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Abstract

Background: This paper demonstrates how structural equation modelling (SEM) can be used as
a tool to aid in carrying out power analyses. For many complex multivariate designs that are
increasingly being employed, power analyses can be difficult to carry out, because the software
available lacks sufficient flexibility.

Satorra and Saris developed a method for estimating the power of the likelihood ratio test for
structural equation models. Whilst the Satorra and Saris approach is familiar to researchers who
use the structural equation modelling approach, it is less well known amongst other researchers.
The SEM approach can be equivalent to other multivariate statistical tests, and therefore the
Satorra and Saris approach to power analysis can be used.

Methods: The covariance matrix, along with a vector of means, relating to the alternative
hypothesis is generated. This represents the hypothesised population effects. A model
(representing the null hypothesis) is then tested in a structural equation model, using the
population parameters as input. An analysis based on the chi-square of this model can provide
estimates of the sample size required for different levels of power to reject the null hypothesis.

Conclusions: The SEM based power analysis approach may prove useful for researchers designing
research in the health and medical spheres.

Background multivariate regression. This flexibility will be exploited in

Structural equation modelling (SEM) was developed from
work in econometrics (simultaneous equation models;
see for example Wansbeek and Meijer [2]) and latent var-
iable models from factor analysis [3,4]. Structural equa-
tion modelling is an enormously flexible technique - it is
possible to use a structural equation modelling approach
to carry out direct equivalents of many analyses, including
(but not limited to): ANOVA, correlation, ANCOVA, mul-
tiple regression, multivariate analysis of variance, and

the approach set out in this article.

A necessarily very brief introduction to the logic of struc-
tural equation modelling is presented here - for a more
thorough introduction to the basics of structural equation
modelling the reader is directed towards one of the many
good introductory texts, (Steiger has recently reviewed
several such texts [5]). For more details on the statistical
and mathematical aspects of structural equation
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modelling, the reader is directed toward texts by Bollen
[4] (a second edition of this text is in press) or Wansbeek
and Meijer [3] and Joreskog [7].

The data to be analysed in a structural equation model
comprise the observed covariance matrix S, and may
include the vector of means M. If k represents the number
of variables in the dataset to be analysed, the number of
non-redundant elements (p) is given by:

p=k(k+1)/2+Fk

This formula gives the number of non-redundant ele-
ments in the covariance matrix (S) and vector of means
(M).

However many models exclude the mean vector, and so
the number of non-redundant elements in the covariance
matrix is given by:

p=k(k+1)/2

The model is a set of r parameters, fixed to certain values
(usually 0 or 1), constrained to be equal to one another,
or allowed to be free. The estimated parameters of the
model are used to calculate an implied covariance matrix,
¥ and an implied vector of means. An iterative search is
carried out, which attempts to minimise the discrepancy
function (F), a measure of the difference between S and X.
The discrepancy function (maximum likelihood, for cov-
ariances only) is given by:

F=log |Z| + tr (SZ1) - log |S| - p

The discrepancy function, multiplied by N - 1, follows a 2
distribution, with degrees of freedom (df) equal to p - .
The value of the discrepancy function multiplied by N - 1
is usually referred to as the 2 test of the model.

In addition to the 2 test, standard errors (and hence t-val-
ues |although these values are referred to as t-scores, they
are more properly described as asymptotic z-scores| and
probability values) can be calculated, and these can be
used to test the statistical significance of the difference
between that parameter value, and any hypothesised pop-
ulation value (most commonly zero).

When p >r, the model is referred to as being over-identi-
fied, in this case it will not necessarily be possible (or
usual) to find values for the set of parameters, r, which can
ensure that S = 2. However, where r = p it is possible (given
that the correct parameters are estimated) to provide val-
ues for the parameters in the model, such that S = X. This
type of model, where r = p is described as being just iden-
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tified. The df of the model will be equal to zero, and the
value of y2 will also be equal to zero.

It is possible to use the standard errors of the parameter
estimates to test the statistical significance of the values of
these parameters. In the next section, we shall see how it
is also possible to use the y2 test to evaluate hypotheses
regarding the value of these parameters in a model. This is
most easily described using path diagrams as a tool to rep-
resent the parameters in a structural equation model.

