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Abstract

Background: There is a common belief that most cancer prevention trials should be restricted to high-
risk subjects in order to increase statistical power. This strategy is appropriate if the ultimate target
population is subjects at the same high-risk. However if the target population is the general population,
three assumptions may underlie the decision to enroll high-risk subject instead of average-risk subjects
from the general population: higher statistical power for the same sample size, lower costs for the same
power and type | error, and a correct ratio of benefits to harms. We critically investigate the plausibility
of these assumptions.

Methods: We considered each assumption in the context of a simple example. We investigated statistical
power for fixed sample size when the investigators assume that relative risk is invariant over risk group,
but when, in reality, risk difference is invariant over risk groups. We investigated possible costs when a
trial of high-risk subjects has the same power and type | error as a larger trial of average-risk subjects from
the general population. We investigated the ratios of benefit to harms when extrapolating from high-risk
to average-risk subjects.

Results: Appearances here are misleading. First, the increase in statistical power with a trial of high-risk
subjects rather than the same number of average-risk subjects from the general population assumes that
the relative risk is the same for high-risk and average-risk subjects. However, if the absolute risk difference
rather than the relative risk were the same, the power can be less with the high-risk subjects. In the
analysis of data from a cancer prevention trial, we found that invariance of absolute risk difference over
risk groups was nearly as plausible as invariance of relative risk over risk groups. Therefore a priori
assumptions of constant relative risk across risk groups are not robust, limiting extrapolation of estimates
of benefit to the general population. Second, a trial of high-risk subjects may cost more than a larger trial
of average risk subjects with the same power and type | error because of additional recruitment and
diagnostic testing to identify high-risk subjects. Third, the ratio of benefits to harms may be more favorable
in high-risk persons than in average-risk persons in the general population, which means that extrapolating
this ratio to the general population would be misleading. Thus there is no free lunch when using a trial of
high-risk subjects to extrapolate results to the general population.

Conclusion: Unless the intervention is targeted to only high-risk subjects, cancer prevention trials should
be implemented in the general population.
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Background

Some prevention trials are restricted to high-risk subjects.
If the investigators are only interested in the effects of the
intervention on subjects at increased risk [1] or if the study
is designed to be a preliminary investigation in prepara-
tion for a definitive study in the general population, we
think this restriction is reasonable.

However some investigators who are interested in study-
ing the effect of the intervention in the general population
may be tempted to design a "definitive" study to estimate
the effect of the intervention in a high-risk group. Some
investigators may believe that a trial of high-risk subjects
would have greater power than a trial of the same size
among average-tisk subjects. Some examples of this type
of thinking can be found in papers on risk prediction
models [2,3]. Some investigators may believe that a trial
of high-risk subjects with the same power as a trial of aver-
age-tisk subjects would have lower costs than a trial of
average-risk subjects. Some investigators may believe the
ratio of benefits to harms can be correctly extrapolated
from high-risk to average-risk subjects. Although the
rationales for these various beliefs are related, they involve
some distinct underlying assumptions that are important
to critically examine.

Methods and results

Possibly lower statistical power

To crystallize our thinking about statistical power, we con-
sider the following simple hypothetical and realistic
example. Investigators want to estimate the effect of inter-
vention in the general population, so they first consider
designing a randomized trial among the general at-risk
population. Suppose they anticipate that the cumulative
probability of incident cancer over the course of the study
is po=.02 in the control arm and p; = .01 in the study arm,
and they believe that the difference in probabilities is clin-
ically significant. Also suppose that due to the limited
availability of the intervention, they can enroll at most n
= 2000 study participants in each arm. The investigators
compute power using the following standard formula [1]
setting the two-sided type I error at .05,

power = NormalCDF((Av/1n —1.96sen,11)/ s€ iz ) 1))

where NormalCDF is the cumulative distribution func-
tion for a normal distribution with mean 0 and variance
1, A is the anticipated difference one wants to detect, n is
the sample size per arm, sey,; is the standard error under
the null hypothesis, and se,; is the standard error under
the alternative hypothesis. Let p = (p + p;)/2. As discussed
in [1], for a study designed to estimate the absolute risk

difference, the statistic of interest is pc — py, so
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A=pc-pr,
senun =~/ 2p(1—p),
seal =[Pc—pc)+pr(1-pp). 2)

For a study designed to estimate the relative risk, the sta-

tistic of interest is log(pc)—1log(p;), so

A =log(pc) - log(py),
SeNull = \/W

sear = (=pc)/pc +(1=p1)/pr- 3)

Applying these formulas to the above example and substi-
tuting either (2) or (3) into (1), the investigators obtain a
power of .74 based on the absolute risk difference statistic
and a power .76 based on a relative risk statistic [see Addi-
tional file 1].

