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Abstract
Background: In this paper we propose the use of the within-subject coefficient of variation as an
index of a measurement's reliability. For continuous variables and based on its maximum likelihood
estimation we derive a variance-stabilizing transformation and discuss confidence interval
construction within the framework of a one-way random effects model. We investigate sample size
requirements for the within-subject coefficient of variation for continuous and binary variables.

Methods: We investigate the validity of the approximate normal confidence interval by Monte
Carlo simulations. In designing a reliability study, a crucial issue is the balance between the number
of subjects to be recruited and the number of repeated measurements per subject. We discuss
efficiency of estimation and cost considerations for the optimal allocation of the sample resources.
The approach is illustrated by an example on Magnetic Resonance Imaging (MRI). We also discuss
the issue of sample size estimation for dichotomous responses with two examples.

Results: For the continuous variable we found that the variance stabilizing transformation
improves the asymptotic coverage probabilities on the within-subject coefficient of variation for the
continuous variable. The maximum like estimation and sample size estimation based on pre-
specified width of confidence interval are novel contribution to the literature for the binary
variable.

Conclusion: Using the sample size formulas, we hope to help clinical epidemiologists and
practicing statisticians to efficiently design reliability studies using the within-subject coefficient of
variation, whether the variable of interest is continuous or binary.

Background
Measurement errors can seriously affect statistical analysis
and interpretation; it therefore becomes important to
assess the magnitude of such errors by calculating a relia-
bility coefficient and assessing its precision. For instance
medical diagnosis, clinicians have now become cognizant
to the paramount importance of obtaining accurate meas-

urements to ensure safe and efficient delivery of care to
their patients. Experiments designed to measure validity
and precision of instruments used in biomedical and epi-
demiological research are ubiquitous. For example, Ash-
ton [1] demonstrated the importance of evaluating the
reliability of manual and automated methods for quanti-
fying total white matter lesions burden in multiple sclero-
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sis patients. They compared the coefficient of variations of
three methods. In oncology, Schwartz et al. [2] used the
coefficient of variation to evaluate the repeatability in bi-
dimensional computed tomography measurements of
three techniques: hand-held calipers on film, electronic
calipers on a workstation, and an auto-contour technique
on a workstation. Differences between the coefficients of
variation were statistically significantly different for the
auto-contour technique, compared to the other tech-
niques. The coefficient of variation is often used to com-
pare variables measured on different scales. For example,
in social sciences, when the intent is to compare the vari-
ability in school performance with the variability of
household income, a comparison of standard deviations
makes no sense because income and school performance
are measured on different scales. The correct comparison
may be based on the coefficient of variation because it
adjusts for scale. Other applications of the coefficient of
variation are given in Tian [3].

Scientists have developed several indices to assess the reli-
ability and reproducibility of quantitative measurements.
The intra-class correlation (ICC), the proportion of the
between-subject variance to the total variance, has been
widely used as an index of measurement reliability. For a
comprehensive review on the ICC and its applications, we
refer the reader to Fleiss [4], Dunn [5] and Shoukri [6].
One of the criticisms of the ICC is that its value depends
on the population from which the study subjects have
been obtained, and this may lead to difficulties in com-
paring results from different studies. Accordingly, Quan
and Shih [7] (QS) considered an alternative measure, the
Within-Subject Coefficient of Variation (WSCV) as an
alternative to the ICC for assessing measurements repro-
ducibility or test-re-test reliability. Because of the require-
ment that repeated observations are made on each
subject, they used the one-way random effects model
(REM) as a mechanism to describe the data. Although the
use of the WSCV as a measure of reproducibility is long
standing, the issue of sample size determination has not
been adequately investigated. Sample size estimation is
one of the most important issues in the design of any
study that uses inferential statistics.

