BIVIC Medical Research 0)
ME‘thOdOlOgy BioMéd Central

Research article

Copula based prediction models: an application to an aortic
regurgitation study
Pranesh Kumar*12 and Mohamed M Shoukril-3

Address: 'Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh 11211,
Saudi Arabia, 2Department of Mathematics, University of Northern British Columbia, Prince George, BC, Canada and 3Department of
Epidemiology and Biostatistics, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada

Email: Pranesh Kumar* - pkumar@kfshrc.edu.sa; Mohamed M Shoukri - shoukri@kfshrc.edu.sa
* Corresponding author

Published: 16 June 2007 Received: 4 December 2006
: ) Accepted: 16 June 2007

BMC Medical Research Methodology 2007, 7:21  doi:10.1186/1471-2288-7-21

This article is available from: http://www.biomedcentral.com/1471-2288/7/21

© 2007 Kumar and Shoukri; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: An important issue in prediction modeling of multivariate data is the measure of dependence structure.
The use of Pearson's correlation as a dependence measure has several pitfalls and hence application of regression
prediction models based on this correlation may not be an appropriate methodology. As an alternative, a copula based
methodology for prediction modeling and an algorithm to simulate data are proposed.

Methods: The method consists of introducing copulas as an alternative to the correlation coefficient commonly used as
a measure of dependence. An algorithm based on the marginal distributions of random variables is applied to construct
the Archimedean copulas. Monte Carlo simulations are carried out to replicate datasets, estimate prediction model
parameters and validate them using Lin's concordance measure.

Results: We have carried out a correlation-based regression analysis on data from 20 patients aged |7-82 years on pre-
operative and post-operative ejection fractions after surgery and estimated the prediction model: Post-operative ejection
fraction = - 0.0658 + 0.8403 (Pre-operative ejection fraction); p = 0.0008; 95% confidence interval of the slope coefficient
(0.3998, 1.2808). From the exploratory data analysis, it is noted that both the pre-operative and post-operative ejection
fractions measurements have slight departures from symmetry and are skewed to the left. It is also noted that the
measurements tend to be widely spread and have shorter tails compared to normal distribution. Therefore predictions
made from the correlation-based model corresponding to the pre-operative ejection fraction measurements in the lower
range may not be accurate. Further it is found that the best approximated marginal distributions of pre-operative and
post-operative ejection fractions (using q-q plots) are gamma distributions. The copula based prediction model is
estimated as: Post -operative ejection fraction = - 0.0933 + 0.8907 x (Pre-operative ejection fraction); p = 0.00008 ; 95%
confidence interval for slope coefficient (0.4810, 1.3003). For both models differences in the predicted post-operative
ejection fractions in the lower range of pre-operative ejection measurements are considerably different and prediction
errors due to copula model are smaller. To validate the copula methodology we have re-sampled with replacement fifty
independent bootstrap samples and have estimated concordance statistics 0.7722 (p = 0.0224) for the copula model and
0.7237 (p = 0.0604) for the correlation model. The predicted and observed measurements are concordant for both
models. The estimates of accuracy components are 0.9233 and 0.8654 for copula and correlation models respectively.

Conclusion: Copula-based prediction modeling is demonstrated to be an appropriate alternative to the conventional
correlation-based prediction modeling since the correlation-based prediction models are not appropriate to model the
dependence in populations with asymmetrical tails. Proposed copula-based prediction model has been validated using the
independent bootstrap samples.
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Background

Researchers, clinicians, and scientists are increasingly
interested in the statistical models that have been
designed to predict the occurrence of endpoint events
given the diagnostic risk factors. The number and sophis-
tication of cancer risk prediction models have grown rap-
idly over recent years and some researchers have expressed
concerns as to whether they are always appropriately
applied, correctly developed and rigorously evaluated. In
2004 the National Institutes of Health sponsored a work-
shop on Cancer Risk Prediction Models: a Workshop on
Development, Evaluation, and Application in Washington
D.C., USA. Experts associated with developing, evaluat-
ing, or using risk prediction models met to identify the
strengths and limitations of cancer and genetic suscepti-
bility prediction models currently in use and under devel-
opment, in order to explore the methodological issues
related to their development, evaluation and validation
and also to identify the research priorities and resources
needed to advance the field [1].

