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Abstract
Background: This study compares the Bayesian and frequentist (non-Bayesian) approaches in the
modelling of the association between the risk of preterm birth and maternal proximity to
hazardous waste and pollution from the Sydney Tar Pond site in Nova Scotia, Canada.

Methods: The data includes 1604 observed cases of preterm birth out of a total population of
17559 at risk of preterm birth from 144 enumeration districts in the Cape Breton Regional
Municipality. Other covariates include the distance from the Tar Pond; the rate of unemployment
to population; the proportion of persons who are separated, divorced or widowed; the proportion
of persons who have no high school diploma; the proportion of persons living alone; the proportion
of single parent families and average income. Bayesian hierarchical Poisson regression, quasi-
likelihood Poisson regression and weighted linear regression models were fitted to the data.

Results: The results of the analyses were compared together with their limitations.

Conclusion: The results of the weighted linear regression and the quasi-likelihood Poisson
regression agrees with the result from the Bayesian hierarchical modelling which incorporates the
spatial effects.

Background
Public awareness about potential environmental hazards
has continued to grow in recent years. This concern has
led to an increased demand for public health authorities
and researchers to investigate potential clustering of dis-
eases around putative sources of hazards [1-10]. Evidence
of significant association between maternal proximity to
hazardous waste sites and risk of low birth-weight and
congenital anomalies has been reported in some studies

[4-9,9-12], but other studies have reported otherwise
[1,3,6,13-15]. Some studies have also shown that women
exposed to PCB are at increased risk of giving birth to
infants with low birth weight [16,17].

An assessment of the effect of human exposure to particu-
lar substances can be complex because multiple chemicals
are usually involved so it may be difficult to discern the
specific agent responsible for a particular health concern
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[16-19]. Furthermore, extraneous factors, like cultural and
socioeconomic, may confound the effect of direct expo-
sure to a waste site [16-24]. Within the boundaries of
these limitations, the theory of spatial modelling and its
applications to waste landfills and risk of adverse health
have been developed and extensively discussed [25-29].
Regression analysis is one of the most widely used meth-
ods in the modelling of disease risk associated with prox-
imity to a point source [25]. The parameters of the
regression model can be estimated using the Bayesian or
the frequentist approaches with spatial data assumed to
be available at the individual case level or as spatially
aggregated counts in enumeration districts (ED) [25-27].

In this paper, we focus on the comparison of the Bayesian
and frequentist regression methods for aggregated counts.
Specifically, we compare the Bayesian hierarchical Pois-
son regression, quasi-likelihood Poisson regression and
weighted linear regression modelling approaches in
answering the following two questions: 1) Is maternal
proximity to hazardous waste and pollution from the Syd-
ney Tar Pond sites associated with increased risk of pre-
term birth? 2) How much of the variation in preterm birth
can be explained by socioeconomic inequalities across the
study region?

Methods
In the following subsections we provide a description of
the study site, the data used for analyses and the theoreti-
cal framework of methods used to analyse the data.

Tar Pond site in Sydney
The history of the Tar Pond site in Sydney, Nova Scotia,
and the health consequences are well documented [2,30].
The Tar Pond is a tidal estuary of 33 hectares in the Cape
Breton regional municipality of Nova Scotia, Canada. This
site, considered to be the most toxic site in Canada, is a
result of over 100 years of steel manufacturing and other
allied industries in the area. The byproducts from these
industries include BTEX (benzene, toluene, ethylbenzene,
and xylene), PAH (polycyclic aromatic hydrocarbons),
PCB (polychlorinated biphenyl) and particulate laden
with toxic metals, such as arsenic, lead and other heavy
metals. This has led to the contamination of soil and other
sources of natural water in the surrounding areas.

Data description
Cape Breton regional municipality is made up of 158 enu-
meration districts but aggregated counts of preterm birth
were available from only 144 enumeration districts in the
municipality. There were 1604 observed cases of preterm
birth out of a total population of 17559 at risk of preterm
birth. Other variables include the distance from the Tar
Pond (d) and the following area-specific covariates; the
proportion of persons who are separated, divorced or wid-

owed (x2); the proportion of persons who have no high
school diploma (x3); the proportion of people living
alone (x4); the proportion of single parent families (x5)
and average income (x6). The covariates were selected
based on the Pampalon and Raymond index [21] for
health and welfare planning in Quebec. All area-specific
covariates were extracted from the 1996 Canadian census
data.

Some theoretical background and context
Let Yi denote the number of observed cases of preterm
birth, and Ni the population at risk in each enumeration
district (ED). The expected counts (Ei) for each ED was cal-
culated by multiplying Ni by the the Canada preterm birth
rate of 7.1 per 100 live births in 1996 (source: Population
and Public Health Branch, Health Canada). This rate is
assumed fixed for 1996 and may have been calculated by
including data from the Cape Breton regional municipal-
ity, but we will assume that the effect of this can be
ignored. Hence, Ei is the expected number of preterm birth
from all other sources of risk other than pollution from
the Sydney Tar Pond. Preterm births only occur in females
within the child-bearing age and the condition is not
infectious. Hence, it is reasonable to assume that each case
occurred independently. We also assumed that the risk is
constant in each ED, so that

Yi|λi ~ Poisson (Eiλi) i = 1,..., n, (1)

where λi denotes the relative risk of preterm birth for each
ED compared to the whole country [31]. The maximum
likelihood estimator of λi is the unadjusted standardized
incidence ratio (SIR), the ratio of observed to expected
within each ED [27,32]. We use a regression approach to
adjust the crude SIR to improve its stability where the pop-
ulation at risk may be small [27,29,32,33].