When the ICC is used as the index of reliability, Donner
and Eliasziw [8] provided contours of exact power for
selected numbers of subjects (k) and numbers of repli-
cates (n). These power results were then used to identify
optimal designs that minimize the study costs. Assuming
a constant number of replicates per subject, Walter et al.
[9] considered an approximation to determine the
required number of subjects to achieve fixed levels of
power. Bonett [10] calculated the sample size required to
achieve a prescribed expected width for the confidence
interval on the ICC. Shoukri et al. [11] derived the values

of k and n that allocate the sample resources optimally
and minimize the variance of the estimated ICC under
cost constraints. The cost structure that was considered
was general and followed the general guidelines identified
by Flynn et al. [12].

In this paper, we derive the optimal allocation for the
number of subjects and the number of repeated measure-
ments needed to minimize the variance of the maximum
likelihood estimator (MLE) of the WSCV. In Section 2 we
present the random effects model, the definition of the
WSCV, and the asymptotic distribution of its MLE for con-
tinuous data. In Section 3, we use the calculus of optimi-
zation to find the optimal combinations (n, k) that
minimize the variance of the MLE of WSCV for normally
distributed variables. The use of the WSCV for dichoto-
mous data has never been investigated before, and a novel
contribution in this paper is the estimation of WSCV for
binary outcome measurements, and sample size require-
ments, with emphasis on the case of two ratings per sub-
ject (i.e. n = 2). We devote Section 4 to the binary data,
and general discussion is presented in Section 5.

Methods
Estimating the WSCV for continuous variables
Assumptions
Consider a random sample of k subjects with n repeated
measurements of a continuous variable Y, and denote by
Yij the jth reading made on the ith subject under identical
experimental conditions (i = 1,2,...k; j = 1,2,...n). In a test-
retest scenario, and under the assumption of no reader's
effect (i.e. the readings within a specific subject are
exchangeable), Yij denotes the reading of the jth trial made
on the ith subject. A useful model for analyzing such data
is given by:

Yij = µ + si + eij  i = 1,2,...k; j = 1,2,...n  (1)

where µ is the mean of Yij, the random subject effects si are

normally distributed with mean 0 and variance  , or

N(0, ), the measurement errors eij are N(0, ), and

the si and eijterms are independent. We assume that the

subjects are randomly drawn from some population of
interest.

Quan and Shih [7] defined the WSCV parameter in the
above model as:

θ = σe/µ  (2)

With model (1), it is assumed that the within subject var-
iance is the same for all subjects.

σ s
2

σ s
2 σe

2
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Maximum likelihood estimator
Under the above set-up, the log-likelihood function has
the form

Define σ2 =  +  and ρ = /(  + ), the intra-

class correlation coefficient, for which  = ρσ2 and 

= σ2(1-ρ). Because the design is balanced the maximum

likelihood estimators (MLE) for µ, σ2, and ρ are given in

closed forms by: ,

, and the estimated ICC is

, where

,

 are respectively, the within-sub-

ject and between subjects mean squares as obtained from

the usual one-way ANOVA table, and . Note

that the MSB does not exist for k = 1, which means that to

obtain a sensible estimate of ρ as an index of reliability,
the study should include more than one subject.

Results
The asymptotic variance-covariance matrix of the MLE's is
obtained by inverting Fisher's information matrix. The

large sample variance of  can be obtained using delta
method (see Kendall vol. 1 [13]) and was shown by Quan
and Shih [7] to be:

To construct an approximate confidence interval on , it

is assumed that for large k, (  - θ) follows a normal

distribution with mean 0 and variance A(ρ,n,θ). An

approximate 100(1 - α)% confidence interval on θ can be

given as , where Zα/2 is the 100(1 - α/2)%

cut off point of the standard normal distribution.

Due to the dependence of the variance of  on the true

parameter value θ itself, we found that the asymptotic cov-
erage deviates from its nominal levels for some values of

θ. To improve the coverage probability we suggest a vari-
ance stabilizing transformation to remove the depend-

ence of var( ) on θ.