In this paper, a basic methodological issue of including
the dependence parameter in the prediction model is con-
sidered. Pearson's linear correlation coefficient known as
correlation is widely applied as a linear dependence meas-
ure. However, the correlation has several drawbacks and
has a major impact on the accuracy of prediction models
[2]. Correlation does not provide a complete description
of the dependence structure even when there is a straight-
line relationship between two random variables. Rather
correlation is the canonical measure of the stochastic
dependence used with normal (elliptical) distributions
and is strongly affected by extreme endpoints. Independ-
ence of two random variables implies that they are uncor-
related but zero correlation, in general, does not imply
independence unless distributions are multivariate nor-
mal. Furthermore, correlation is not invariant under non-
linear strictly increasing transformations of random varia-
bles. Nonparametric measures of association like Kend-
all's rank correlation, Spearman's rank correlation and c-
statistic are alternate measures of dependence which are
more robust [3]. The kappa statistic is often used to meas-
ure the level of agreement when two categorical measure-
ments of the same subjects are available. For an excellent
review of dependence measures and their desirable prop-
erties, we refer to [2-4].

An alternative dependence measure is a copula which
overcomes the limitations of correlation as a measure of
dependence [5-8]. Use of copulas is a relatively new con-
cept and has been applied in survival data analysis and
actuaries [9,10]. Copulas are functions that join or couple
multivariate distribution functions to their one-dimen-
sional marginal distribution functions. Advantages of
using copulas in modeling are (i) allowance to model
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both linear and non-linear dependence, (ii) arbitrary
choice of a marginal distribution and (iii) capable of
modeling extreme endpoints.

This paper describes the copula-based prediction mode-
ling which can be employed as an alternative to the con-
ventional correlation-based modeling in any multivariate
clinical applications including risk-prediction. Implemen-
tation of copula based prediction approach is illustrated
by analyzing data from patients with aortic regurgitation
and corrective surgery [11].

Methods

Study example

The study example is adapted from an investigation [11]
which enrolled 20 patients for isolated aortic regurgita-
tion both before and after surgery and 20 patients for iso-
lated mitral regurgitation. To correct the malfunctioning
of the aortic valve, open heart surgery was performed and
an artificial valve was sewn into the heart. Data collected
were on patient's age, gender, NYHA class (amount of
impairment in daily activities), heart rate (beats/minute),
systolic blood pressure (mmHG), ejection fraction (frac-
tion of blood in the left ventricle pumped out during a
beat), EDVI-volume (ml/m2) of the left ventricle after the
heart relaxes adjusted for body surface area (BSA), SVI-
volume (ml/m2) of the left ventricle after the blood is
pumped out adjusted for BSA, ESVI- volume (ml/m?2) of
the left ventricle pumped out during one cycle adjusted
for BSA; ESVI=EDVI-SVI. These measurements were taken
before and after valve replacement surgery. The patients
were selected to have left ventricular volume overload, i.
e., expanded EDVI. For the purpose of illustration, we
have used data on post-operative ejection fraction and
pre-operative ejection fraction from 20 patients with aor-
tic regurgitation.

What are copulas?

We denote the cumulative probability distribution of pre-
operative ejection fraction (X) and post-operative ejection
fraction (Y) by H(x, y) and marginal distributions of X and
Y by F(x) and G(y) respectively. For uniform random var-
iables U and V defined on [0,1] (by applying probability
transforms U = F(X) and V = G(Y) to X and Y), there exists
a bivariate copula function C(u, v) such that:

H(x, y) =Pr[X <x, Y<y] = C[F(x, G(y)] = C(u, v).
(1)

It is shown [2-4] that correlation r is only a limited
description of the dependence between random variables
except for the multivariate normal distribution where the
correlation fully describes the dependence structure. If
F(x) and G(y) are continuous then C(u, v) is unique oth-
erwise C(u, v) is uniquely determined on range of F(x) x
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range of G(y). Since copulas link univariate marginals to
their full multivariate distribution, an important feature
of copulas is that any choice of marginal distributions can
be used. Copulas are constructed on the assumption that
marginal distributions are known or estimated from the
data.

The two standard non-parametric dependence measures
expressed in copula form are:

Kendall's Tau: 7= 4” C(u,v)dC(u,v) -1 2)
12

Spearman’s Rho: p = 12J.J‘ C(u,v)dudv -3 (3)
12

The dependence measures 7 and p calculated from the
application data are used to estimate the copula parame-
ter. It may be noted that the Pearson's correlation r cannot
be expressed in copula form.