Based on the work of Morris and Wakefield [27], we
define the null hypothesis that proximity to source does
not influence risk by

H0 : λi = η for i = 1,..., n.

Now suppose (x0, y0) denotes the centroid of the Tar
pond, (xi, yi) the centroid of each ED and di the distance
between the two centroid. In the absence of an exposure
measure that may be attached to each ED, Morris and
Wakefield [27] define a natural additive distance/risk
model by

λi = η {1 + f(di; θ)}

where η is the background relative risk and f(di; θ) is a
function of distance, such that f (di; θ) → 0 as di → ∞. We
will use a reparameterization of the form
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λi = η g(di; θ) (2)

so that this model will be consistent with Bithell [34].
With this reparameterization, g(di; θ) → 1 as di → ∞.
Bithell [34] proposed the following distance functions as
suitable forms for g(di).

g1(di) = exp(α/di) (3)

g2(di) = 1 + ξ exp(-di/β) (4)

g3(di) = 1 + ξ exp(-(di/γ)2) (5)

g4(di) = 1 + ξ/(1 + di/δ) (6)

where α, β, γ, and δ represent decay rates. For g2(di), g3(di)
and g4(di), 1 + ξ is a measure of the ratio of relative risk at
source to that at infinity. Other variants of the Bithell
functions have also been proposed [35]. For simplicity,
and following Datta et al. [32] and Bithell [34], we have
chosen

g(di; θ) = g1 (di; θ) = exp(α/di).

We incorporated the area-level covariates (zi) and a meas-
ure of the spread of the risk from the Tar pond through a
generalized linear model of the form

where αo = log η. Hence, η = exp(αo) is a measure of the
overall inflation of risk in the region under study, α repre-
sents the decay rate and ϕ is a vector of parameters of the
area-specific covariates. One of the problems associated
with the use of equation (7) is overdispersion (heteroge-
neity or spatial dependency) [36]. In the frequentist
framework, we have assessed spatial autocorrelation by
using any of the Moran's I statistics [37]. Other alterna-
tives include Geary's C statistic [38] and non-parametric
rank-based method [39]. The Bayesian approach is dis-
cussed in the next section.

Bayesian hierarchical modelling
To model the data while accommodating the expected
heterogeneity and also including the spatial components
(location or relative position of data values) of the data,
Bayesian hierarchical modelling [33,40,41] was used. The
implementation of this modelling was done with WIN-
BUGS and GeoBugs software [42] for modelling aggre-
gated data with plots and convergence diagnostic tests
done using the coda package in R [43]. The mean or
median of the posterior distribution is used as a point esti-

mate of disease risk for each area. The modelling is
explained in the following three stages:

First-stage: model
We incorporated two measures of overdispersion, so that
equation (7) becomes

where Vi are unstructured random effects included in the
model to capture the effects of unknown or unmeasured
area level covariates. Hence, exp(Vi) will be equal to the
residual or unexplained relative risk in each ED after
adjusting for known area-specific covariates. We have
included Ui in the model to capture our belief that the
unstructured random effects (Vi) may exhibit some spatial
structure.

Second-stage: overdispersion modelling
We assume that the unstructured random effects which is
a measure of heterogeneity is of the form

where  is a measure of the between-area variability of

the Vi. Next, we specify the spatial random effect to model

the anticipated spatial dependence of the log of relative
risk. For a detailed review on the modelling of the spatial
variability see Wakefield et al. [26,41].

We specified the Markov random field (MRF) model
using the intrinsic conditional autoregressive (CAR) pro-
posed by Besag et al. [40]. We define ED i and j as neigh-
bours if they share a common boundary [31,40,41]. We
also define the spatial weights {Wij : i = 1,..., n} as a binary

contiguity matrix in which Wij = 1 for neighbours and Wij

= 0 otherwise. Furthermore, Wii = 0 and the constraint

 is imposed for identifiability.

Third-stage: prior distributions

At this stage all the parameters (αo, α, ϕ,  and )

of the model are assigned a prior distribution. αo was

assigned a flat prior which corresponds to a uniform dis-

tribution over the whole real line. α, and ϕiwere assigned

a normal (0, 105). The choice of prior for  and 

is a very challenging one and it has to be done carefully.
Many authors have favoured the use of gamma (a, b) for
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both  and  because it is a conjugate prior in the

normal model but the choice of a and b is what they have
not agreed on [31-33,36,40,41]. In our case, we have

assigned gamma (0.1, 0.1) to both  and  and

carry out sensitivity analysis with all the priors given in
[31-33,36,40,41].

The models were fitted using Markov Chain Monte Carlo
(MCMC) simulation method [44]. Five separate chains
starting from different initial values were run for each
model. Convergence was assessed by visual examination
of time series plots for each parameter and by carrying out
the Gelman and Rubin diagnostic test [45] based on the
ratio of between to within chain variances for each model.
The time series plots with all the five chains superimposed
were examined to see whether the chains were mixing
well. Goodness of fit was examined using the Deviance
Information Criterion (DIC) [46] which consists of two
terms, one is a measure of goodness of fit and the other is
a penalty for increasing model complexity so that smaller
values of DIC indicate a better-fitting model.

