 0.11 0.17 0.15 0.08

S.Gland 0.08 0.07 0.17 0.15 0.11 0.16 0.16 0.09

Skin 0.21 0.07 0.10 0.12 0.14 0.10 0.10 0.17

Random forests
Random forests make similar mistakes than other clas-
sifiers when analyzing PC scores, most notably the con-
fusion of fat and salivary gland. However, the overall
error rate is smaller than for discriminant analyses and
k-nearest-neighbor classification.
For PC scores, the types of misclassification are sim-

ilar, but the overall performance suffers noticeably. The
resulting confusion matrix is shown in Table 7.

Trees
Trees have a relatively weak performance in this analysis.
Analyzing the original spectra with trees show a partic-
ularly weak performance. Comparing them with random

forests, one can see that the ensemble method does not
result in a big improvement in discrimination of cancel-
lous bone and muscle tissue, but improves the discrimi-
nation of the six other tissue types. See Table 8 for the
confusion matrix of this algorithm.

Misclassification rates
The 1000 misclassification rates per algorithm were sum-
marized into quantiles. The 0% quantile is equal to the
minimum, the 50% quantile is the median, and the 100%
quantile is the maximum of each vector. The quantiles are
shown in Table 9 and depicted as boxplots in Figure 3.
The worst performing algorithms were neural nets with

original spectra and the tree algorithms, both for PC

Table 5 The average confusionmatrix for the PDA algorithm, analyzing spectra

Spectra Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cortical Bone 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Fat 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Mucosa 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Muscle 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Nerve 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

S.Gland 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Skin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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Table 6 The average confusionmatrix for the QDA algorithm, analyzing PC scores

PC scores Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cortical Bone 0.00 0.98 0.01 0.00 0.00 0.01 0.00 0.00

Fat 0.00 0.01 0.98 0.00 0.00 0.00 0.01 0.00

Mucosa 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Muscle 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Nerve 0.00 0.01 0.00 0.00 0.00 0.99 0.00 0.00

S.Gland 0.00 0.00 0.01 0.00 0.00 0.00 0.98 0.00

Skin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

scores and original spectra. However, as noted above trees
were not tuned because of the many available hyper-
parameters, and thus might have resulted in a better
performance after tuning.
The best performances were achieved by a quadratic

discriminant analysis of the PC scores and a penal-
ized discriminant analysis of the original spectra. Both
achieve a near-perfect classification with minimal varia-
tion throughout the 1000 data sets.
The remaining algorithms had a similar performance,

with median error rates roughly between 10 and 20 per-
cent. Random forests showed an improved performance
when analyzing PC scores. Taking into consideration that
there were eight tissue types, i.e. random guessing would

have resulted in a misclassification rate of 7/8, most of the
algorithms perform strongly in this study.

Confirmatory cross validation on the original spectra
The simulation procedure used to generate the data was
based on a multivariate normal distribution. Thus, mod-
els which impose a normal distribution on the data can
be overoptimistic in the classification procedure [12]. This
applies to the discriminant analyses, i.e. LDA, QDA and
PDA. Because these classifiers assume normal distribu-
tions for each of the class densities, the discriminant
analyses, and in particular QDA, which allows for dif-
ferent covariance matrices �c in the classes c, could
show a reduction in classification performance for real,

Table 7 The average confusionmatrix for the random forest algorithm

PC scores Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.97 0.02 0.00 0.00 0.00 0.01 0.00 0.00

Cortical Bone 0.02 0.87 0.02 0.00 0.02 0.02 0.02 0.02

Fat 0.00 0.01 0.89 0.00 0.00 0.02 0.08 0.00

Mucosa 0.00 0.01 0.00 0.97 0.00 0.01 0.00 0.00

Muscle 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00

Nerve 0.01 0.03 0.02 0.00 0.00 0.90 0.03 0.00

S.Gland 0.00 0.01 0.08 0.00 0.00 0.03 0.88 0.00

Skin 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.98

Spectra Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.93 0.01 0.00 0.00 0.01 0.00 0.00 0.04