A special class of copulas known as Archimedean copulas
[12] is defined by C(u, v) = ¢! [# (u) + ¢ (v)] forall u, v €
[0,1], where ¢ (1) is a generator function such that for all ¢
€(0,1) ¢ (1)=0¢'(t) <0, ie., ¢(t)is a decreasing func-
tionof tand ¢ "(t) 2 0, i.e., ¢ (¢) is convex. One-parameter
families of the Archimedean copulas with their generator
functions are tabulated by Nelson [[6], p. 94].

From the copulas perspective multi-normal distribution
has normal marginals and Gaussian (normal) copula
dependence. Non-Gaussian copulas such as t and
Archimedean can be used as an underlying dependence
structure with any other non-normal marginals. Thus cop-
ulas provide flexibility in modeling datasets. Some exam-
ples of bivariate Archimedean copulas are given in Table 1.

Sample versions of measures of dependence can be
expressed in terms of empirical copula and corresponding
empirical copula frequency function [6].

Definition. Given (x;, y;), i = 1, ...n, a sample of size n from a
bivariate distribution, the empirical copula is C(—,i) =
nn

[Number of pairs (x, y) in the sample such that x < xand y <
Yl /n where x; and y (), 1 <1, j < n, denote order statistics

from the sample. The empirical copula frequency function is
given by c(i,i) _1 2 if (X(iy, ¥(5)) is an element of the sample;
nn o n

Otherwise zero.
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Simulation of bivariate Archimedean copulas

The following algorithm generates random variables (U,
V) whose joint distribution is an Archimedean copula C(u,
v) with generator function ¢ (t).

1. Generate two independent uniform random variables p
and ¢ on the interval [0,1].

2. Set t = K-1(g) where K, is a copula function C(u, v).
3.Setu=g¢g'[p-g()]andv=¢g'[(1-p) ¢ (1)].
4. Letx = Fl(u) and y = F1(v).

5. Repeat n times steps 1 through 4 to generate n pairs of
data (x; ;),i=1,..., n.

For implementing the algorithm, we perform the follow-
ing steps [13]:

A. Kendall's rank correlation 7z by the formula:
aY!
r=[2J Y sign[ (i -x)i-v) ] (@)
i<j
B. Copula parameter & from 7.
C. Generator function ¢ (t).
D. First derivative of the generator function, ¢ '(t).

E. Inverse of the generator function, ¢(t).

o)
o'(1)

F. Copula function C(u,v)=K¢(t)=t-

G. Inverse of copula function K 1(¢) In case no close form
exists, solution is obtained by numerical root finding

through the equation |:t - (p,(t) :| -q.
0]

Hou=¢'p-¢()]andv=g¢'[(1-p) ¢ ()]

For ready reference algorithm implementation steps for
some commonly applied Archimedean copulas are worked
out and are given in Table 2.

Evaluating copulas

The first step in modeling and simulation is to identify the
appropriate copula form. To identify the most appropriate
copula for the given application data set (x; y;), i = 1,...1,
we follow the procedure [3,7]:
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Table I: Bivariate Archimedean copulas, generator functions and Kendall's .

Copula Generator ¢ (t) C(u, v) Kendall 7
Product (Independent) -Int uv 0
Clayton (t2-1/6, 6 € [-1,0)\{0} (uf+ vOo-1)Ve a1(6+2)
Gumbel (-Int)8, 6 € [I, ) Exp [-{(-In u)?+ (-In v)?}110] @-1)/0
Frank

-6 —ud -0 4 *

1 — — _
~In¢ ,0€eR J]n 1+(e 1)(e 11-—[1-Dy(6)]
-9 - 0
e -1 -1
L
* Dy(x) is the Debye function for any positive integer k, given by Dy, (x) = —k j t.
0Oe —1

1. Calculate the non-parametric Kendall's rank correlation
rusing the formula in equation (4).

2. Construct an empirical copula function Kg(t) as fol-
lows:

i. Determine the pseudo observations T; = {Number of(x;
<x;) such thatx;< x;and y;<y;}/(n-1).

ii. The empirical copula K(t) = proportion of T's <t, 0 <t
<1

In non-mathematical terms, it means that for all pairs of
subjects in which the Y-value for a given subject is lower

(or higher) than the Y-value of a second subject, for what

Table 2: Algorithm steps for the Archimedean copulas.

proportion of X-values does the first subject also have a
lower (or higher) value?