We defined a quantity ψ = σu/(σu + σv) as a measure of the
relative contribution of Ui and Vi to the total overdisper-
sion [33]. So that as ψ → 1, spatial variation dominates,
while as ψ → 0, spatial variation becomes negligible.

Poisson regression
For Yi ~ Poisson(µi), where µi = λiEi (i = 1,..., n), we assume
the generalized linear model [47]. Four models were fitted
for the log relative risk (log λi = log µi - log Ei) in terms of
a constant, area-level covariates and the reciprocal of dis-
tance. The fitted models are:

log λi = αo (9)

log λi = αo + α/di (10)

log λi = αo + ϕ1x1 + ϕ2x2 + ϕ3x3 + ϕ4x4 + ϕ5x5 (11)

log λi = αo + α/di + ϕ1x1 + ϕ2x2 + ϕ3x3 + ϕ4x4 + ϕ5x5

(12)

No random effects or spatial effects was included. In each
of the fitted models, log Ei is used as an offset to account
for variations in λi over the study region. The models were
fitted using the quasi-likelihood approach to account for
the overdispersion that might occur in the data set. The
dispersion parameter, κ, was estimated by the mean of the
Pearson χ2 statistic.

Weighted linear regression

A weighted regression approach was carried out to
account for the dispersion that might result from the vio-
lation of the constant variance assumption in the least
squares approach. The last three models (equations 10, 11
and 12) were fitted using weighted least square regression

by replacing λi with the SIR (  = Yi/Ei). The weights (wi)

were set equal to  so that the error sum of

squares (Q) of the weighted linear regression can be writ-
ten as

Here, we have not included the spatial component of the
model because we have seen that the SIR does not exhibit
spatial dependency during our exploratory data analysis.

Results
In the following subsections, we explain the results of the
exploratory data analysis and modelling.

Exploratory data analysis
Plot of unadjusted standardized incidence ratios (SIR)
against distance in km from the Tar Pond is shown in Fig-
ure 1. From the plots, areas with SIR less than 1 indicate
no risk or absolute risk reduction while SIR greater than 1
indicate high risk of preterm birth compared to the rest of
Canada. All the high values of SIR occurred within the 20
km distance from the Tar Pond. There is some evidence of
decrease in risk from source as we move further away but
this will be tested statistically in the next sections. How-
ever, as explained earlier, care has to be taken when inter-
preting the crude SIR. To illustrate this, we plotted the SIR
against the population at risk (see Figure 2). This graph
clearly shows that areas with low population at risk tend
to show high variability in SIR. We accounted for this by
using the Poisson model regression for aggregated data.

Area-specific risk
Following Pampalon and Raymond [21], the following
area-specific variables were considered for the analysis:
the proportion of persons who have no high school
diploma, the rate of unemployment, average income, the
proportion of persons who are separated, divorced or wid-
owed, the proportion of single parent families and the
proportion of people living alone.

Only five of the variables are available at all the 144 EDs
with average income available only in 130 EDs. Hence, we
could not compute an adequate measure of deprivation
based on the method proposed by Pampalon and Ray-
mond. We decided to assess the effect of each of the vari-
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ables separately leaving out average income. Distance
from the Tar Pond site and all the area-specific variables
were plotted against SIR to assess the effect of each. The
plots are given in Figure 2.

As explained earlier, points below the dotted line indicate
no risk or absolute risk reduction and vice versa. The plot
of SIR and the rate of unemployment shows an upward
trend with high unemployment rates associated with high
SIR. A similar pattern is displayed by the plot of SIR
against proportion of persons with no high school
diploma. In the plot of the SIR against proportion of sep-
arated, divorced and widowed areas with low proportion
of separated, divorced and widowed tend to have high
SIR. A similar pattern is seen in the plot of SIR and propor-
tion of people living alone. There is no obvious pattern in
the plot of SIR against proportion of single parent fami-
lies.

Test for spatial dependency
One of the objectives of this study is to check for any clus-
tering of events around the Tar Pond that may be signifi-
cant in explaining the variation in preterm birth rates. This
was done by plotting the maps of all the variables (Figure
3, 4, 5, 6, 7, 8) and visually assessing whether there is any

clustering, and by performing a formal test of clustering
using the Moran I statistic [37].

The map of SIR (Figure 3) was examined to see whether
there is a cluster of high SIR around the Tar Pond or a
decrease in the SIR as we move further away from the Tar
Pond but neither of the two is obvious from the map. The
maps of all the area-covariates (Figure 4, 5, 6, 7, 8) were
examined to assess whether there is any spatial pattern.
The plot of percentage of people living alone shows a pat-
tern with the highest proportion of people living alone
occurring within the 20 km radius of the Tar Pond site.
The plot of the rate of unemployment to population also
shows that the unemployment to population ratio
decreases as we move further away from the Tar Pond.
Furthermore, the proportion of persons who have no high
school diploma also displays some spatial pattern with
some of the areas close to the Tar Pond having high pro-
portion. Existence of spatial autocorrelation was also
tested formally using the Moran I test. Results of the spa-
tial autocorrelation analysis given in Table 1, show the
correlation, standard error, corresponding normal statistic
and associated p-value. The results indicate that there is
significant autocorrelation for all the covariates with the
exception of SIR (p = 0.5387). However, a more confirm-
atory test is required. The result of the autocorrelation not

Plot of SIR against distanceFigure 1
Plot of SIR against distance. Plot of unadjusted standardized incidence ratios against distance in km from the Tar Pond.
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being statistically significant could be due to different rea-
sons (1) there is none; or (2) small populations which
may give rise to high SIR [39].