Variance Stabilizing Transformation (VST)

To improve the estimated coverage proportion, we pro-
pose a variance stabilizing transformation g (see Kendall

vol.1 page 541 [13]) where, g = ∫(var( ))-1/2 dθ. With θ
defined as in equation (2), it can be shown that

 where,

, and ρ* = ρ/(1 - ρ) Letting

, we may

establish assuming the function g is bounded and differ-

entiable, that, f( ,n,ρ) is asymptotically normally distrib-

uted with mean f(θ,n,ρ) and variance 1/k. Therefore, we

can construct 100(1- α)% confidence limits on θ based on

the above transformation. The upper and lower (1- α/

2)100% confidence bound on θ are respectively given by:

 and,

where, ξ1 = f( ,n,ρ) + zα/2/ , and ξ2 = f( ,n,ρ) - zα/2/

.

Note that the limits of the interval depend on the
unknown value of the intra-class correlation, which can
be replaced by its MLE as defined in section 2.1.

To examine the finite sample behavior of the VST based
confidence interval estimator, a Monte-Carlo study was
conducted under model (1) using the S-Plus program. The
values of ρ were, 0.3, 0.4, 0.6, 0.7, and 0.8; µ = 10, and θ
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= 4%, 10% or 20%. Sample size (k) = 12, 25, 50, 75, and
number of replicates (n) = 2, 3, and 5. The number of rep-
etitions for each simulation was 1000. Tables 1, 2, 3, and
4, demonstrate the coverage proportion for the 95% nom-

inal level confidence interval on the WCV. The estimated
coverage proportions were close to the 95% nominal
level.

Example 1
Accurate and reproducible quantification of brain lesion
count and volume in multiple sclerosis (MS) patients
using magnetic resonance imaging (MRI) is a vital tool for
evaluation of disease progression and patient response to
therapy. Current standard methods for obtaining these
data are largely manual and subjective and are therefore
error-prone and subject to inter-and intra-operator varia-
bility. Therefore, there is a need for a rapid automated
lesion quantification method. Ashton et al. [1] compared
manual measurements and an automated data technique
known as Geometrically Constrained Region Growth
(GEORG) of the brain lesion volume of 3 MS patients,
each measured 10 times by a single operator for each
method. The data are presented in Table 5.

Based on the guidelines for the levels of reliability pro-
vided by Fleiss [4], a value of an ICC above 80% indicates
an excellent reliability, and from Table 3 both methods
cross this threshold level. However, based on the WSCV
values, the manual method is definitely less reproducible
than the automated method (the GEORG is 5 times more
reproducible than the manual). This example demon-
strates the usefulness of the WSCV over the ICC as a meas-
ure of reproducibility. Clearly, one should construct a
formal test on the significance of the difference between
two correlated within-subject coefficients of variation.
There are several competing methods to construct such a
test (e.g. LRT, Wald, and Score tests) but this issue is quite
involved and so we intend to report our findings in a
future publication.

Sample size estimation
In the following development we discuss the second
objective of this paper. We assume that the investigator is
interested in the number of replicates, n, per subject, so
that the variance of the estimate of θ is minimized, given
that the total number of measurements is fixed a priori at
N = nk.

Efficiency criterion
For fixed total number of measurements N = nk, equation
(3) gives:

The necessary condition for var( ) to have a unique min-

imum is that ∂var( )/∂n = 0. This, and the additional

condition that ∂2 var( )/∂n2 > 0 are both satisfied so long

var( )
( )

θ θ ρ
ρ

θ= +
−




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4 2
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Table 1: Estimated coverage probabilities under the VST. The 
nominal level is 95%. (θ = 0.04)

k ρ n

2 3 5

0.3 0.929 0.934 0.947
0.4 0.943 0.937 0.930

12 0.6 0.943 0.948 0.938
0.7 0.941 0.943 0.934
0.8 0.939 0.931 0.941
0.3 0.961 0.946 0.949
0.4 0.942 0.946 0.953

25 0.6 0.939 0.935 0.969
0.7 0.946 0.936 0.948
0.8 0.936 0.936 0.940
0.3 0.956 0.954 0.949
0.4 0.945 0.939 0.950

50 0.6 0.952 0.955 0.934
0.7 0.953 0.948 0.940
0.8 0.950 0.935 0.937
0.3 0.948 0.948 0.944
0.4 0.956 0.955 0.955

75 0.6 0.952 0.943 0.949
0.7 0.945 0.944 0.930
0.8 0.946 0.945 0.946

Table 2: Estimated coverage probabilities under the VST. The 
nominal level is 95%. (θ = 0.01)