3. Construct the Archimedean copula function
t

Ke(y=t- 2.
40

In order to select the Archimedean copula that best fits the
application data, we use a probability - plot or choose
that copula which minimizes the non-parametric distance
measure DM: [ [K(t) - Ky(t)]2dK(t). For simulating bivar-
iate Archimedean copulas, we refer to [14].

Step Clayton Gumbel Frank
B: ¢ 27/(1-7) 1/(1-7) No closed form
C:(t) t0-1)/6 (-In t)?¢
—t6
-1
T:=-In¢ 7
e’ —1
D:g'(t) -Gt¢! -AIn 1)/t a/(1-et9)
E:g-'(t) (I +¢y1e exp((-)/9)
ln( l—et4et? )
- 0
F:K, t- ((t"0-1)/6) t-(tin t/6)
0
(e - 1) o0 _q
t— In
0 e ¥ 1
G:K-lc No closed form No closed form No closed form

(1+p-(t“9 —1))_1/6

(1+a-p)-(* -1)"

exp(—(p-(—lm)@)l/") —ln(l—e_pT +e P10 )/

exp(—{(1-p)- (-Int)f’ }1? )| ~In(1-e T 4 o (PIT=¢
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Table 3: Data from patients with aortic regurgitation.
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Case Age(years) Sex NYHA Class Pre-operative Ejection Post-operative Ejection
Fraction Fraction
| 33M | 0.54 0.38
2 36 M | 0.64 0.58
3 37M | 0.50 0.27
4 38M | 0.41 0.17
5 38M | 0.53 0.47
6 54 M [ 0.56 0.50
7 56 F | 0.8l 0.56
8 70M | 0.67 0.59
9 2M Il 0.57 0.33
10 28 F Il 0.58 0.32
I 40 M Il 0.62 0.47
12 48 F Il 0.36 0.24
13 42F n 0.64 0.63
14 57M n 0.60 0.33
15 6l M n 0.56 0.34
16 64 M 11l 0.60 0.30
17 6l M [\ 0.55 0.62
18 62M v 0.56 0.29
19 64 M v 0.39 0.26
20 65M v 0.29 0.26
Mean 49 0.5490 0.3955
Standard Deviation 14 0.1173 0.1436
Gamma Distribution Shape 21.8920 7.5870
Scale 39.8770 19.1850

Further it may be worth exploring the connections of cop-
ulas to other non-parametric association statistics like c-
statistic which are defined in terms of the concordant (C)
and discordant (D) pairs. One such relationship is easily
seen to exist between the Gumbel copula parameter and
the concordant and discordant pairs. The Kendall's rank
correlation 7zin terms of (C, D) pairs is 7= 2(C-D)/n(n-1)
and the Gumbel copula parameter & and Kendall's rank
correlation are related by 7= (6-1)/6. Thus it is easily seen

Validating the prediction model

_2(C-D)

that 6 =| 1
n(n—1)

To validate a prediction model, joint assessment of preci-
sion and accuracy is required. In [15], Lin proposed the

concordance correlation coefficient py; to evaluate the

agreement (reproducibility) between two sets of observed
(v) and predicted (y) data. The concordance correlation
Py s defined as:

Py =20y /[0'5,2 +cr§,2 +(py — ,u};)z], (5)

where z4,and y;, are means of (y) and (y), o,?and G}A,z
denote variances of (y) and (¥ ) and Oy is the population

covariance between (y) and (y ). The concordance corre-

lation Py is a product of precision T (correlation

between Y and Y ) and accuracy ¥,; , where accuracy

2 2 2
Yo 26},(7);/[6}, +oy +(uy — 1y) :|

(6)

The estimation of concordance correlation p; and its

asymptotic sampling distribution are discussed in Lin
[15].

Results

Application

The measurements on pre-operative and post-operative
ejection fraction from 20 patients with aortic regurgitation
including their ages are given in Table 3. The exploratory
data analysis indicates that both the pre-operative and
post-operative ejection fractions: (i) have slight depar-
tures from symmetry, (ii) are skewed in left tails (skewness
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Pre-Operative EF
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Post-Operative EF
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0.2 —
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0.0 0.2 04 06 0.8

Figure |
Quantile Plots of pre-operative and post-operative ejection
fractions.