Bayesian analysis results
The following four models were fitted using the five area
covariates available at all the 144 EDs and a measure of
proximity (di): Model 1 which contains no covariates and
corresponds to the null model; Model 2 which contains
the distance measure alone; Model 3 with deprivation
covariates alone; and finally, Model 4 with distance and
deprivation covariates.

The Gelman Rubin Plots shows that the "shrinkage factor"
for each parameter approaches 1. Hence, all chains have
escaped the influence of their starting points. The autocor-
relation plots shows that autocorrelation decrease rapidly
from lag 1. On this basis, the first 2000 samples of each
chain were discarded as 'burn-in'; each chain was run for
a further 10,000 iterations, and posterior estimates were
based on pooling the 5 × 10, 000 samples for each model.
This gave Monte Carlo standard errors that are less than
1% of the posterior standard deviation for each parame-
ter. All the plots including the posterior density of each
parameter after convergence are provided as additional
file 1 (Bayesian diagnostic  plots). All the plots were pro-
duced with the coda package for R [43].

Table 1: Results of spatial autocorrelation analysis using Moran I statistics

Variables Correlation Std. Error Normal statistic Normal p-value

SIR -0.03798 0.05041 -0.6148 0.5387
x1 0.348 0.05041 7.043 p < 0.0001
x2 0.4582 0.05041 9.229 p < 0.0001
x3 0.1924 0.05041 3.955 p < 0.0001
x4 0.4051 0.05041 8.174 p < 0.0001
x5 0.2932 0.05041 5.955 p < 0.0001

Plot of SIRFigure 2
Plot of SIR. Plot of SIR versus population at risk and other area-specific covariates.
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Table 2 gives the summaries of the posterior distribution
under each model. From Table 2, we can see that estimates
of α in both Models 2 and 4 are negative, and the 95%
credible intervals contain zero which shows that there is
no significant association between distance from the Tar
Ponds and risk of preterm birth. The 95% credible interval
for ϕi (i = 1,..., 5) in Models 3 and 4 also contain zero
which shows that the change in risk cannot be explained
by any of the socio-economic covariates. For each of the
models, η, a measure of the overall risk, was found to be
greater than 1 which is evidence that there is an increased

risk of preterm birth in the entire Cape Breton region com-
pared to the rest of Canada.

The parameters, σu and σv change only slightly over the
four models. From Table 2, the 95% credible intervals for
ψ for each model contain 0.5. Hence, there is no clear evi-
dence that the spatial structure dominates the random
effect in any of the models. From the results of Table 2, the
DIC increases as more variables are added into the model.
Hence, Model 1 is better than all three other models.
Finally, the posterior median of the relative risk of pre-

Table 2: Bayesian posterior median (95% credible interval), summaries of model fit (DIC) and complexity (pD)

Nodes Model 1 Model 2 Model 3 Model 4

α - -0.097 (-0.326,0.120) - -0.087 (-0.317,0.130)
αo 0.246 (0.188,0.305) 0.268 (0.193,0.343) 0.241 (0.182,0.300) 0.260 (0.183,0.336)
ϕ1 - - -0.019 (-0.108,0.070) -0.019 (-0.107,0.072)
ϕ2 - - -0.001 (-0.080,0.077) 0.001 (-0.079,0.080)
ϕ3 - - 0.051 (-0.091,0.195) 0.049 (-0.092,0.189)
ϕ4 - - 0.008 (-0.102,0.118) 0.008 (-0.101,0.116)
ϕ5 - - -0.002 (-0.093,0.090) -0.002 (-0.092,0.090)
ψ 0.557 (0.428,0.676) 0.559 (0.434,0.679) 0.555 (0.426,0.677) 0.558 (0.430,0.682)
η 1.279 (1.207,1.356) 1.307 (1.212,1.409) 1.272 (1.200,1.349) 1.297 (1.201,1.400)
σu 0.187 (0.125,0.281) 0.189 (0.127,0.283) 0.185 (0.124,0.282) 0.187 (0.126,0.287)
σv 0.149 (0.109,0.204) 0.149 (0.110,0.204) 0.149 (0.108,0.204) 0.149 (0.108,0.203)

DIC 727.934 728.672 732.164 734.653
pD 38.419 39.208 42.915 41.094

Map of SIRFigure 3
Map of SIR. A map showing the unadjusted standardized incidence ratios for preterm birth.
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term birth were plotted against distance in km from the
Tar pond. The plot is shown in Figure 9.

A comparison of the plots with that of Figure 1 shows
there is a high relative risk (greater than 1) of preterm
birth in almost all the enumeration districts. However, the
risk is not as high in Figure 9 as in Figure 1. The plots also
show that there is no clear relationship between distance
and risk. This result is consistent with the results of two of
the studies conducted in this area using primary data
[1,3]. They both concluded that a causal association
between preterm births and maternal/residential proxim-
ity to the Tar Ponds could not be inferred from the statis-
tical analysis. A map showing the posterior median of the
relative risk of preterm births for Model 4 is shown in Fig-
ure 10.

Poisson regression analysis results
The results of all four models are displayed in Table 3. For
each of the fitted models, κ was estimated to be approxi-
mately equal to 1, a condition that shows that there is no
evidence of overdispersion. The Wald confidence intervals
shown in Table 3 are based on the asymptotic normality
of the parameter estimators. From the table, we can see
that the estimated α in both Models 2 and 4 is negative,
and the 95% Wald confidence intervals contain zero
which is evidence that there is no decrease in risk as dis-
tance from Tar pond decreases.