The commonest representation of a structural equation
model is in a path diagram. In a path diagram, a box rep-
resents a variable, a straight, single-headed arrow repre-
sents a regression path, and a curved arrow represents a
correlation or covariance (in addition, an ellipse repre-
sents a latent, or unobserved variable; the methods
described in this paper do not use latent variables, how-
ever the interested reader is directed towards a recent
chapter by Bollen [3]). Different conventions exist for
path diagrams - throughout this paper the RAM specifica-
tion will be used (Neale, Boker, Xie and Maes, give a full
description of this approach. [8]) In RAM specification, a
double headed, curved arrow, which curves back to the
same point represents the variance of the variable (the
covariance of a variable with itself being equal to the var-
iance). In the case of an endogenous (dependent) varia-
ble, the variance represents the residual, or unexplained
variance of the variable.

Methods

In order to estimate a correlation, a covariance is esti-
mated, which can then be standardised to give the corre-
lation. If all variables are standardised, the covariance is
equal to the correlation. The model that is estimated when
a covariance is calculated can be represented in path dia-
gram format as two variables, linked with a curved, dou-
ble headed arrow, as shown in Figure 1. Each of the
variables also has a double-headed arrow which repre-
sents the variance of the variable. There are three esti-
mated parameters - the magnitude of the covariance, and
the variance of each of the two variables x and y. The
model input is also three statistics - the covariance, and
the variance of the two variables. Therefore p - the
number of statistics in the data, and r, the number of
parameters in the model are both equal to 3. There are
therefore 0 df, and the model is just identified. The esti-
mate of the magnitude of the covariance, along with its
confidence intervals, can then be used to make inferences
about the population, and test for statistical significance.

A regression analysis with a single predictor is represented
as Figure 2. This model is very similar to the previous one,
however this time the arrow is not bi-directional. There
are three parameters: the variance of x, the regression

Page 2 of 11

(page number not for citation purposes)



BMC Medical Research Methodology 2003, 3

X Y

http://www.biomedcentral.com/1471-2288/3/27

X Y

Figure |
Covariance between x and y.

estimate of y on x, and the unexplained variance of y
(equivalent to 1 - R2). Again, the estimate of the parame-
ter, along with the confidence intervals, can be used to
make inferences to the population and test for statistical
significance.

A multiple regression model is shown in Figure 3. Here
there are 4 predictor variables (x; to x,) which are used to
predict an outcome variable (y). There are 5 variables in
the model, and therefore the data comprise 15 elements
(5 variances and 10 covariances), and p = 15. The model
comprises 4 variances of the predictor variables, 1 unex-
plained variance in the outcome variable, 4 regression
weights, and 6 correlations amongst the independent var-
iables. Therefore, r = p = 15, and the model is just identi-
fied. Two different kinds of parameters are usually tested
for statistical significance in this model. First, the unex-
plained variance in the outcome variable is tested against
1 (if standardised) to determine whether the predictions
that can be made from the predictor variables is likely to
be better than chance. This is the equivalent of the
ANOVA test of R? in multiple regression. Second, the
values of the individual regression estimates can be tested
for statistical significance.

Any analysis of variance model can also be modelled as a
regression model [9,10], hence all multiple regression /
ANOVA models can be incorporated into the general
framework.

The logic extends to the case of a multivariate ANOVA or
regression, which has multiple outcome variables. The
multivariate approach allows each of the individual paths
to be estimated, and tested for statistical significance,
however, it also allows groups of paths to be tested simul-
taneously, using the 2 difference test — the multivariate F
test in MANOVA is equivalent to the simultaneous test of
all of the paths from the predictor variables to the
outcome variables. The multivariate test can prove more
powerful than two separate univariate analyses [11].

Figure 2
A regression analysis, with one independant variable.

When a model is restricted - that is not all paths are free
to be estimated, it becomes over-identified. The difference
between the data implied by the model and the observed
data can be tested for statistical significance using the y2
test. Each restriction in the model adds 1 df, and this can
be used to interpret the difference between the data
implied by the model, and the observed data.