Suppose the investigators think this power is too low. To
increase power they propose to restrict the study to a high-
risk group in which the probability of cancer is .04. Also
suppose the investigators make the typical assumption
that if the intervention yields a relative risk of .5 in the
general population, it would also yield a relative risk of .5
in the high-risk group. Applying (1-3) with high risk sub-
jects for whom p. = .04 and p, = .02 with n = 2000, the
investigators compute a power of .96 using either the
absolute risk difference or relative risk. Because the power
is higher using high-risk subjects, the investigators plan
the study for a high-risk population and will generalize
the results to the general population.

Is there a free lunch? An underlying assumption in this
example is that the relative risk is invariant between the
general population and the high-risk group. There is no
free lunch because the impact of violating this assumption
could be substantial. For example, suppose instead that
the absolute risk difference is invariant between the gen-
eral population and the high risk group. Under this sce-
nario the absolute risk difference in the general
population is .01, so the absolute risk difference in the
high-risk group is also .01. In this case for p.= .04, p,= .03,
and n = 2000, the power (computed using either absolute
risk difference or relative risk statistics) for the trial of
high-risk subjects is only .41. The decreased power in a
high risk group under a constant risk difference model is
not surprising: if the risk difference p. - p, is the same, but
p;is increasing, the variances, p(1 - po)/n and p,(1 - p;)/n,
will increase as pincreases up to .5, which will reduce the
power.

A crucial issue is whether or not the absolute risk differ-
ence or the relative risk is likely invariant between average-
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Table I: Data from a cancer prevention trial for investigating assumptions of constant risk difference and relative risk when risk groups

change.
Placebo group Tamoxifen group
Variable risk group cancer at risk cancer at risk
age at entry | <49 68 10149 38 10045
2 50-59 50 7912 25 8040
3 >60 57 7719 26 7782
predicted risk | <2.00% 35 6318 13 6311
2 2.01-3.01% 42 8108 29 8262
3 3.01-5.00% 43 7313 27 6959
4 <501% 55 4142 20 4425
family risk | 0 38 5891 17 5724
2 | 90 15000 46 15182
3 2 37 4263 20 4211
4 3 10 729 6 855

Cancer is invasive breast cancer. Predicted risk is the 5-year predicted risk. Family risk is number of first degree relatives with breast cancer. Data
are from Table 5 of [5] with number at risk computed by dividing number of breast cancers by reported breast cancer rate.

risk subjects in the general population and high-risk sub-
jects. The answer depends on the cancer, the interven-
tions, and the biology. To gain some appreciation of this
issue, we analyzed published data (summarized in Table
1) from a prevention trial of particular interest to us, a
study of tamoxifen for the prevention of breast cancer [5].
Rather than limit the analysis to one particular high-risk
group, we investigated subjects at various levels of risk
defined separately by three variables: age, predicted risk,
(the five-year risk of cancer based on the Gail model [3]),
and family risk. We fit four models separately to each
variable:

constant risk difference,

pr(invasive breast cancer | placebo,group i) = 7;,
Constant RD : . i . i
pr(invasive breast cancer | tamoxifen, group i) = z; — 8,

where ¢ is the risk difference that is constant over groups;
varying risk difference,

. pr(invasive breast cancer | placebo, group i) = 7;,
VaryingRD : . . . .
pr(invasive breast cancer | tamoxifen, group i) = z; - §;,

where ¢, is the risk difference that varies over groups;
constant relative risk,

Constant RR pr(invasive breast cancer | placebo, group i) = 7;,
onstant RR : . . . .
pr(invasive breast cancer | tamoxifen, group i) = 7; / B,

where £ is the relative risk that is constant over groups;

varying relative risk,

. pr(invasive breast cancer | placebo, group i) = 7;,
VaryingRR : . . . .
pr(invasive breast cancer | tamoxifen, group i) = 7;/8;,

where fis the relative risk that varies over groups.