The 95% confidence intervals for ϕi (i = 1,..., 5) in Models
3 and 4 also contain zero which shows that the covariates
are not significant factors in risk of preterm birth. This
result shows that none of the variables make significant
contributions to the explanation of the variation in risk.
Recall that η = exp(αo) is a measure of the overall mean of
the relative risk in the region under study. For each of the
models, Table 3 gives the estimates of the overall risk
together with its 95% confidence intervals. The overall
mean of the relative risk is greater than 1 for each model
which indicates that there is elevated risk of preterm birth
across the whole of the Cape Breton municipality.

Weighted regression results
The result of the fit is given in Table 4. None of the varia-
bles is significant in explaining the increased risk of pre-
term birth. The residual standard error for Model 4 was
estimated to be 0.02347 on 137 degrees of freedom. Mul-
tiple R-square is 0.09795 which shows that the variables
in the model account for about 10% of the total variation
in the risk. The F-statistic for the regression relationship
was estimated to be 2.479 on 6 and 137 degrees of free-
dom and the associated p-value is 0.0262. This shows that
at least one of the parameters (α, and ϕi) does not equal
zero. Hence, there is evidence of a regression relationship
between the dependent variable (Yi) and the area-specific
variables (zi).

Map of people living aloneFigure 4
Map of people living alone. A map showing the percentage of people living alone.
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Test for autocorrelation
Next, Moran's I test was also carried out to examine
whether there is spatial autocorrelation in the residuals.
The result gave a correlation of -0.01628, variance of
0.002541 and standard error of 0.05041. In addition, the
normal test statistic was -0.1843 with associated 2-sided p-
value equal to 0.8538. These results are sufficient to con-
clude that there is no spatial autocorrelation in the resid-
uals. Hence, there was no need to use spatial regression
modelling.

Discussion and conclusion
In practice, a typical spatial regression modelling will start
with the examination of the dependent variable for spatial
dependency. This can be done with Moran's I statistic or
Geary C statistic. If there is no spatial pattern, then ordi-
nary least squares or weighted least squares is sufficient to
model the data. On the other hand if the dependent vari-
able shows a spatial patterns, the first order spatial pattern
can be incorporated at the beginning of the modelling
using an adjacency matrix. However, great care has to be
taken when using spatial modelling. First, some of the
available parametric tests for measuring spatial autocorre-
lation, including Moran's I [37] and Geary's C [38] meth-

Table 3: Poisson regression parameter estimates (95% Wald CI), residual deviance and over-dispersion parameter

Parameter Model 1 Model 2 Model 3 Model 4

α - -0.0878(-0.2519,0.0763) - -0.075 (-0.239,0.089)
αo 0.2520 0.2707 (0.2111,0.3303) 0.2163 (-0.3427,0.7753) 0.226 (-0.334,0.785)
ϕ1 - - -0.0034 (-0.0103,0.0035) -0.003 (-0.010,0.004)
ϕ2 - - -0.0008 (-0.0099,0.0083) -0.0005 (-0.0096,0.0086)
ϕ3 - - 0.0115 (-0.0074,0.0305) 0.011 (-0.008,0.030)
ϕ4 - - 0.0007 (-0.0128,0.0142) 0.0006 (-0.0129,0.0141)
ϕ5 - - -0.0011 (-0.0079,0.0057) -0.0010 (-0.0078,0.0058)
η 1.287 1.311(1.235,1.391) 1.241(0.710,2.171) 1.254(0.716,2.192)

Deviance 132 130.56 122.9983 122.18
Df 143 142 138 137
κ 0.99 0.9942 0.9887 0.9906

Map of rate of unemploymentFigure 5
Map of rate of unemployment. A map showing the rate of unemployment to population.
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ods, are not robust when the data is sparse. The non-
parametric rank-based method [39] is not available in
most standard statistical software. Second, the structure of
the adjacency matrix may affect the result. Hence, it must
be chosen carefully. This research is part of a project done
to assess the effect of maternal proximity to the hazardous
waste from the Sydney Tar Pond, Nova Scotia. Two ques-
tion have been addressed in this project: first, is maternal
proximity to hazardous waste and pollution from the Syd-
ney Tar Pond sites associated with increased risk of pre-
term birth? Second, how much of the variation in risk of

preterm birth can be explained by socioeconomic ine-
qualities across the study region?

In addressing these questions frequentist and Bayesian
methods were employed. In the frequentist approach,
Poisson regression for aggregated data and weighted least
squares were fitted using distance from the Tar Pond and
the following area specific-covariates: the proportion of
persons who have no high school diploma; the rate of
unemployment to population; the proportion of persons
who are separated, divorced or widowed; the proportion
of single parent families; and the proportion of people liv-

Table 4: Weighted regression result with parameter estimates, 95% CI, R-square, Residual standard error (RSE) and F-statistic (p-
value)