The simplest example of this is in the case of the correla-
tion (Figure 1). Using data from a recent study (Wolfradt,
Hempel and Miles [12]), I calculate the correlation
between active coping and passive coping. I find that r = -
0.049, with N =271, and p = 0.422. Carrying out the same
analysis (using standardised variables) in a SEM package
(AMOS 4.0 [13]) I find that the estimated correlation is -
0.049, with a standard error of 0.06, and an associated
probability value of 0.422. The answers being exactly
equivalent. However, the structural equation modelling
approach enables me to consider the problem in a differ-
ent way. In the model, I can restrict the correlation
between the two measures to zero. Because the model
now has a restriction added to it, r <p and the model is
over-identified. The discrepancy can be assessed, using the
discrepancy function F, and tested using a y?2 test, with 1
df (the number of restrictions in the model). When this is
done, the y2 associated with the test is equal to 0.65,
which, with 1 df, has an associated probability of 0.421.
The three approaches lead to equivalent conclusions and
identical (within rounding error) probability values.
However, the third approach - that of using the y2 test,
gives an additional advantage - that it is possible to fix
more than one parameter to a pre-specified value (usually,
but not always, 0).

In a multivariate regression, a set of outcomes is regressed
on a set of predictors. As well as including a test of each
parameter, a multivariate test is also carried out, testing
the effect of each predictor on each set of outcome varia-
bles. Again using data from Wolfradyt, et al., I carried out a
multivariate regression (using the SPSS GLM procedure).
The three predictor variables were mother's warmth,
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Table I: Results of multivariate F test, and 2 difference test, for multivariate regression

GLM Results SEM results
Multivariate F (df = 2, 263) x2 (df = 2) p
Rules 0.23 0.794 0.47 0.791
Demands 53 0.005 10.6 0.005
Warmth 10.7 <0.001 20.9 <0.001

mother's rules, and mother's demands. The two outcomes
were active coping and passive coping.

Four models were estimated, in the first, all parameters
were free to be estimated. In the second, the two paths
from warmth were restricted to zero, in the second, the
two paths from rules were restricted to zero, and in the
final model, the two paths from demands were restricted
to zero. The first model has 0 df, and hence the implied
and observed covariance matrices are always equal, and
the x2is equal to zero. Each of the other models has 2 df,
because two restrictions were added to the model.

The results of the tests are shown in Table 1. This shows
the results from the multivariate GLM (carried out in
SPSS) and the SEM approaches. The GLM results provide
a multivariate F and an associated p value, shown in the
first pair of columns in Table 1. The SEM results provide a
¥2 and associated p-value, shown in the second pair of col-
umns in Table 1. The two sets of tests are, as can be seen,
very close to one another, in terms of the levels of statisti-
cal significance.

In addition to relationships between variables being
incorporated into structural equation models it is also
possible to incorporate means (or, in the case of endog-
enous variables, intercepts). In the RAM specification, a
mean is modelled as a triangle. The path diagram shown
in Figure 4 effectively says "estimate the mean of the vari-
able x". In the circumstances where there are no
restrictions, the estimated mean of x in the model will be
the mean of x in the data. However, it is possible to place
restrictions on the data, and test the model, again with a
y2 test. A simple example would be to place a restriction
on the mean to a particular value - this would be the
equivalent of a one sample t-test. A further example,
shown in Figure 5 is a paired samples t-test. Here, the
means are represented by the parameter a - both paths are
given the same label, meaning that the two means are
fixed to be equal. Again, this can be estimated with a 2
test.

Figure 3
Multiple regression representation of path diagram.

A one way repeated measures ANOVA is also possible,
using the same logic. The path diagram is shown in Figure
6. Here, the null hypotheses (that p, = pn, = ;) is tested by
fixing the parameters a, b and c to be equal to one
another. It is also possible to carry out post-hoc tests, to
compare each of the individual means.

