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Abstract
Background: For analyzing a repeated ordinal response, it is common to use a multivariate
cumulative logit model. This model may fit poorly, especially when a nonsymmetric response is
available. In these cases, alternative strategies should be utilized.

Methods: In this paper, we present a family of power transformations for the cumulative
probabilities to model asymmetric departures from the random-intercept cumulative logit model.
To illustrate this method, we analyze the data from an epidemiologic study to identify risk factors
of hypothermia among newly born infants in some referral university hospitals in Tehran, Iran.

Results: For hypothermia data, using this family of transformations and comparing the goodness-
of-fit statistics showed that a model with the cumulative complementary log-log link gives us a
better fit compared to a model with the cumulative logit link.

Conclusion: In some areas, using the ordinary cumulative logit link function does not lead to the
best fit. So, other link functions should be evaluated to discover the best transformation for the
cumulative probabilities.

Background
Hypothermia is an important cause of morbidity, and
occasionally mortality, in the newborn [1]. In 1958, Sil-
verman et al. [2] and in 1964, Buetow and Klein [3]
reported the adverse effects of hypothermia on viability
and hope for life in premature and low birth weight
neonates. Low body temperature in newborns can lead to
an increased rate of basal metabolism, peripheral vaso-
constriction, decreased peripheral perfusion, tissue
ischemia and finally metabolic acidosis [4]. Vascular

changes in the lungs may result in decreased ventilation,
increased demand for oxygen and worsening of respira-
tory distress [5]. Meanwhile, acidosis and hypoxia can
predispose to pulmonary hemorrhage and disseminated
intravascular coagulation (DIC) [4]. Hepatocyte ischemia
affects liver functions and may cause indirect hyperbiliru-
binemia. In addition, the high metabolic rate leads to
higher glucose consumption and hypoglycemia [5]. In
many parts of the world, health personnel are not aware
of the importance of keeping babies warm by simple
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methods such as drying and wrapping immediately after
birth, avoiding harmful practices, encouraging early
breast feeding and keeping newborns in close contact with
their mothers [6].

Considering the prevalence of hypothermia experienced
by Iranian neonates, and regarding that there is not ade-
quate information about this health problem in our coun-
try, we decided to design an epidemiologic study to
estimate the incidence rate and identify some of the most
important risk factors of neonatal hypothermia in differ-
ent referral hospitals of Tehran, Iran. In this longitudinal
study, the body temperature of the newborns was meas-
ured repeatedly at several occasions. At each time of meas-
urement, the ordinal outcome was defined as the severity
of hypothermia for each newborn.

To analyze the dependence of a categorical response data
on explanatory variables it is common to fit transforms of
the probabilities by linear functions of parameters. In this
context, the logistic transform is probably the one most
commonly used. However, as for all models, it is tentative
and therefore some consideration of adequacy is needed.
If some non-logistic model gives a better or simpler fit, it
is important to discover that. In this paper, we introduce
a family of random-effects models to describe the rela-
tionship between repeated ordinal response data and a
host of covariates. Using this family of statistical models,
we are able to model asymmetric departures from the
cumulative logit model. This approach is a simple and
straightforward extension of the family of power transfor-
mations introduced by Aranda-Ordaz [7] to model asym-
metric departures from the ordinary logistic regression
model. We also develop the necessary computer program
to obtain the maximum likelihood estimates of the model
parameters.

Methods
The study of hypothermia in the newborns
The study of hypothermia was an epidemiologic research
in some referral university teaching hospitals of Tehran,
Iran. In this study, the researchers aimed to estimate the
incidence rate of hypothermia and identify some of the
most important risk factors of this health problem. To do
this, a random sample of 900 newborns was selected in
these hospitals from August 2003 to May 2004. After
obtaining consent from the neonates' parents, the rectal
temperature of the newborns was measured using a low-
reading rectal thermometer at the following occasions;

i) Immediately after birth in the operating room

ii) After admission to the neonatal unit (levels I, II, III of
nursery care)