Cortical Bone 0.04 0.70 0.05 0.01 0.03 0.06 0.08 0.03

Fat 0.00 0.02 0.79 0.01 0.00 0.01 0.17 0.00

Mucosa 0.00 0.00 0.02 0.83 0.00 0.10 0.02 0.03

Muscle 0.00 0.01 0.00 0.00 0.98 0.00 0.00 0.00

Nerve 0.01 0.02 0.00 0.07 0.00 0.83 0.03 0.04

S.Gland 0.00 0.09 0.13 0.02 0.01 0.07 0.67 0.01

Skin 0.07 0.01 0.00 0.02 0.00 0.02 0.00 0.89
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Table 8 The average confusionmatrix for the CART (tree) algorithm

PC scores Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.89 0.05 0.01 0.01 0.02 0.01 0.00 0.01

Cortical Bone 0.05 0.68 0.08 0.05 0.03 0.05 0.03 0.04

Fat 0.00 0.06 0.73 0.01 0.00 0.05 0.14 0.01

Mucosa 0.03 0.07 0.02 0.85 0.00 0.04 0.00 0.00

Muscle 0.01 0.02 0.01 0.01 0.95 0.00 0.00 0.00

Nerve 0.04 0.07 0.06 0.03 0.00 0.74 0.05 0.00

S.Gland 0.01 0.02 0.17 0.00 0.00 0.07 0.72 0.00

Skin 0.05 0.02 0.01 0.01 0.02 0.02 0.02 0.86

Spectra Classified as

True tissue Cancellous Bone Cortical Bone Fat Mucosa Muscle Nerve S.Gland Skin

Cancellous Bone 0.87 0.02 0.00 0.00 0.03 0.00 0.00 0.08

Cortical Bone 0.05 0.47 0.08 0.03 0.04 0.09 0.16 0.08

Fat 0.00 0.07 0.67 0.01 0.00 0.01 0.23 0.01

Mucosa 0.01 0.01 0.03 0.67 0.00 0.18 0.06 0.05

Muscle 0.01 0.01 0.00 0.00 0.97 0.00 0.00 0.01

Nerve 0.01 0.03 0.00 0.14 0.00 0.72 0.04 0.06

S.Gland 0.01 0.16 0.19 0.05 0.01 0.07 0.49 0.03

Skin 0.16 0.04 0.00 0.04 0.00 0.05 0.03 0.67

non-simulated data. Onemethod of avoiding this problem
might have been to carry out another simulation proce-
dure, i.e. one that does not rely on a normal distribution.
To get a picture of the extent of overoptimism of the dis-

criminant analyses, all of the classifiers have been applied
to the original (i.e. non-simulated) 96 spectra. Since the
original data cannot be arbitrarily augmented through
simulation, in this case a cross validation [26] makes
sense. Therefore, the data set has been split into ten
groups of about equal size (six groups of ten spectra, and
four groups of nine spectra). Subsequently, the training
and validation procedure was applied ten times for each

algorithm, each time using nine of the ten groups as train-
ing data and the remaining group as a test data. The
resulting misclassification rates for the ten groups were
then averaged and are shown in Table 10 and displayed in
Figure 4.
The figure shows that the linear and quadratic discrimi-

nant analyses now perform similar to random forests and
k-nearest-neighbors. Untuned trees perform a bit weaker.
It is interesting that a penalized discriminant analysis still
performs much better than all the other algorithms, and
achieves a near-perfect classification accuracy even for
real data.

Table 9 Quantiles of themisclassification rates in the 1000 simulated data sets

0% 25% 50% 75% 100%

KNN PCs 0.12 0.16 0.17 0.19 0.24

KNN spectra 0.09 0.14 0.15 0.16 0.22

LDA PCs 0.05 0.10 0.11 0.12 0.16

NNet PCs 0.05 0.10 0.12 0.14 0.34

NNet spectra 0.35 0.76 0.82 0.89 0.92

PDA spectra 0.00 0.00 0.00 0.00 0.00

QDA PCs 0.00 0.01 0.01 0.01 0.03

RForest PCs 0.03 0.06 0.07 0.08 0.14

RForest spectra 0.11 0.16 0.17 0.19 0.25

Tree PCs 0.13 0.18 0.20 0.22 0.31

Tree spectra 0.22 0.29 0.31 0.33 0.44
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Figure 3Misclassification rates of the investigated algorithms for 1000 simulated data sets. For LDA and QDA, only the PC scores were
analyzed, and for PDA, only the original spectra were analyzed. The results suggest that the PDA and QDA algorithms are the most appropriate
classifiers for this type of problem.