Parameter Model 2 Model 3 Model 4

α -0.0996(-0.2513,0.0521) - -0.0878(-0.2364,0.0608)
αo 0.2325(0.1749,0.2901) 0.2092(-0.3219,0.7403) 0.2180(-0.3128,0.7488)
ϕ1 - -0.0046(-0.0111,0.0019) -0.0045(-0.0110,0.0020)
ϕ2 - -0.0005(-0.0091,0.0081) -0.0001(-0.0087,0.0085)
ϕ3 - 0.0111(-0.0073,0.0295) 0.0106(-0.0078,0.0290)
ϕ4 - 0.0026(-0.0107,0.0159) 0.0025(-0.0106,0.0156)
ϕ5 - -0.0012(-0.0079,0.0055) -0.0011(-0.0078,0.0056)
R2 0.0115 0.0891 0.0980

RSE 0.0241 0.0235 0.0235
F(p – value) 1.657(0.2002) 2.700(0.0232) 2.479(0.0262)

Map of persons separated, divorced or widowedFigure 6
Map of persons separated, divorced or widowed. A map showing the percentage of persons who are separated, 
divorced or widowed.
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Map of single parent familiesFigure 7
Map of single parent families. A map showing the percentage of single parent families.
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Map of persons who have no high school diplomaFigure 8
Map of persons who have no high school diploma. A map showing the percentage of persons who have no high school 
diploma.
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i

ng alone. The same models were fitted using a Bayesian
hierarchical model incorporating both structured and
unstructured random effects to account for model overd-
ispersion.

Our intention was to combine all of the area covariates to
form the deprivation index, but income data were not
available in 14 of the 144 enumeration districts included
in the study. So the effect of each variable was assessed
independently. The overall estimate of relative risk of pre-
term birth was found to be greater than 1 for almost all the
enumeration districts. Also, none of the area covariates in
the model is significant in explaining the risk of preterm
births.

There was no evidence of any decrease in risk as we move
away from the Tar Pond site. The results of both the
weighted least squares and the quasi-likelihood Poisson
regression agree with the result from the Bayesian hierar-
chical modelling which incorporates the spatial effects.
The result of the Bayesian modelling shows that there is
no significant spatial association of risk in the area stud-
ied. There was no obvious clustering of outcomes around
the Tar Pond significant enough to find an association
between maternal proximity to the Sydney Tar Ponds and
risk of preterm birth. Although the three methods lead to

Map of posterior mediansFigure 10
Map of posterior medians. A map showing the posterior median of the relative risk of preterm births for Model 4.
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Plot of posterior mediansFigure 9
Plot of posterior medians. Plot of the posterior medians 
of relative risk against distance from Tar Pond in km.
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similar results, we think the three-stage Bayesian hierar-
chical modelling is one of the best approaches for han-
dling this problem. First, it allows the modelling of both
sources of overdispersion, heterogeneity and spatial
dependence or clustering in one model, and second, it
allows the estimation of SIR with adjustment of sparse
data. The least suggested method is the weighted least
square method because it does not lend itself to some of
the assumptions of Poisson models.

The following are some of the limitations of this research.
First, data were not available for 14 of the Enumeration
districts. Hence, they were omitted from our analysis but
the effects of this on spatial dependency or our conclusion
are not known. Second, we have based our analysis on the
1996 data but we do not have any evidence of whether the
exposure from the Tar Pond has decreased since 1996.
Third, the use of aggregated data may increase the poten-
tial for ecological bias which can occur due to the differ-
ences between individual and group-level estimates of
disease risk. In particular, factors that affect length of ges-
tation such as parity have not been directly adjusted for in
the modelling.

Our experience with this project shows that more work is
still needed in this area. None of the models was able to
predict more that 10% of what we would like to know.
The future plans include aggregating the data for up to ten
years and modelling using other forms of g(d; θ). We will
also consider using individual level data and incorporat-
ing other covariates. The study shows that there is an ele-
vated risk of preterm births, which appears to be uniform
across the whole of the Cape Breton regional municipality
as shown by all the methods used. This shows that the
pollution may be occurring on a wider scale and over time
may have affected the ability to differentiate the EDs in
terms of amount of exposure. A direct comparison of the
Cape Breton regional municipality with other nearby
municipalities may help answer some of the remaining
questions.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
ASI and AC developed the project. All authors participated
in preparing this manuscript.

Additional material

Acknowledgements
This work was funded through an NSERC Discovery Grant to one of the 
authors (AC). We thank Prof. Pavlos Kanaroglou of the School of Geogra-
phy and Earth Sciences for giving us the data used in this project and allow-
ing the use of the Center for Spatial Analysis at McMaster University. Our 
appreciation also goes to Patrick Deluca, a member of the Center for Spa-
tial Analysis at McMaster University, for his assistance. We thank the 
reviewers and associate editors for their invaluable suggestions that sub-
stantially improved the manuscript.

References
1. Burra TA, Elliott SJ, Eyles JD, Kanaroglou PS, Wainman BC, Muggah

H: Effects of residential exposure to steel mills and coking
works on birth weight and preterm births among residents
of Sydney, Nova Scotia.  The Canadian Geographer 1996,
50(2):242-255.

2. Nova Scotia Department of Health and the Cape Breton District
Health Authority: Lead and arsenic biological testing program in residen-
tial areas near the coke ovens site 2001 [http://www.gov.ns.ca/health/
downloads/Full_Report.pdf]. [Accessed September 10, 2004].

3. Haalboom B, Elliott SJ, Eyles J, Muggah H: The risk society at work
in the Sydney 'Tar Ponds'.  The Canadian Geographer 2006,
50(2):227-241.