We obtained maximum likelihood estimates of o, &, £,
and f; using a Newton-Raphson procedure [see Addi-
tional file 2].

To investigate the plausibility of the constant relative risk
and constant risk difference models in this example, we
plotted the estimates of &, 8, £ and f along with confi-
dence intervals (Figure 1). In the top row of Figure 1 we
plotted points corresponding to §; with (100 - 5/k) %
confidence intervals and horizontal lines for § with 95%
confidence intervals. We also presented the p-values cor-
responding to twice the difference in log-likelihoods for
Varying RD versus Constant RD. Similarly, in the bottom
row of Figure 1, we plotted points corresponding to ﬁj
with (100 - 5/k)% confidence intervals and horizontal
lines for B with 95% confidence intervals. We also pre-
sented the p-value corresponding to twice the difference
in log-likelihoods for Varying RR versus Constant RR. Out
of 6 p-values (3 risk factors x 2 statistics) only one, for
absolute risk difference under the risk factor of predicted
risk had a small p-value (and the p-value of .01 would not
be significant at the .05 level under a Bonferroni adjust-
ment of .05/6). Based on these p-values and inspection of
Figure 1, the models Constant RD and Constant RR are
both plausible, especially for age and family risk.

The trial designer does not know the true state of nature.
If Constant RD is the true state of nature, the power will be
lower in the high-risk group than the general population.
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Figure |

Data from the tamoxifen prevention trial. See text for a description of groups. Horizontal lines are estimates and 95% confi-
dence intervals for model for constant absolute risk difference per 1000 (RD) or relative risk (RR). P-values correspond to
likelihood ratio tests comparing the models with varying and constant risk difference or relative risks.

However if Constant RR is the true state of nature, the
power will be greater in the high-risk group than the gen-
eral population. Thus there is high probability that the
power could be reduced when studying high-risk subjects
than when studying the general population. Therefore,
there is no free lunch in terms of lowering statistical
power.

Possibly increased costs

Even if the model is correct (namely p.and p, are correctly
chosen), the smaller trial of high-risk subjects may be
more expensive than the larger trial of average-risk sub-
jects from the general population. Consider the following
two trials with a power of .90 and a one-sided type I error
of .05. In the trial of high-risk subjects p.= .04 and p, = .02,
and in the trial of average-risk subjects, p.= .02 and p, =
.01. Suppose the statistic of interest is the absolute risk dif-
ference. To obtain sample size for each randomization
group we use the standard sample size formula [4],

n

_ (JP(—p)1.644485+ [pc(1—pc)+ p;(1- p;)1.28155)°

(4)
(bc-p1)°

where p = (p + p;)/2, 1.644485 is the z-statistics corre-
sponding to the 95th percentile of the normal distribution
(for a one-sided type I error of .05) and 1.28155 is the z-
statistics corresponding to the 90th percentile (for a
power of .90). Based on (4), the sample size for a trial
using average-risk subjects from the general population
study is 2529 per group and the sample size for a trial of
high-risk subjects is 1244 per group. Let C, denote the cost
of recruitment per subject and C, denote the cost of inter-
vention and follow-up per subject averaged over the two
randomization groups. Suppose high risk subjects comprise
a fraction f of the general population. The total cost of the
trial for average-risk subjects from the general populations
is

C 2(Cr2529 + C,2529), (5)

general —
and the total cost of the trial for high-risk subjects is
Coighris = 2(Cr 1244/f + €, 1244).  (6)

where the factor of 2 is for the two randomization groups.
The condition for the trial of high-risk subjects to cost
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more than the trial of average-risk subjects (namely Cy;qp,.
risk >Cgeneral) is

Cr S 2529-1244

C Toaa/ 2529 (7)
, 1244/ f -2529

when 1244/f - 2529 > 0. If f = .20, the trial of high-risk
subjects will cost more than the trial of average-risk sub-
jects if Cp/C; > .34. If f = .10, the trial of high-risk subjects
will cost more than the trial of average-risk subjects if Cp/
C;>.13.