Table 10 Averagemisclassification rates in a
10-fold cross validation

Algorithm Misclassification rate

KNN PCs 0.27

KNN spectra 0.26

LDA PCs 0.34

NNet spectra 0.98

NNet PCs 0.43

PDA spectra 0.02

QDA PCs 0.27

RForest PCs 0.27

RForest spectra 0.34

Tree PCs 0.55

Tree spectra 0.50

Discussion
When looking at the classifiers that were applied to both
PC scores and original spectra, it seems that reducing the
dimensionality, i.e. the amount of information, with a PCA
results in a better performance for most algorithms. From
the simulation study, a quadratic and a penalized discrim-
inant analysis were near-perfect regarding the test-set
error. Furthermore, these two classifiers showed almost
no variability when repeating the analysis with 1000 data
sets. However, a cross validation on the original data set
showed that a QDA exhibits a large amount of overopti-
mism due to the details of the simulation procedure.
Comparing the results of this study with the previous

analyses of Stelzle et al. [2,7], one can see similar results for
the LDA of PC scores. Small differences arise, of course,
because of the different data preprocessing. A PDA seems
to be a much better choice than the previously applied
PCA and LDA.
Further research can be targeted at answering several

still open questions:
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Figure 4 A 10-fold cross validation of the original data.When analyzing non-simulated data, LDA and QDA show a weaker performance than in
the simulated data sets. PDA also suffers a bit, but still achieves a very high accuracy. The random partitioning of the data into 10 folds was
performed 50 times, and the resulting standard deviations over 50 repetitions are shown in the error bars.

A new sample of original data can be helpful in validating
the results of this simulation study. Because the original
data come from only twelve animals, the models we com-
puted are probably not robust enough to be employed in
a real surgery scenario. However, we believe a compar-
ison study is feasible and insightful even with a smaller
sample size, especially with the subsequent validation we
performed. Still, it would be insightful to obtain spectra of
a larger number of animals, ideally before and after laser
ablation, and—barring ethical concerns—of live tissue.
The performance measure considered in this study was

a simple misclassification rate, which does not consider
the severity of special kinds of misclassification. Further
analyses could take that fact into consideration. For exam-
ple, if a laser scalpel would be disabled near nerve tissue
as well as blood vessels, for the final system it would not
matter much if a nerve spectrum would be classified as a
blood vessel, since the laser is shut down anyway.
Similarly, a binary division of tissues into “critical” and

“non-critical” might be considered for further studies.

Then, the performance measures can be extended to mea-
sure precision and recall, amongst others.
It would be of interest under which circumstances mis-

classification occurs. If a laser scalpel is approaching nerve
tissue during a surgery, an undiscovered measurement
of nerve tissue would be less problematic if the follow-
ing measurement is correctly classified as nerve tissue.
However, if the nerve tissue remains undiscovered even
throughout repeated measurements, the tissue can be
severely damaged before it is noticed. It is therefore inter-
esting to find out if misclassifications occur randomly or
show some repeated structure.
The superior performance of PDA, which considers the

correlated, functional nature of the covariates, hints that
functional approaches may have an advantage in this type
of problem. The functional patterns in spectral data carry
additional information which can be leveraged by such
approaches. It would be interesting for further studies
to investigate functional models [3] and compare their
performance to the results obtained in this study.
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Extending on the previous point, a functional PCA [11],
which imposes a smoothness constraint on the eigenvec-
tors (thus making them eigenfunctions) can be of interest.
A similar application for these results is the case of

tumor detection by spectroscopy. Tumor detection aims
to classify the reflectance spectra of tissues into tumor
tissue vs. normal tissue. In this case, since there is no
surgery going on while the spectra have to be analyzed,
time is not of concern. For that reason, other, more time-
consuming methods of spectroscopy can be used. Raman
spectroscopy [27] is one of these methods that could pro-
vide more accurate results, but takes a greater amount of
time to measure the reflectance spectra.

Conclusion
To conclude, this study confirmed the results of previous
studies such as Stelzle et al. [2,7], who have found that
classification of diffuse reflectance spectra of different tis-
sue types is a feasible way of improving the safety of laser
surgery. As an extension, in this study a QDA and a PDA
turned out to be a notable improvement to the previously
applied LDA. PDA has shown an equally well performance
on a cross-validation on original, i.e. non-simulated data
and should be considered for further studies. Additionally,
functional data approaches [3] seem like another promis-
ing improvement and could be investigated in further
studies.
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