This model was tested using the first 20 cases from Wolf-
radt, et al [12]. (This number of cases was chosen for illus-
trative purposes - to demonstrate that the equivalence of
results is not dependent upon having large samples.) The
three variables compared were mother's rules, mother's
demands, and mother's warmth. The means and
covariances are shown in Table 2. Again, the analysis was
carried out using the GLM (repeated measures) procedure
in SPSS and within a SEM package (Mx). The results for
the four null hypotheses tested using the SPSS GLM pro-
cedure, and using the model with restrictions described
above in Mx [8], are shown in Table 3. The first null
hypothesis tested is that the means of all three variables
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Figure 4
Estimating the mean.
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Figure 5
Representation of paired samplest test in path dia-
gram format.

are equal (in the population). The three further tests
examine differences between pairs of variables. Again, the
GLM approach gives an F statistic, and associated p-value;
the SEM approach gives a y?2 statistic, and associated p-
value. Again, the p-values from both of these approaches
are very similar, demonstrating the equivalence of the two
approaches.

The SEM analyses considered so far have only considered
single groups, however, it is possible to carry out analyses
across groups, where the parameters in two (or more)
groups can be constrained to be equal. This multiple
group approach can be used to analyse data from a mixed
design, with a repeated measures factor, and an independ-
ent groups factor. The model is shown in Figure 7 (again
using the data from Wolfradt, et al.). There are data from
two groups, males and females. Each group has measures

http://www.biomedcentral.com/1471-2288/3/27

Figure 6
Path diagram representation of one way repeated
measures ANOVA with three independant variables.

taken on two variables (x, and x,). The parameter labelled
b in the males represents the intercept of the two variables
x, and x,, which in this case is the mean of x,, the param-
eter labelled a is the slope parameter, or the difference
between the means of x; and x,. There are three separate
hypotheses to test:

1) Main effect of sex.
2) Main effect of type (x, vs x,)
3) Interaction effect of type and sex.

Again, using SPSS a mixed ANOVA can be carried out -
the results of which are shown in Table 5. To carry out the
equivalent analysis in an SEM context is slightly more
complex. A series of models need to be estimated, with
increasing numbers of restrictions. These models are
nested, and the differences between the models provides
a test of the hypotheses.

Model 1: b =d, a = ¢ = 0. This model has three restrictions,
and hence 3 df.

Model 2: a = ¢ = 0. This model has two df. By removing the
b = d restriction, the means of the two measures are
allowed to vary across the groups.
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Table 2: Means and covariances of warmth, demands and rules (variances are shown in the diagonal)

Warmth (1) 0.37168421

Demands (2) 0.17187970 0.24575725

Rules (3) -0.21171930 -0.05423559 0.24814035

n 1.9700 2.6571 2.9733
Warmth (1) Demands (2) Rules (3)

Table 3: Comparison of results from GLM test carried out using SPSS and test using SEM framework, using Mx.

GLM Test Mx Test
Null Hypothesis F (df) p ¥2 (df) p
I. uy = py = ps (rules = demands = warmth)  16.530 (2, 18) 0.000084 19.8 (2) 0.000050
2.y, = M, (rules = demands) 345 (1, 19) 0.00012 19.7 (1) 0.000009
3. W, = py (rules = warmth) 19.29 (1, 19) 0.00031 1331 (1) 0.00026
4. uy = p3 (demands = warmth) 3.32 (1, 19) 0.084 3.06 (1) 0.080

Notes: 'Result from multivariate test 2Large number of decimal places have been given to illustrate similarity of probability values based on two

methods.

Table 4: %2, df and p for models 0 to 4. Differences between these models are used to test hypotheses of main effects and interactions)

Model %2 (df)

I (b=d,a=c=0) 358.25 (3)
2(a@a=c=0) 357.52 (2)
3(@=c) 1.764 (1)
0 (no restrictions) 0(0)

Model 3: a = c. This model has one df. By removing the a
= ¢ = 0 restriction, the means of rules and demands are
allowed to vary. However, because the a = ¢ restriction is
still in place, the variation is forced to be equal across
groups. The 2 difference test between this model and
model 2 provides the probability associated with the null
hypothesis that there is no effect of rules vs demands

(type).

Model 0: All parameters free. This model has zero df, and
hence x2 will equal zero. The y2 difference test between
this model and model 3 tests the interaction effect,
although this will be equal to the 2 and df of model 3.
This allows the difference between x; and x, to vary across
gender, thereby testing the null hypothesis of no interac-
tion effect.