K ρ n

2 3 5

0.3 0.943 0.954 0.945
0.4 0.930 0.934 0.952

12 0.6 0.949 0.942 0.938
0.7 0.920 0.932 0.929
0.8 0.927 0.926 0.913
0.3 0.938 0.951 0.945
0.4 0.936 0.953 0.955

25 0.6 0.926 0.948 0.946
0.7 0.928 0.939 0.931
0.8 0.925 0.939 0.915
0.3 0.946 0.936 0.946
0.4 0.957 0.935 0.942

50 0.6 0.940 0.955 0.936
0.7 0.940 0.947 0.935
0.8 0.947 0.930 0.925
0.3 0.941 0.948 0.945
0.4 0.941 0.947 0.941

75 0.6 0.935 0.933 0.941
0.7 0.932 0.929 0.949
0.8 0.960 0.936 0.925
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as 0 <ρ < 1. Differentiating (4) with respect to n, equating
to zero and solving for n we obtain

The required number of subject is thus k* = N/n*.

Table 4 shows few optimal allocations of (n, k) for ρ = 0.6,
0.7, and 0.8, θ = 0.1, 0.2, 0.3 and 0.4, when N = 24.

Note that in practice, only integer values of (n, k) are used,
and because N = nk is fixed a priori, we first round the opti-
mum values of n to the nearest integer; then k = N/n was

rounded to the nearest integer. The values of var( ) at the

rounded optimal allocations for different values of ρ,θ
and n showed that the net loss or gain in efficiency due to
rounding is negligible. It is clear that to efficiently esti-

mate the WSCV for large values of θ we need smaller
number of replicates and larger number of subjects.

Fixed width confidence interval approach

Bonett [10] discussed the issue of sample size require-
ments that achieve a pre-specified expected width for a
confidence interval about ICC. This approach is useful in
planning a reliability study in which the focus is on esti-
mation rather than hypothesis testing. He demonstrated
that the effect of inaccurate planning value of ICC is more
serious in hypothesis testing applications. Shoukri et al.
[11] argued that the hypothesis testing approach might
not be appropriate while planning a reproducibility study.
This is because, in most cases, values of the coefficient
under the null and alternative hypotheses may be difficult
to specify. An alternative approach is to focus on the

width of the CI for θ. Since the approximate width of an

(1 - α)100%CI on θ is, 2zα/2 var( )1/2, an approximate

sample size that yields an (1 - α)100% CI for θ with a

desired width w obtains by setting w = 2zα/2 {var(θ)}1/2

and then solving for k:

We observe that, for fixed n and θ, larger values of ρ
require larger number of subjects to satisfy the criterion.
As an example, suppose that it is of interest to construct
95% CI on θ with expected width w = 0.05, ρ = 0.3, and
an afforded number of replicates n = 2. If the hypothe-
sized value of θ is 0.10, then k = 31, and if θ is 0.3 (i.e.
lower reliability), then k = 323.

n*
( )

.= + − < < ( )1
1

2
0 1 5

2

ρ
ρθ

ρ

θ̂

θ̂

k
z A n

w
= 4 2

2

( , , )
.

ρ θ

Table 3: Estimated coverage probabilities under the VST. The 
nominal level is 95%. (θ = 0.02)

K ρ n

2 3 5

0.3 0.947 0.941 0.945
0.4 0.936 0.945 0.942

12 0.6 0.932 0.939 0.950
0.7 0.937 0.938 0.935
0.8 0.934 0.925 0.921
0.3 0.951 0.951 0.954
0.4 0.942 0.943 0.943

25 0.6 0.940 0.946 0.934
0.7 0.940 0.941 0.920
0.8 0.939 0.934 0.909
0.3 0.948 0.947 0.935
0.4 0.941 0.945 0.948

50 0.6 0.939 0.952 0.947
0.7 0.939 0.944 0.949
0.8 0.941 0.931 0.908
0.3 0.951 0.953 0.956
0.4 0.948 0.947 0.951

75 0.6 0.950 0.945 0.944
0.7 0.936 0.931 0.931
0.8 0.937 0.930 0.912

Table 4: Results for 10 replicates on each of three patient's total lesion burden. Values are given volumes in cubic centimeters.