iii) One hour after admission to the neonatal unit

iv) Two hours after admission to the neonatal unit

If a newborn was hypothermic, she/he was re-warmed
according to WHO recommendations [6]. The ordinal
response variable was defined as the severity of hypother-
mia at each occasion; 1 = moderate to severe hypothermia
(temperature less than or equal to 35°C), 2 = mild hypo-
thermia (temperature between 35°C and 36.5°C), 3 =
normal body temperature (temperature between 36.5°C
and 38°C). In addition, the following covariates were
considered as the potential risk factors or risk indicators
for neonatal hypothermia; sex (0 = male, 1 = female),
weight (0 = more than or equal to 2500 gr, 1 = less than
2500 gr), gestational age (0 = more than or equal to 37
weeks, 1 = less than 37 weeks), environmental tempera-
ture at each time of measurement (0 = more than or equal
to 27°C, 1 = less than 27°C, where 27°C was the mean
temperature of the operating room and neonatal unit dur-
ing the study), apgar score (a quick method of assessing
the state of newborn infant. This score comprises five
components: heart rate, respiratory effort, muscle tone,
reflex irritability, and color, each of which is given score of
0, 1, or 2 [8]) immediately and five minutes after birth (0
= more than or equal to 8, 1 = less than 8) and cardiopul-
monary resuscitation (CPR) (0 = not received, 1 =
received).

Note that, the recorded outcomes for each newborn
(severity of hypothermia at different occasions) are posi-
tively correlated ordinal observations, so convenient sta-
tistical approaches should be utilized to model the
relationship between this response data and the described
factors.

Family of transformations for repeated ordinal response 
data
Suppose, in a longitudinal study, there are T occasions
(times) of measurement, and the ordinal response at each
time has j = 1,2,...,J levels. This ordinal response for ith
individual (i = 1,2,...,N) at tth time of measurement (t =
1,2,...,T) can be denoted by Yit. Each individual has T cov-
ariate vectors xit, each of dimension P × 1; the vector xit
contains all the relevant covariates at time t, including
time-dependent and time-stationary covariates. We also
let Xi = (xi1,...,xiT)' represent the T × P matrix of covariates
for subject i.

In 1981, Aranda-Ordaz [7] introduced a family of asym-
metric transformations for binary response data in the
form of

w(π) = {(1-π)-λ -1}/λ  (1)
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where 0 <π < 1 denotes the probability of success and λ is
the transformation parameter. This seems to be a useful
transformation when it is desirable to treat successes and
failures asymmetrically. Using equation (1), one can
denote the GLM form of this family as

log w(π) = η  (2)

where η = β'X is the linear systematic part of the model,
and β is a vector of unknown regression parameters. Using
equations (1) and (2), the family of asymmetric transfor-
mations for univariate binary response data can be written
as

log{[(1-π)-λ -1]/λ} = X'β  (3)

Using simple calculations, one can show that for λ = 1
equation (3) reduces to the ordinary logistic model, while
for λ→0 the complementary log-log model is obtained.

Now, we generalize the described family of power trans-
formations to repeated ordinal response data. Suppose πitj
= pr(Yit = j | ui) denotes the probability of ordinal response
j for ith individual at time t. Now, using this definition
and considering the equations (2) and (3), a family of
random-intercept models for repeated ordinal response
data can be defined as

log w(γitj | ui) = ui + αj + β'xit  (4)

where γitj = pr(Yit ≤ j | ui) is the cumulative probability of
response category j for individual i at time t. Here, ui
denotes the random term for cluster i, αj's are known as
model cut-off points and β is the common P × 1 vector of
fixed-effect regression parameters.

Using equation (4) for hypothermia data, the family of
random-effects models can be written as

log{[(1-γitj)-λ -1]/λ | ui} = ui + αj + β1Sexi + β2Weighti +
β3Gestational_agei + β4Environmental_Tempit + β5Apgar1i +
β6Apgar5i + β7Multiple_pregi + β8CPRi  (5)

for i = 1,2,...,900, t = 1,2,3,4 and j = 1,2. Here, γit1 = πit1 is
the probability of being moderate to severe hypothermic
for newborn i at time t (probability of being in the first
category of ordinal response) and γit2 = πit1 + πit2 is the
probability of being hypothermic (including mild, mod-
erate or severe) for ith neonate at tth time of measurement
(the probability of being in the first or second category of
ordinal response). We also suppose that ui ~ N(0,σ2),
where σ is an unknown scale parameter which should be
estimated in the model fitting process.