These 4 models were estimated using the data from Wolf-
radt, et al. The type distinction was mother's rules versus

p

<0.0001
<0.0001
0.184
1.00

mother's warmth. The results of each of these model tests
are shown in Table 4 and the differences between the
models, which give the tests for the main effects and inter-
actions, are shown in Table 5. Again, the GLM test and the
SEM test are giving very similar (although not identical)
results. The effect of sex, is found to be non-significant by
both tests (p = 0.31 for the F test, and 0.39 for the SEM
test. The result for the type difference is found to be highly
significant by both the F test (p < 0.001) and the SEM test
(p < 0.001), and finally the sex x type interaction is statis-
tically nonsignificant for the F test (p = 0.186) and the
SEM test (p = 0.184).

Power Analysis

The power of a statistical test is the probability that the test
will find a statistically significant effect in a sample of size
N, at a pre-specified level of alpha, given that an effect of
a particular size exists in the population. Power of statisti-
cal tests is considered increasingly important in medical
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Table 5: Results of multivariate F test, and 2 difference test, for multivariate regression

Multivariate F (df = |, 266)

p x2 given by: x2(df=1) p

Sex 1.4
Type (rules vs demands) 739.1
Sex x Type 1.76

Females

Males

4

Figure 7
Structural equation model for a mixed ANOVA.

and social sciences, and most funding bodies insist that
power analysis is used to determine the appropriate
number of participants to use. It is increasingly recognised
that power is not just a statistical or methodological issue,
but an ethical issue. In medical trials, patients give their
consent to take part in studies which they hope will help
others in the future - if the study is underpowered, the
probability of finding an effect may be minimal. The
CONSORT statement (CONsolidated Standards Of
Reporting Trials [16]), a checklist adopted by a large
number of medical journals (see http://www.consort-
statement.org), states that published research should give
a description of the method used to determine the sample
size. Whilst the basis for power calculations is relatively
simple, the mathematics behind them is complex, as they
require calculation of areas under the curve for non-cen-
tral distributions.

[When using statistics for any amount of time, we become
familiar with central distributions - these are distribu-
tions such as the ¢, the F or the 2. However, these are the
distribution of the statistic when the null hypothesis is
true. To calculate the distribution when the null
hypothesis is false, we must know the non-centrality
parameter — the expected mean value of the distribution,
and then examine the probability of finding a result which
would be considered significant at our pre-specified level
of alpha.]

0.310
<0.001
0.186

Model 2 - Model | 0.73
Model 3 - Model 2 355.8
Model 3 - Model 0 1.76

0.393
<0.001
0.184

Whilst it is possible in some statistical packages to calcu-
late values for non-central distributions, it is not straight-
forward (although it is possible) to use these for power
calculations.

There are a range of resources available for power analysis,
including commercial books containing tables [16-19],
commercial software (e.g. SamplePower, nQuery), free-
ware software (e.g. GPower [14]), and web pages which
implement the routines. However, software for power
analysis has some problems coping with the range of
complex designs that are possible in research. Including
covariates in a study can increase the power to detect a
difference [20] but can also increase the complexity of the
power analysis. In a multiple regression analysis, calcula-
tion of the power to detect a statistically significant value
for R2 is relatively straightforward, using tables or books.
However, the power to detect significant regression
weights for the individual predictors is more difficult.
Incorporating interactions into power analysis is also not
straightforward.

A multivariate design can also have more power than a
univariate design, but the power of the design is affected
in complex ways by the correlation between the outcome
variables [6]. Most software packages do not have suffi-
cient flexibility to incorporate these effects.

Power from SEM

An alternative way to approach power is to use a structural
equation modelling framework. Satorra and Saris [1] pro-
posed a procedure for estimating power for structural
equation models, which is as follows:

First, a model is set up which matches the expected effect
sizes in the study. From this the expected means and
covariances are calculated. These data are treated as popu-
lation data. Second, a model is set up where the parame-
ters of interest are restricted to zero (or the values expected
under the null hypothesis). This model is then estimated,
and the y2 value of the discrepancy function is calculated.
This can be used to calculate the non-centrality parameter,
which is then used to estimate the probability of detecting
a significant effect. It should be noted that the power
estimates using the SEM approach are asymptotically
equivalent to the GLM approach employed in OLS mod-
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Table 6: Power to detect a population correlation r = 0.3, by three programs

Power Mx (SEM approach) GPower nQuery

.25 18 19 21

.50 41 41 44

75 74 73 76

.80 84 82 85

.90 113 109 113

.95 139 134 139

.99 197 188 195

elling, at smaller sample sizes, larger discrepancies will

occur between the two methods [21]. ) 75 —.05 —.05 1.00 20 .20

Much of this d within th | ) 5|5 5 5)+[-05 .75 -05]|=| .20 1.00 .20
uch of this is automated within the structural equation _05 —05 75 90 20 100

modelling program Mx [ 8], which is available for free, and
can be downloaded from http://www.vcu.edu/mx/.