Replicates

Patient Method* 1 2 3 4 5 6 7 8 9 10

1 M 20 21.2 20.8 20.6 20.2 19.1 21 20.4 19.2 19.2
G 19.5 19.5 19.6 19.7 19.3 19.1 19.1 19.3 19.2 19.5

2 M 26.8 26.5 22.5 23.1 24.3 24.1 26 26.8 24.9 27.7
G 22.1 21.9 22 22.1 21.9 21.8 21.7 21.7 21.7 21.8

3 M 9.6 10.5 10.6 9.2 10.4 10.4 10.1 8 10.1 8.9
G 8.5 8.5 8.3 8.3 8.3 8 8 8 8 8.1

*M = Manual, G = Geometrically constrained region growth.
Page 5 of 10
(page number not for citation purposes)



BMC Medical Research Methodology 2006, 6:24 http://www.biomedcentral.com/1471-2288/6/24
Cost criterion
Funding constraints will often determine the cost of
recruiting subjects for a reliability study. Although too
small a sample may lead to a study that produces an
imprecise estimate of the reproducibility coefficient, too
large a sample may result in a waste of resources. Thus, an
important decision in a typical reliability study is to bal-
ance the cost of recruiting subjects with the need for a pre-
cise estimate of the parameter summarizing reliability.

In this section, we determine the combinations (n, k) that

minimize the variance of  subject to cost constraints.
Constructing a flexible cost function starts with identify-
ing sampling and overhead costs. The sampling cost
depends primarily on the size of the sample and includes
costs for data collection, compensation to volunteers,
management, and evaluation. On the other hand, over-
head costs are independent of sample size. Following
Sukhatme et al. [14], we assume that the overall cost func-
tion is given as:

C = c0 + kc1 + nkc2  (6)

where, c0 is the fixed cost, c1 the cost of recruiting a single
subject, and c2is the cost of making one observation.
Using the method of Lagrange multipliers and following
Shoukri et al. [11], we write the objective function Ψ in
this form

Ψ = var( ) + λ(C - c0 - kc1 - nkc2)  (7)

where, var( ) is given by Equation (3) and λ is the

Lagrange multiplier. Differentiating Ψ with respect to n, k

and λ and equating to zero, we obtain

2θ2 ρ* n4 - 4θ2 ρ* n3 -(2θ2r + r - 2θ2 ρ* + 1)n2 + 4θ2rn - 2θ2r
= 0  (8)

where r = c1/c2, and ρ* = ρ/(1 - ρ)

Although an explicit solution to (8) is available, the result-
ing expression is complicated and does not provide any
useful insight. The 4th degree polynomial in the left side of

(8) has two imaginary roots, one negative and one admis-
sible (positive) root for n. Table 5 summarize the results
of the optimization procedure where we provide the opti-
mal n for various values of θ, ρ, and r, noting that:

Results
From Table 7, it is apparent that when r = c1/c2 increases,
the required number of replicates per subject (n)
increases, because the cost of making a single observation
(c2) decreases and the cost of recruiting a subject (c1)
increases. When r is fixed, an increase in ρ results in a
decline in the required value of n and accordingly an
increase in k. An increase in θ also results in a decrease in
n. The general conclusion is that it is sensible to decrease
the number of items associated with a higher cost, while
increasing those with lower cost.

We note that by setting c1 = 0 in Equation (8), we obtain

, as in Equation (5). The situa-

tion c1 = 0 is quite plausible, at least approximately if the

major cost is in actually making the observations (e.g.
expensive equipment, cost of interviews versus free volun-
teer subjects). This means that a special cost structure is
implied by the optimal allocation procedure discussed
earlier.