Maximum likelihood estimators and computer programs
The model in equation (4) has P unknown fixed-effect
regression parameters (β), J-1 unknown cut-off points
(αj), and a parameter pertaining to the distribution of ui
(σ, the standard deviation of the random-effect terms).

Consider the random-intercept model in equation (4).
Assuming η = ui + αj + β'xit, it is easy to show that

and, therefore, the marginal probabilities can be com-
puted by the following equation

πitj = γitj - γit(j-1)  (7)

To write the required likelihood function, one can form J
indicator random variables yitj, where yitj = 1 if Yit= j, and
yitj = 0 if otherwise. The marginal distribution of Yit is
assumed to be multinomial (with sample size yit+=1), that
is

Now, the necessary log-likelihood function for estimating
the model parameters can be written as below

where ψ is a vector including all the unknown model
parameters.

Solving the above score function in a random-effects
model generally is not trouble-free, especially with an
unknown transformation parameter. In this context, the
procedure NLMIXED in statistical software SAS usually
works well. By a user-friend programming, the likelihood
function in equation (8) can be defined and then availa-
ble estimating methods in this procedure help us to find
the parameter estimates and related standard errors. For
hypothermia data set, we used a Dual Quasi-Newton as the
optimization technique and an Adaptive Gaussian Quadra-
ture as the integration method. In addition, some useful
goodness of fit statistics such as Akaike's Information Cri-
terion (AIC) and Schwartz's Bayesian Information Crite-
rion (BIC) are available in this procedure. A model with
the smallest value of AIC or BIC shows a better fit com-
pared to other random-effects models. To find more
detailed descriptions about fitting the random-effects
models, the interested reader can refer to Agresti [9]. In
addition, the SAS code for fitting the random-intercept
model in equation (5) is available in Appendix. The
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NLMIXED procedure estimates all the unknown parame-
ters in the log-likelihood function. We denoted the
unknown fixed-effect regression parameters by b1, b2, ...,
b8 and the unknown transformation parameter (λ) by b9.

Results
Description of the data
The study sample consisted of 900 neonates (452 male
and 448 female newborns). Of these, 298 newborns (33.1
percent) had low or very low birth weight (weight less
than 2500 gr), and 323 newborns (35.9 percent) were pre-
term (gestational age less than 37 weeks). The mean tem-
perature of the operating rooms and neonatal units was
about 27°C (SD = 2.1). In addition, 726 neonates (80.7
percent) had apgar score more than or equal to 8 at the
first minute after birth and 844 newborns (93.8 percent)
had apgar score 8 or higher five minutes after birth. In this
sample, the rate of multiple pregnancies was about 3 per-
cent. Additionally, 63 newborns (7 percent) received CPR
during the study. It should be noted that 42 hypothermic
newborns (9 percent) died in a short period after birth,
while this rate was about 2.7 percent (11 newborns) for
the non-hypothermic neonates.

As mentioned before, for each newborn the ordinal
response variable was the severity of hypothermia at each
time of measurement. Table 1 shows the incidence rate
and severity of hypothermia among these newborns, sep-
arately in four consecutive measurements. Summing over
mild and moderate-severe rows in this table shows that
53.4, 13.7, 2.9 and 0.7 percent of these newborns were
hypothermic, respectively at these four consecutive
measurements.

Analysis of risk factors
To evaluate the fit of the illustrated model and to identify
the significant risk factors of neonatal hypothermia, we
first fit the described model in equation (5) with
unknown transformation parameter in order to estimate
this parameter and provide preliminary information

about the appropriate link function for this data set. Table
2 shows the estimates, standard errors, p-values, and
goodness-of-fit statistics. The estimate of transformation

parameter, that is , shows serious departure
from the cumulative logit model. In other words, since the
estimate of transformation parameter is very close to zero,
we can conclude that a model with the cumulative com-
plementary log-log link (λ→0) seems to be more conven-
ient for this data compared to a model with the
cumulative logit link (λ = 1).