Three examples of power analysis are presented. Example
1 shows how to use SEM to power a study to detect a cor-
relation; the second is used for a mixed ANOVA, using a 2
x 2 design; the third shows how to power a study that uses
a multivariate ANOVA / regression.

Example |

In example 1, I estimate the probability of detecting a
population correlation of size r = 0.3 ([see additional file
1]). For a simple model, such as this, it is not necessary to
calculate the expected population correlation matrix - the
correlation is simply 0.3. The sample size required for
different levels of power is shown in Table 6, along with
estimates calculated by GPower and and nQuery Advisor
4.0. The figures provided for the sample size from each
method are very similar, although not identical.

Example 2: Multivariate ANOVA

The second example to be examined is the case of a mul-
tivariate ANOVA. It is well known that a multivariate
design can be more powerful than a univariate design,
though calculating how much more powerful can be dif-
ficult. [21]

The simple multivariate design is shown in Figure 8. Here
the effects of a single independent variable on three
dependent variables are assessed. It is necessary to
calculate the population covariance matrix for this exam-
ple. The covariance matrix of the dependent variables is
found by multiplying the vector of regression weights by
its transpose, and adding the residual variances and covar-
iances of the dependent variables.

The correlations between the dependent variables is there-
fore given by:

It is usually more straightforward to enter the values as
fixed parameters into the SEM program, and estimate the
population covariance matrix in this way.

This analysis can proceed via one of two means - three
univariate analyses or one multivariate analysis.
Calculation of power for the univariate analysis by con-
ventional methods (power analysis table or program) is
uncomplicated, however calculation of power for the
multivariate approach is less so.

Power can be estimated for two different types of effects.
First, the power to detect each of the univariate effects can
be examined, second the power to detect the multivariate
effect of x on the three dependent variables
simultaneously. For the purposes of this example, the
standardised population parameter estimates were as fol-
lows: each of the standardised univariate effects was equal
to 0.5, and the three residual correlations between the
dependent variables were set to -0.05.

If all variances are standardised, the implied population
covariance matrix is shown in Table 7.

Power estimates can be derived for four separate tests.
Three (univariate) tests of each parameter, and one multi-
variate test of the three parameters simultaneously. The
Mx scripts are available for download in the additional
files section example 2 — univariate.mx [see additional file
2] and example 2 - multivariate.mx [see additional file 3].
Power was calculated in two ways: the first approach was
to use Mx, as described, the second, for the univariate data
only, was to use Nquery, and the results of these analyses
are presented in Table 8. (Note that as the population
parameters are equal for each of the outcome variables,
the analysis for each of the outcomes will be the same, and
only one is presented).
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X 1.0
yl 0.5 1.0
y2 0.5 0.2 1.0
y3 0.5 0.2 0.2 1.0
X yl y2 y3
Table 8: Power for univariate and multivariate tests
Sample size required for 80% power
Mx NQuery
Test that x > y| = 0 (univariate) (df = I) 28 26
Multivariate test (df = 3) 14 Note |
Notes: | Power for a multivariate test cannot be calculated using standard software.
Table 9: Relationship between correlation between DVs and 0.75
Sample size required for 80% power, in multivariate ANOVA. i { !
Correlation between DVs Sample size required for 80% <
Power / Vi
0.0 8 oo
0.2 14 0.75 Q -0.05
A
0.4 21 -0.05
0.6 27 .
0.8 33 X 05 —» »
-0.05
O 0.75( )
An extension of this analysis is to be able to relatively sim- \ V3
ply examine the effects on power of varying the correla-
tion between the measures in a multivariate ANOVA. To Figure 8

carry out this analysis, the values of the population
correlations between the outcome variables are altered,
and the effects on the power noted. Table 9 shows the
sample size required for 80% power, given the same
regression parameters as in the previous example, but
varying correlations between the outcomes. The power
required is maximised when the correlations between the
outcomes is 0, and as the correlation increases, the power
decreases.