4. Dolk H, Vrijheid M, Armstrong B, Abramsky L, Bianchi F, Garne E,
Nelen V, Robert E, Scott JES, Stone D, Tenconi R: Risk of Congen-
ital anomalies near hazardous waste landfill sites in Europe:
the EUROHAZCON study.  The Lancet 1998, 352:423-427.

5. Elliot P, Briggs D, Morris S, de Hoogh C, Hurt C, Jensen TK, Maitland
I, Richardson S, Wakefield J, Jarup L: Risk of adverse birth out-
comes in populations living near landfill site.  British Medical
Journal 2001, 323:363-368.

6. Fielder HMP, Poon-King CM, Palmer SR, Moss N, Coleman G:
Assessments of impact on health of residents living near the
Nant-y-Gwyddon landfill site: retrospective analysis.  British
Medical Journal 2000, 320:19-23.

7. Geschwind SA, Stolwijk JAJ, Bracken M, Fitzgerald E, Stark A, Olsen
C, Melius J: Risk of congenital malformations associated with
proximity to hazardous waste sites.  American Journal of Epidemi-
ology 1992, 135:1197-1207.

8. Gilbertson M, Brophy J: Community health profile of Windsor,
Ontario, Canada: anatomy of a great lakes area of concern.
Environmental Health Perspectives 2001, 109(suppl 6):827-843.

9. Goldman LR, Paigen B, Magnant MM, Highland JH: Low birth
weight, prematurity and birth defects in children living near
the hazardous waste site, Love Canal.  Hazardous Waste and
Hazardous Materials 1985, 2:209-223.

10. Viana NJ, Polan AK: Incidence of low birth weight among Love
Canal Residents.  Science 1984, 226:1217-1219.

11. Berry M, Bove F: Birth weight reduction associated with resi-
dence near a hazardous waste landfill.  Environmental Health Per-
spectives 1997, 105:856-861.

12. Goldberg MS, Goulet L, Riberdy H, Bonvalot Y: Low birth weight
and preterm births among infants born to women living near
a municipal solid waste landfill site in Montreal, Quebec.  Envi-
ronmental Research 1995, 69:37-50.

13. Baker DB, Greenland S, Mendlein J, Harmon P: A health study of
two communities near the Stringfellow waste disposal site.
Archives of Environmental Health 1988, 43:325-334.

14. Kharrazi M, von Behren J, Smith M, Lomas T, Armstrong M, Broadwin
R, Blake E, Mclaughin B, Worstell G, Goldman L: A community-

Additional file 1
Bayesian diagnostic plots. Gelman Rubin plots from five parallel chains, 
kernel density plots of sampled values for parameters of model 4 based on 
five pooled chains and autocorrelation plot for each chain.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2288-7-39-S1.pdf]
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2288-7-39-S1.pdf
http://www.gov.ns.ca/health/downloads/Full_Report.pdf
http://www.gov.ns.ca/health/downloads/Full_Report.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11509424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11509424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10617518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10617518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10617518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1626538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1626538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11744501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11744501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6505690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6505690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9347901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9347901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7588493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7588493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7588493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3178289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3178289


BMC Medical Research Methodology 2007, 7:39 http://www.biomedcentral.com/1471-2288/7/39
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

based study of adverse pregnancy outcomes near a large
hazardous waste landfill in California.  Toxicology and Industrial
Health 1997, 12:211-224.

15. Shaw GM, Schulman J, Frisch JD, Cummins SK, Harris JA: Congenital
malformations and birth weight in areas with potential envi-
ronmental contamination.  Archives of Environmental Health 1992,
47:147-154.

16. Baibergenova A, Kudyakov R, Zdeb M, Carpenter DO: Low birth
weight and residential proximity to PCB-contaminated
waste sites.  Environmental Health Perspectives 2003, 111:1352-1357.

17. Rylander L, Stromberg U, Hagmar L: Lowered birth weight
among infants born to women with a high intake of fish con-
taminated with persistent organochlorine compounds.
Chemosphere 2000, 40:1255-1262.

18. Michal F, Grigor KM, Negro-Vilar A, Skakkebaek NE: Impact of the
environment on reproductive health: executive summary.
Environmental Health Perspectives 1993, 101(Suppl 2):159-167.

19. Sullivan FM: Impact of the environment on reproduction from
conception to parturition.  Environmental Health Perspectives 1993,
101:13-18.

20. Jolley D, Jarman B, Elliot P: Socio-economic Confounding.  In Geo-
graphical and Environmental Epidemiology: Methods for Small-Area Studies
Edited by: Elliot P, Cuzick J, English D, Stern R. New York: Oxford
press; 1992:115-124. 

21. Pampalon R, Raymond G: A deprivation index for health and
welfare planning in Quebec.  Chronic Diseases in Canada 2000,
21(3):104-113.

22. Townsend P: Deprivation.  Journal of Social Policy 1987,
16(2):125-146.

23. Carstairs V, Morris R: Deprivation and Health in Scotland UK: Aberdeen
University Press; 1991. 

24. Vrijheid M: Health effects of residence near hazardous waste
landfll sites: a review of epidemiologic literature.  Environmen-
tal Health Perspectives 2000, 108(suppl 1):101-112.

25. Diggle PJ, Morris S, Elliot P, Shaddick G: Regression modelling of
disease risk in relation to point sources.  Journal of the Royal Sta-
tistical Society, Series A 1997, 160:491-505.

26. Wakefield JC, Morris SE: The Bayesian modelling of disease risk
in relation to a point source.  Journal of the American Statistical Asso-
ciation 2001, 96:77-91.