In many cancer prevention trials the above values of C/C,
are likely. For example, diagnostic testing to identify high-
risk smokers can include expensive airway pulmonary
function tests or bronchoscopy. In the future, more trials
will likely involve expensive genetic testing of subjects [5]
with costs ranging from $350 to almost $3,000 per test
according to recent information from Myriad Genetic Lab-
oratories. As part of a sensitivity analysis related to genetic
testing of subjects prior to enrollment in a trial, Baker and
Freedman [5] considered values of .1, .5, and 1 for ratios
similar to Cy/C,.

Even without diagnostic testing, the costs of obtaining
high-risk subjects can be substantial. If f = .10, the initial
recruitment will require ten times the number of people as
for a trial of average-risk subjects from the general popu-
lation. This increased recruitment would likely require
higher advertising costs and increased overhead costs
from the inclusion of additional institutions.

One additional consideration is how noncompliance and
contamination affect the intent-to-treat analysis. If non-
compliance and contamination can be anticipated, the
investigator can correspondingly adjust the sample size
and costs. Mathematically the effect of noncompliance
and contamination is to change the values of p. and p, in
(4), which would then affect (5) and (6). In some settings,
investigators may anticipate that high-risk subjects are
more likely to comply with the intervention than average-
risk subjects. To compensate for the anticipated increased
compliance, study designers could reduce the sample size
which would lower costs. However, in other situations,
investigators may anticipate that subjects found to be at
high-risk on a diagnostic test would likely seek the best
therapy outside of the trial rather than chance randomiza-
tion to standard or experimental therapy. To compensate
for the anticipated dilution in treatment effect, investiga-
tors would need to increase the sample size which would
increase the costs.

For the above reasons even if the probabilities under the
alternative hypothesis are correctly specified, some trials
of high-risk subjects may be more expensive than larger

http://www.biomedcentral.com/1471-2288/4/24

trials of average-risk subjects with the same power and
type I error.

Possibly misleading ratio of benefits to harms

When there is strong evidence prior to the trial of a high
probability of harmful side effects due to the intervention,
one would want to restrict the intervention to high-risk
subjects. Otherwise, some investigators may be tempted
to estimate the ratio of benefit to harms in the trial of
high-risk subjects and extrapolate the ratio to average risk
subjects. Unfortunately, even if the assumption of con-
stant relative risk over risk categories were true, extrapolat-
ing the benefit-harm ratio from a high risk group to the
general population could be misleading.

Suppose that in a randomized trial involving average-risk
subjects from the general population the probability of
cancer is .02 in the control arm and .01 in the study arm.
Also suppose that relative risk is same in the general pop-
ulation as in the high-risk group, so that in a randomized
trial involving a high-risk group, the probability of cancer
is .04 in the control arm and .02 in the study arm. Further-
more, suppose that the probability of harmful side effects
is the same for high-risk subjects as for average-risk sub-
jects in the general population, namely .015 in the control
arm and .025 in the study arm. Based on these results, for
every 1000 high-risk persons who receive the interven-
tion, (.04 - .02) 1000 = 20 will benefit from the interven-
tion and (.025 - .015) 1000 = 10 will be harmed by side
effects, yielding a benefit-harm ratio of 20:10 = 2:1. Simi-
larly for every 1000 average-risk person who receive the
intervention, (.02 - .01) 1000 = 10 will benefit from the
intervention and (.025 - .015) 1000 = 10 will be harmed
by side effects yielding a benefit-harm ratio of 10:10 = 1:1.
In this example it would be incorrect to extrapolate the
high benefit-harm ratio estimated from the high-risk
group to the general population for whom the benefit-
harm ratio is much lower. For many cancer prevention
interventions, the ratio of life-threatening disease avoided
to life threatening harms would be favorable in the high-
risk group but not favorable when extrapolated to the gen-
eral population.

Conclusion

There is no "free lunch" when using high-risk subjects in
prevention trials design to make inference about the gen-
eral population. Using high risk subjects instead of aver-
age-risk subjects from the general population may lower
statistical power, increase costs, and yield a misleading
ratio of benefit to harms than actually the case.

Given the substantial costs of definitive randomized trials
in cancer prevention, and the importance of accurately
assessing the balance of benefit and harm when treating
healthy and asymptomatic people, it is therefore impor-
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tant to conduct trials in the actual target population rather
than try to conduct them in high-risk populations with
the plan to extrapolate results to the general population.
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