Example 3: Repeated Measures ANOVA: The effect of the
correlation between variables

Repeated measures analysis presents a number of addi-
tional challenges to the researcher, in terms of both meth-
odological issues [22] and statistical issues [11]. In a
repeated measures analysis, the researcher must examine
both the difference between the means of the variables,

Multiwariate experimental design, with one inde-
pendant variable (x) and three dependant variables

(yl, yl, y2).

and also the covariance/correlation between the variables.
In Example 3, I examine the effect of differences in the
magnitude of the correlation between variables in a
repeated measures ANOVA, comparing the mean of three
variables.

The three variables x;, x, and x5, have population means
of 0.8, 1.0 and 1.2 respectively, and variances of 1.0. The
correlations between them were fixed to be equal in all
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Table 10: Variation in power for repeated measures design given different level of correlation between measurements.

Size of correlations between variables

Sample size required for 80% power

0.0
0.2
0.5
0.8
-0.2

125
101
65
29
149

models, and were fixed to be 0, 0.2, 0.8, or -0.2. A simple
analysis was carried out, to investigate the sample size
required to attain 80% power to detect a statistically sig-
nificant difference, at p < 0.05, using an Mx script example
3 [see additional file 4]. The correlation between the vari-
ables was estimated to be 0.0, 0.2, 0.5, 0.8 or -0.2.

The results of the analysis are shown in Table 10. This
demonstrates that as the correlation increases, the power
of the study to detect a difference increases, and the sam-
ple size required decreases dramatically.

Concluding Remarks

This paper has presented an approach to power analysis
developed by Saris and Satorra for structural equation
models, that can be adapted to a very wide range of
designs. The approach has three related applications.

First, in carrying out power analyses for studies, there are
frequently complex relationships between different
relationships in different studies. For example, the power
to detect a difference in a repeated measures design is
dependent upon the correlation between the variables. It
may be possible to give power estimates based on 'best
guess' and on upper and lower limits for these measures.

Second, for some types of studies, adequate power analy-
sis is very complex using other approaches. To investigate,
for example, the power to detect a significant difference
between two partial correlations is difficult to calculate.

Third, and finally, in planning instruments to use in
research. Many applied areas of research in health have
multiple potential outcome measures; for example
consider the range of instruments available for the assess-
ment of quality of life. Many of these measures will have
been used together in previous studies, and therefore the
correlation between them may be known, or able to be
estimated. The effect of these correlations on the power of
the study can be investigated using this approach, which
may affect the choice of measure.

For those unfamiliar with the package, and perhaps unfa-
miliar with SEM, the learning curve for Mx can be steep.
The path diagram tool within Mx is extremely useful - the
model is drawn, and restrictions can be added. The pro-
gram will then use the diagram to produce the Mx syntax
which can then be edited. This approach leads to faster,
and more error-free, syntax. The author is happy to be
contacted by email to attempt to assist with particular
problems that readers may encounter. A document is
available which describes how SPSS can be used to
calculate the power, given the x2 of the model [see addi-
tional file 5].

Finally, for readers who may be interested in further
exploration of these issues, it should be noted that an
alternative approach to estimating fit in SEM has been
presented by MacCallum, Browne and Sugawara. [26]
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Additional material

Additional File 1

Example 1.mx: Contains Mx syntax to run example 1.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2288-3-27-S1.mx]|

Additional File 2

Example 2 — univariate.mx: Contains Mx syntax to run example 2,
univariate.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2288-3-27-S2.mx]|

Additional File 3

Example 2 — multivariate.mx: Contains Mx syntax to run example 2,
multivariate.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2288-3-27-S3.mx]|

Additional File 4

Example 3.mx: Contains Mx syntax to run example 3, univariate.
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Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
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Additional File 5

Appendix: Description of adaptation of approach for other programs.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2288-3-27-85.pdf]
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