Example 2

To assess the accuracy of Doppler Echocardiography (DE)
in determining aortic valve area (AVA) prospective evalu-
ation on patients with aortic stenosis, an investigator

wishes to demonstrate a high degree of reliability (ρ =
0.80) in estimating AVA using the "velocity integral
method" with a planned value for the WSCV = 0.10. Sup-
pose that the total cost of making the study is fixed at
$1600.0. It is assumed that the overhead fixed cost c0 is

θ̂

θ̂

θ̂

k
C c c

r nopt
opt

=
−
+

( )( )/
.0 2 9

nopt = + −1 1 2 2( )/ρ ρθ

Table 6: Optimal combinations of (nopt, kopt) which minimize the 

variance of  for N = 24.

θ ρ

0.6 0.7 0.8

(nopt, kopt)

0.1 (6.77, 3.54) (5.63, 4.26) (4.54, 5.29)
0.2 (3.89, 6.17) (3.31, 7.24) (2.77, 8.67)
0.3 (2.91, 8.23) (2.54, 9.47) (2.17, 11.05)
0.4 (2.44, 9.82) (2.16, 11.12) (1.88, 12.74)

θ̂

Table 5: Summary analysis of data in Table 2 and 95% confidence 
intervals

Method 95% CI without VST 95% CI with VST

M 0.966 6.5% (0.034, 0.096) (0.043, 0.118)
G 0.999 1.2% (0.006, 0.017) (0.008, 0.021)

ρ̂ θ̂
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absorbed by the hospital. Moreover, we assume that travel
cost is $200.0, and the administrative cost using the DE is

$200.0 per visit. From Table 5, noptfor r = 1, ρ = 0.8, and θ
= 0.10 is 6. From (9), kopt = (1600/15)/(1 + 6) = 15. That

is we need 15 patients, with 6 measurements each to min-

imize var( ) subject to the given cost.

Estimating the WSCV for dichotomous responses
Assumptions

Consider a random sample of k subjects, each is blindly
evaluated n times by the same rater. We assume that all
subject responses yij (where j = 1, 2, ...n) are dichotomous

and are conditionally independent with probabilities P(yij

= 1) = pi (i = 1,2,...,k) and p(yij = 0) = 1 - pi. Thus, for fixed

pi, the conditional distribution of the random variable

 follows binomial distribution with parame-

ters n and pi. To account for the variation of response

probabilities between subjects, as considered by Mak [15],
we assume further that the probabilities pi are independ-

ently and identically distributed as a beta distribution,

Beta (α,β), with mean π = α/(α + β) and variance π (1 -

π)ρ. Given these assumptions, one can show that the cor-

relation between yij and yil is in fact ρ. Define i• = yi•/n

and /(n - 1), , and

. We therefore estimate the WSCV for binary

assessments by:

A case of special interest to clinical epidemiologists is
when n = 2, or a test re-test reliability study involving two
readings per subject. For this case we investigate the sam-
ple size issue in the following section.

Results
The special case n = 2
Under the above set-up, the common correlation model
(CCM) (see Mak [15], Bloch and Kraemer [16]) provides
an appropriate description for the joint distribution of
(Yij, Yil):

P11 = P(Yij = 1,Yil = 1) = π2 + ρπ(1 - π).

P10 = P01 = P(Yij = 1,Yil = 0) = P(Yij = 0,Yil = 1) = (1 - ρ)π(1 -
π).  (10)

P00 = P(Yij = 0,Yil = 0) = (1 - π)2 + ρπ(1 - π).

The data layout can be summarized as in Table 8.

θ̂

y yi ij
j

i = ∑

y

s y yi ij i
j

2 2
= −( )∑ i µ̂ = ∑1

k
yi

i
i

s
k

si
i

2 21= ∑

ˆ / .ν = s y

Table 7: Optimal replications (rounded to the nearest integer) of n that minimize the variance of  subject to cost constraints.

r

0.1 0.5 1 1.5 5 10 20

nopt

0.6 62 72 83 92 142 193 266
0.01 0.7 50 58 66 74 114 155 213

0.8 38 44 52 57 88 118 163
0.6 16 19 21 24 36 49 67

0.04 0.7 13 15 17 19 29 39 54
0.8 10 12 14 15 23 30 42
0.6 7 8 9 10 15 20 28

0.10 0.7 6 7 8 8 12 17 22
0.8 5 5 6 7 10 13 17

θ ρ
0.6 5 6 7 7 11 14 19

0.15 0.7 4 5 5 6 9 11 15
0.8 3 4 4 5 7 9 12
0.6 3 3 4 4 6 8 10

0.30 0.7 3 3 3 4 5 6 9
0.8 2 2 3 3 4 5 8
0.6 3 3 3 3 5 6 8

0.40 0.7 2 2 3 3 4 5 7
0.8 2 2 2 2 3 4 5

θ̂
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where, k = k11 + k01 + k10 + k11.