In the next step, we used the cumulative complementary
log-log and logit link functions to model hypothermia
data (Table 2). The obtained results tell us that there are
substantial differences between the parameter estimates
in these two models. Furthermore, comparing the good-
ness-of-fit statistics reveals that the model with the cumu-
lative complementary log-log link gives a better fit
compared to the model with the cumulative logit link
function. This is not in contrast with the obtained results
from the model with unknown transformation parameter.

Here, it should be noted that the fitted models did not
lead to the same significant risk factors for hypothermia.
Regarding to the column of p-values in Table 2 for the
model with unknown λ and the model with the cumula-
tive complementary log-log link, we can conclude that all
the described factors, except sex, are significantly associ-
ated with hypothermia. But in the cumulative logit model
(the model with λ = 1), gestational age of the neonates did
not show significant effect on hypothermia.

Discussion
Longitudinal studies are now widespread in many areas of
medical research. The statistical analysis of these studies is
usually difficult, especially when a repeated ordinal
response is available [10,11]. In this context, generalized
estimation equations methodology, introduced by Liang
and Zeger [12], is a helpful strategy for analyzing repeated

Table 1: Severity of hypothermia among the sample neonates

Occasion

Time 1 Time 2 Time 3 Time 4 Total

Severity of Hypothermia Normal 419 777 874 894 2964
Mild 329 105 20 4 458

Moderate-Severe 152 18 6 2 178
Total 900 900 900 900 3600

ˆ .λ = 0 0312
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binary response data. In 1994, Lipsittz et al. extended this
methodology to repeated categorical responses [13]. The
choice of appropriate method for analyzing repeated cat-
egorical responses depends heavily on the aims of the
study. Marginal and random-effects models are probably
the most common approaches for the analysis of corre-
lated categorical response data. Carrière and Bouyer pre-
sented helpful strategies for choosing marginal and
random-effects models in longitudinal binary responses.
They demonstrated that if the main goal of the study is to
predict a mean prevalence of a specific disease over time
by sex, age group or other characteristics, the marginal
models are suitable. In contrast, if the goal is to study the
individual risk factors for etiological considerations, the
random-effects models are more appropriate because they
allow adjustment on non-observed individual characteris-
tics and a better understanding of the underlying mecha-
nism [14].

In the present article, we introduced a family of power
transformations to model the repeated ordinal response
data. Depending on the main aim of the study, when a
random-effects model is chosen for analyzing a repeated
ordinal response, the first option is probably a model with

the cumulative logit link function. Our main goal in the
present study was to obtain more efficient estimates com-
pared to those obtained using the cumulative logit link
function. Nowadays, by using powerful statistical soft-
wares such as SAS and S-PLUS, the fitting process is not
too difficult. The required time for running process, even
in large sample size data sets, is not more time-consuming
compared to the ordinary random-effects models.

Supposing J = 2, the model in equation (4) reduces to a
model for the analysis of repeated binary response data. In
this situation, Yit is a scalar. Omitting the random terms ui,
with T = 1 and J = 2, this approach reduces to the model
presented by Aranda-Ordaz.

In our proposed model, assuming an unknown transfor-
mation parameter, λ, and estimating this parameter in the
model fitting process is an appropriate strategy for check-
ing asymmetric departures from the logistic model. If the
estimate of the transformation parameter showed a seri-
ous departure from 1, then it can be concluded that the
logistic transformation is not an appropriate option. For a
given data, if the estimate of the transformation parameter
is significant but not close to 0 or 1, then it can be con-