coefficients being -0.3340 and 0.3730, respectively), (iii)
have tendency of measurements to cluster less and (iv)
have shorter tails (kurtosis coefficients being 0.9680 and -
1.2540, respectively). Since both the pre-operative and
post-operative measurements show deviations from nor-
mal distributions, probability plots for normal, gamma
and Weibull distributions were fitted. From the plots,
gamma distributions are found to be the best fit since data
points clustered mostly around a straight line for the
gamma fit. Estimates of parameters of marginal distribu-
tions of pre-operative and post-operative measurements
are given in Table 3. Probability plots are graphed in Fig-
ure 1 and estimated marginal distributions are given in
Figure 2.
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= 24
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0
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15 t20'892e 1/0.02508

Pre-operative Ejection Fraction: f(¢) (3.0017 @0 ™) t 0.
Post-operative Ejection Fraction: f(¢) (2.4429 1]106 )t6’587e 1/0.0521241 ,t
Figure 2

Marginal distributions of pre-operative and post-operative
ejection fractions.

There is an evidence of significant association between the
pre-operative and post-operative ejection fractions since
the Pearson's correlation coefficient r = 0.6870 (p <
0.0010), Kendall's rank correlation t© = 0.5050 (p <
0.0020) and Spearman's rank correlation p = 0.6970 (p <
0.0010).

For predicting the post-operative ejection fraction of a
patient after surgery given pre-operative ejection fraction
measurement, we have estimated the conventional pre-
diction regression model using correlation coefficient:

Post-operative ejection fractioncorrelation = .0,0658 +
0.8403 x (Pre-operative ejection fraction); p = 0.0008;
95% confidence interval: (0.3998, 1.2808).

The p-value indicates that the estimated model is useful in
predicting the post-operative ejection fraction of a patient
given the pre-operative ejection fraction. However, predic-
tions made in the lower range of pre-operative ejection
fractions may not be accurate because of the skewness
exhibited by data in the left tail. As an alternative a copula-
based prediction model is discussed below.

Simulation study

Three copulas of the Archimedean family namely Gum-
bel, Clayton, Frank and an empirical copula [16-19] are
estimated from the aortic regurgitation patients' data.
These copulas are shown in Figure 3. Values of the non-
parametric distance measure DM: | [K(t) - Ky(t)]2dK(t)
for the Gumbel, Clayton and Frank copulas are 0.1440,
0.1580 and 0.1500 respectively. Thus, Gumbel copula is
the best fit to model the given data. Monte Carlo simula-
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Table 4: Estimated prediction models and 95% confidence intervals.
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Intercept Slope (b) Standard Error (b) 95% Lower 95% Upper Confidence
Confidence Confidence Interval Width
Interval Interval
Correlation model -0.0658 0.8403 0.2097 0.3998 1.2808 0.8810
Gumbel model
simulations
50 -0.0768 0.8560 0.1913 0.4541 1.2579 0.8038
100 -0.0996 0.8974 0.1918 0.4945 1.3002 0.8057
150 -0.0938 0.8886 0.1914 0.4866 1.2907 0.8041
200 -0.0908 0.8855 0.1925 0.4812 1.2898 0.8087
250 -0.0965 0.8963 0.1931 0.4906 1.3020 08114
300 -0.0933 0.8907 0.1950 0.4810 1.3003 0.8193

tions are performed to replicate datasets 50, 100, 150,
200, 250 and 300 times by implementing the algorithm
to simulate bivariate data from the Gumbel copula.

The estimated prediction model and 95% confidence
intervals are given in Table 4. The prediction regression
model for the post-operative ejection fraction using Gum-
bel copula and based on 300 simulations is:

Post-operative ejection fractioncpula=-0.0933 + 0.8907 x
(Pre-operative ejection fraction); p = 0.00008; 95% confi-
dence interval: (0.4810, 1.3003).

Since patient's age may be an important risk factor, we
have included age as another predictor in the model. The
estimated parameters of the age-adjusted copula based
model and correlation based models are summarized in
Table 5. Both prediction models indicate highly signifi-
cant predictive power (R-values are 0.7010 and 0.7650 for
correlation and copula based models respectively). The

1.0

—e— Empirical —s— Gumbel
0.9 4 Clayton Frank

0.8 A
0.7 A

0.6 A
05 A

04 H ‘/;/
0.3 A
o—o/:/+

0.2 A

C(u,u)

0.1 A

Gumbel | Clayton | Frank
J.[Kc(t)_KE(t)]szﬂ(t) 0.144 | 0.158 | 0.150

Figure 3
Which copula fits the best?.

regression coefficient of age in both models is not signifi-
cant (p-values being 0.2120 for correlation model and
0.2610 for copula model).