Since for the ith subject, the mean of two measurements is

µi = (Yi1 + Yi2) when summed up over all subjects we

have:

Therefore, an unbiased estimator of the population mean
π is:

and the MSW, is S2 = (k10 + k01). Hence the sample

coefficient of variation for binary responses is:

Since E( ) = π and E(SD)= π(1 - π)(1 - ρ) we define

 as the population coefficient of

variation for dichotomous outcome with its MLE given by

. The CCM can be re-parameterized by substituting

 for the reliability coefficient ρ. Applying the

delta method, the first order approximation to the vari-

ance of  is shown to be:

var(∂) = k-1 (a1 + a2 + a3),

where a1 = υ2(1 - υ2π)(1 - π + υ2π2)/π,

a2 = (1 - 2πυ2)2(1 - 2π2υ2)/8π2, and

a3 = υ2(1 - 2υ2π)(1 - υ2π).  (12)

We suggest an approximate (1 - α)100% confidence inter-

val as .

Example 3
To illustrate the methodology discussed in this section, we
use data from an investigation of mammography by Pow-
ell et al. [17] concerning the equivalence of film-screen
(FS) and digital images (DI). Two readings were made on
the presence/absence (1/0) of malignancy by each rater
on the same set of k = 58 patients. The data and the results
of the analysis are summarized in Table 9. Both methods
seem to have the same levels of reliability in terms of ICC
and WSCV. We note that the 95% confidence interval is
somewhat relatively wide, and this may be due to the fact
that the sample size is not large enough.

Note that if the observed frequencies in the sample of k
subjects are given as in Table 10, we can write a simpler

estimator of the WSCV as /(n2 + 2n1). To con-

struct an estimate of the confidence interval on υ, the MLE

of ρ,  and  should be substituted in

equation (12) where, from Donner and Eliasziw

[18] .

Sample size estimation
Methods
There has been increasing attention given recently to esti-
mation of sample size using a confidence interval rather
than a significance testing approach (e.g. Gardner and Alt-
man [19]). This is consistent with recent arguments made
by many authors, including Goodman and Berlin [20]
who state that "confidence intervals should play an
important role when setting sample size" and that " the
size of a confidence interval can be predicted in the plan-
ning stages of an experiment and this can be a great help

1
2
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k
k k k k
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∑ = + + +
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2

[( ) ( )]

ˆ [ ],µ = + +1
2

210 01 11k
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ˆ
ˆ( ˆ)

ρ
π π

= −
−

1
2 1
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π̂ = +n n

k
1 22
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Table 10: Data Layout for the CCM

Category Ratings Frequency Probability

1 (1,1) n1 P1(c) = π (1 - υ2π)
2 (1,0) or (0,1) n2 P2(c) = 2π2υ2

3 (0,0) n3 P3(c) = 1 - π - π2υ2

Total k 1

Table 8: Data layout for a 2 × 2 binary classification

1st measurement (Y1)

1 0
2nd Measurement Y2 1 k11 k01

0 k10 k00

Table 9: Data analysis from a mammography study by Powell et 
al. (1999).

Rater k00 k10 + k01 k11 SE( ) 95% C.I.

DI 9 5 44 0.73 26% 0.061 (0.14,0.38)
FS 9 7 42 0.65 31% 0.064 (0.19,0.43)

ρ̂ ν̂ ν̂
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in understanding the implications of different sample size
choices".

For comparative interest we also present sample size
requirements needed to test H0 :υ = υ0, where υ0 is some
hypothesized value of the WSCV υ.