Table 2: Estimates from the longitudinal hypothermia data

Unknown λ λ = 1 λ→0

Parameter Est† SE‡ P§ Est SE P Est SE P

α1/Cutoff 1 2.932 0.256 _ 4.212 0.308 _ 3.611 0.235 _
α2/Cutoff 2 5.839 0.261 _ 14.144 0.306 _ 6.733 0.269 _
β1/Sex 0.118 0.126 0.346 0.585 0.562 0.298 0.230 0.206 0.264
β2/Weight 1.178 0.153 <0.001 3.005 0.773 <0.001 1.242 0.157 <0.001
β3/Gest Age# 0.351 0.174 0.044 1.224 0.654 0.061 0.249 0.112 0.025
β4/Env Temp* 2.976 0.501 <0.001 4.368 0.648 <0.001 2.247 0.511 <0.001
β5/Apgar1** 0.370 0.153 0.016 1.096 0.533 0.040 0.400 0.185 0.031
β6/Apgar5*** 1.037 0.366 0.005 2.629 1.198 0.028 1.009 0.436 0.021
β7/Multi Preg$ 0.802 0.352 0.023 1.659 0.805 0.039 0.776 0.336 0.021
β8/CPR 0.302 0.104 0.004 0.272 0.137 0.047 0.277 0.114 0.015
σ 3.584 0.395 <0.001 5.987 0.648 <0.001 3.977 0.410 <0.001
λ 0.031 0.013 0.020 _ _ _ _ _ _

-2log.likelihood 3882.6 3906.8 3889.5
AIC 3904.6 3928.8 3911.5
BIC 3972.7 3996.9 3979.6

§ p for two-sided p-value
† Est for estimate of the model parameter
‡ Se for standard error of the estimate
# Gest Age for gestational age of the neonate
* Env Temp for environmental temperature
** Apgar1 for apgar score at the first minute after neonate's birth
*** Apgar5 for apgar score five minutes after neonate's birth
$ Multi Preg for multiple pregnancy
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cluded that neither the logit nor the complementary log-
log link is appropriate. In this situation, one can fit the
model in equation (4) with the estimated transformation
parameter. Otherwise, if the estimate of this parameter is
not significant or the standard error of the estimate is too
large, the traditional methods of choosing the link func-
tion (for example, fitting the ordinary cumulative models
with the common link functions such as logit, probit,
complementary or negative log-log and then choosing the
model with the best fit) may be preferable. To decide
about the proper choice of transformation parameter for
a given data set, an alternative strategy may be fitting this
model with a sequence of values of λ and comparing the
obtained goodness-of-fit statistics to determine a model
with the best fit. In this context, drawing a graph of
lambda versus common goodness-of-statistics (such as
deviance) is a convenience approach for choosing a
model with the proper transformation parameter.

As we mentioned before, the results of the present study
showed that low birth weight and premature newborns,
neonates with low apgar scores and those who received
cardiopulmonary resuscitation had higher risk for being
hypothermic. The same findings have been already
reported in other research [15-18]. Moreover, the results
of regression analysis revealed that the environmental
temperature is significantly associated with neonatal
hypothermia. It appears that newborns have higher risk
for hypothermia when the operating room or neonatal
unit temperature is not warm enough (in our study at least
27°C). This finding shows the importance of keeping the
operating room and neonatal unit warm enough to
reduce the risk of hypothermia among newly born
infants. In general, theses results help us to train the med-
ical care personnel for a better management of high risk
newborn babies.

Appendix
SAS code for fitting the proposed random-effects model
data set1;

infile 'a:\hypothermia.dat';

y1 = 0; y2 = 0; y3 = 0;

if response = 1 then y1 = 1;

if response = 2 then y2 = 1;

if response = 3 then y3 = 1;

proc nlmixed qpoints = 100;

bounds i2>0;

bounds b9>0; *** b9 is the unknown transformation
parameter,λ***

eta1 = i1+ sx*b1+ wt*b2+ ga*b3+ et*b4+ ap1*b5+
ap5*b6+ mp*b7+ cpr*b8+ u;

eta2 = i1+i2+ sx*b1+ wt*b2+ ga*b3+ et*b4+ ap1*b5+
ap5*b6+ mp*b7+ cpr*b8+ u;

p1 = 1-((1+ b9*exp(eta1))**(-1/b9));

p2 = (1+ b9*exp(eta1))**(-1/b9)) - ((1+
b9*exp(eta2))**(-1/b9));

p3 = (1+ b9*exp(eta2))**(-1/b9));

LL = y1*log(p1)+ y2*log(p2)+ y3*log(p3);

*** LL is the log-likelihood function ***

model response~general(LL);

estimate 'intercept2' i1+i2;

random u~normal(0, sigma*sigma) subject = case;

run;
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