For comparison, predicted values of the post-operative
ejection fractions from both copula and correlation based
prediction models and actual data are shown in Figure 4.
The percent absolute prediction errors for the lower pre-
operative ejection fractions from the copula and correla-
tion methods are given in Table 6. It is clear from Table 6
that prediction errors due to the copula method are
smaller than those based on the correlation method. It is
therefore demonstrated that the copula is a more appro-
priate dependence measure capable of modeling asym-
metrical tails whereas correlation is not appropriate to
model skewed data.

Further, it may be noted that estimates, standard errors
and width  of confidence intervals from
50,100,150,200,250 and 300 copula simulations in Table
4 are very close. Thus, the proposed copula based predic-
tion method does not require a large number of simula-
tions to attain consistent estimates.

Validation using bootstrap independent data set

To validate the prediction model we were unable to
obtain an independent dataset from the same population.
Alternatively we have simulated fifty independent data-
sets by sampling with replacement from our dataset
(bootstrap method). Such an approach is recommended
for simulating independent datasets for methodological
validation while analyzing small datasets. We found pre-

cision coefficient 1, to be 0.8363 (p <0.0001) indicating

that the observed and predicted measurements have a
strong association. The estimate of concordance statistic

pyy is 0.7722 (p = 0.0224) for the copula model and

0.7237 (p = 0.0604) for the correlation model. The pre-
dictions and observed measurements are therefore con-
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Table 5: Estimated prediction model adjusted for age and 95% confidence intervals.

Correlation model

Gumbel model

Intercept

Slope coefficient of age (B,) (p-value)

Slope coefficient of pre-operative EF (Bg) (p-
value)

-0.1210
0.0010 (0.4230)
0.8400 (0.0010)

-0.1300
0.0010 (0.5220)
0.8550 (0.0010)

95% Lower confidence Interval for B, -0.0020 -0.0020
95% Upper confidence for B, 0.0040 0.0030
95% Lower confidence for Bg 0.3940 0.4160
95% Upper confidence for Bg 1.2870 1.2940
R 0.7010 0.7650

cordant for both models. The estimates of accuracy
coefficient 7y are 0.9233 and 0.8654 for copula and cor-

relation models respectively.

Discussion

It is documented [2-4] that in prediction models the Pear-
son's linear correlation coefficient is not a complete and
accurate description of dependence structure between
dependent and predictor variables even when there exists
a straight-line relationship between them. An alternative
method is to model the dependence structure using copu-
las which overcomes the limitations of correlation. Copu-
las are functions that join multivariate distribution
functions to their one-dimensional marginal distribution
functions. Copulas allow modeling of both linear and
non-linear dependence. Through copulas any choice of
marginal distribution functions can be used and extreme
endpoint distributions can be modeled.

The copula-based approach to prediction modeling in
clinical research methodology is described and is illus-
trated by estimating the prediction model for post-opera-
tive ejection fraction given the pre-operative ejection
measurements from an aortic regurgitation patients study.
The approach provides flexibility in modeling and simu-
lating datasets because many families of copulas are
known to exist in the literature. It may be noted that cop-
ula based methodology is general, since it is applicable to
model data with discrete, continuous and dichotomous
outcomes. However a note of caution is about the evalua-
tion of the method based on a small data set. A more rig-

orous validation should be based on an independent
sample taken from the population.

There appears to be connections of copulas to other non-
parametric association statistics like c-statistic which are
defined in terms of concordant (C) and discordant (D)
pairs. One such relationship between the Gumbel copula
parameter and concordant-discordant pairs is shown to
exist.

Conclusion

We emphasize that the commonly used Pearson's linear
correlation coefficient is not a complete description of
dependence structure even when there is a straight-line
relationship between two random variables. An alterna-
tive copula-based methodology for prediction models in
clinical research is described. The proposed copula-based
model is capable of modeling the behavior of skewed data
whereas correlation model is not appropriate for asym-
metrical tails. The main statistical advantage of copulas is
in replicating datasets through simulation with any type
of marginal distributions.
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Table 6: Percent absolute prediction errors in the lower tail from copula and correlation models.

Pre-operative Ejection Fraction

% Absolute prediction errors (correlation

% Absolute prediction errors (copula model)

model)
0.36 1.83 1.26
0.39 2.13 0.59
0.41 12.66 10.19
0.50 9.54 8.21
0.54 1.60 0.77
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Predicted post-operative ejection fractions based on the cop-
ula- and correlation- based prediction models.
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