Fixed width confidence interval (CI) on υ
Following the approach described in Section 3.2, the

approximate width of an (1 - α)100% CI on υ is, 2zα/

2{var( )}1/2. An approximate sample size that yields an

(1 - α)100% CI for υ with a desired width w obtains by set-

ting w = 2zα/2{var( )}1/2 and then solving for k:

k = 4 (a1 + a2 + a3 )/w2.  (13)

Hypothesis testing procedure
Donner and Eliasziw (DE) [18] developed the Goodness-
of-fit (GOF) to efficiently construct a confidence interval
and to estimate the sample size required to test a specific
hypothesis on intra-class kappa value. Here we use the
GOF to estimate the sample size needed for ensuring
enrollment of a sufficient number of subjects in a repro-
ducibility study. This follows from the observation that, to
test the null hypothesis, H0 : υ = υ0 then:

has a non-central chi-square distribution with one degree
of freedom under the alternative hypothesis H1 : υ = υ1
with non-centrality parameter

Following DE it can be shown that the sample size needed
to conduct a two-sided test with significance level α and
power 1 - β is:

where z1-α/2 and z1-β are the critical values of the standard
normal distribution corresponding to α and β.

As an example suppose it is of interest to test H0: v = 0.04
versus H1: v = 0.1, where v0 corresponds to high reliability.
To ensure with 80 per sent probability a significant result
at α = 5% and π = 0.30 when v1 = 0.10, we compute the
required number of subjects from the above equation as k
= 986 and when π = 0.50, k = 355. For the sake of compar-

ison to the fixed width CI procedure, suppose it is of inter-
est to construct 95% CI on v with expected width w = 0.10.
If the hypothesized values of v is 0.10 and π = 0.30, then
from (13) k = 1100, and if π = 0.5, then k = 400.

Discussion
The ICC has been traditionally used to assess the reliabil-
ity of a measurement. QS considered the WSCV as an
alternative measure of reproducibility for continuous
scale measurements. It should be emphasized that our
investigation has not allowed for forms of systematic error
(e.g. measurement, or trend that is unaccounted for in the
model). A reviewer of this paper indicated that this is
beyond our scope. In this paper we have dealt with the
issue of sample size estimation of the WSCV from contin-
uous and binary scale measurements focusing on random
measurement error, in the conventional way that reliabil-
ity is usually discussed.

As in any reliability study, a crucial decision that a
researcher faces in the design stage is the determination of
the number of subjects, k and the number of measure-
ments per subject, n. We have discussed two alternative
statistical techniques to determine an optimal allocation.
When we have prior knowledge of what constitutes an
acceptable level of reproducibility, a hypothesis testing
approach may be used. We used this approach in the case
of binary outcome variable, following the GOF approach
proposed by DE. The application of the GOF was straight-
forward because the number of replicates n = 2 was fixed.
However, there are situations, when appropriate values of
the reliability coefficient under the null and alternative
hypotheses may be difficult to specify. An alternative to
hypotheses testing is the efficient allocation of the sample,
and the guidelines provided in this article for the contin-
uous scale measurements allow selection of the pair (n, k)
that maximizes the precision of the estimated coefficient
under cost constrains. We note that cost implications, for
dichotomous assessments, are quite important particu-
larly when n is larger than two, which we intend to report
on in a future paper.

Finally it is noted that in practice, the optimal allocation
must be integer values, and the net loss/gain in precision
as a result of rounding the values the values of (n, k) was
negligible. Ideally one should adopt one of the available
optimization algorithms, often referred to as integer pro-
gramming models. These models are suited for the opti-
mal allocations problems since the main concern was to
find the best solution(s) in a well-defined discrete space.

Conclusion
The WSCV is a useful index measure of measurements reli-
ability. Investigators may design reliability studies using
either efficiency or cost considerations. For continuous
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measurements, optimal allocation of the sample may be
achieved with as few as two replications per subject. For
dichotomous data, when each subject is measured twice,
investigators may use, either fixed length confidence inter-
val, or power considerations is estimating the sample size.
Both methods produce comparable results.
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