27. Morris SE, Wakefield JC: Assessment of disease risk in relation
to a prespecified source.  In Spatial Epidemiology: Methods and Appli-
cation Edited by: Elliot P, Wakefield JC, Best NG, Briggs DJ. New York:
Oxford University press; 2000:153-184. 

28. Lawson AB: On the analysis of mortality events associated
with a prespecified fixed point.  Journal of the Royal Statistical Soci-
ety, Series A 2001, 56:363-377.

29. Lawson AB, Biggeri AB, Boehning D, Lesaffre E, Viel JF, Clark A,
Schlattmann P, Divino F: Disease mapping models: an empirical
evaluation.  Statistics in Medicine 2000, 19:2217-2241.

30. Tara ARB: Reproductive and psychological health of women
living in the vicinity of the Tar Ponds, Sydney, Nova Scotia.
In Master's thesis McMaster University, Geography and Geology
Department; 2002. 

31. Clayton D, Kaldor J: Empirical bayes estimates of age-stand-
ardized relative risks for use in disease mapping.  Biometrics
1987, 43:671-682.

32. Datta G, Ghosh M, Waller LA: Hierarchical and empirical bayes
methods for environmental risk assessment.  In Handbook of
Statistics Volume 18. Edited by: Sen PK, Rao CR. Elsevier Science B.V;
2000:223-245. 

33. Best NG, Arnold RA, Thomas A, Waller LA, Conlon EM: Bayesian
models for spatially correlated disease and exposure data.  In
Bayesian Statistics 6 Edited by: Bernardo JM, Berger JO, Dawid AP,
Smith AFM. New York: Oxford University Press; 1999:131-156. 

34. Bithell JF: The choice of test for detecting raised disease risk
near a point source.  Statistics in Medicine 1995, 14:2309-2322.

35. Diggle PJ: A point process modelling approach to raised inci-
dence of a rare phenomena in the vicinity of a prespecified
point.  Journal of the Royal Statistical Society, Series A 1990,
153:340-362.

36. Wakefield JC, Kelsall JE, Morris SE: Clustering, cluster detection,
and spatial variation in risk.  In Spatial Epidemiology: Methods and
Application Edited by: Elliot P, Wakefield JC, Best NG, Briggs DJ. New
York: Oxford University press; 2000:129-152. 

37. Moran PAP: The interpretation of statistical maps.  Journal of the
Royal Statistical Society, Series B 1948, 10:243-251.

38. Geary RC: The contiguity ratio and statistical mapping.  The
Incorporated Statistician 1954, 5:115-145.

39. Walter SD: Assessing spatial patterns in disease rates.  Statistics
in Medicine 1993, 12:1885-1894.

40. Besag J, York J, Mollie A: Bayesian image restoration with two
applications in spatial statistics.  Annals of the institute of Statistics
and Mathematics 1991, 43(1–59):.

41. Wakefield JC, Best NG, Waller L: Bayesian approaches to dis-
ease mapping.  In Spatial Epidemiology: Methods and Application
Edited by: Elliot P, Wakefield JC, Best NG, Briggs DJ. New York:
Oxford University press; 2000:105-126. 

42. Spiegelhalter DJ, Thomas A, Best NG: WINBUGS User Manual, version
1.2 1998 [http://www.mrc-bsu.cam.ac.uk/bugs]. UK: Cambridge
[Accessed October 30, 2004].

43. Plummer M, Best NG, Cowles MK, Vines SK: Output analysis and diag-
nostics for Markov Chain Monte Carlo, version 0.7-1 2004 [http://www-
fis.iarc.fr/coda/]. [Accessed October 30, 2004].

44. Gilks WR, Richardson S, Spiegelhater DJ: Introducing Markov
Chain Monte Carlo.  In Markov Chain Monte Carlo in Practice Edited
by: Gilks WR, Richardson S, Spiegelhalter DJ. London: Chapman and
Hall; 1996:1-17. 

45. Gelman A, Rubin DB: Inference from iterative simulation using
multiple sequences.  Statistical Science 1992, 7:457-511.

46. Spiegelhalter DJ, Best NG, Carlin BP: Bayesian deviance, the
effective number of parameters, and the comparison of arbi-
trarily complex models.  1998 [http://www.med.ic.ac.uk/divisions/
60/biostat/dic.ps]. [Accessed October 15, 2004].

47. McCullagh P, Nelder JA: Generalized Linear Models London: Chapman
and Hall; 1989. 

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2288/7/39/prepub
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1567240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1567240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1567240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12896858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12896858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12896858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10739070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10739070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8243387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8243387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8243382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8243382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11082346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11082346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10698726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10698726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10960849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10960849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3663823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3663823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8711271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8711271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8272668
http://www.mrc-bsu.cam.ac.uk/bugs
http://www-fis.iarc.fr/coda/
http://www-fis.iarc.fr/coda/
http://www.med.ic.ac.uk/divisions/60/biostat/dic.ps
http://www.med.ic.ac.uk/divisions/60/biostat/dic.ps
http://www.biomedcentral.com/1471-2288/7/39/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Tar Pond site in Sydney
	Data description
	Some theoretical background and context
	Bayesian hierarchical modelling
	First-stage: model
	Second-stage: overdispersion modelling
	Third-stage: prior distributions

	Poisson regression
	Weighted linear regression

	Results
	Exploratory data analysis
	Area-specific risk
	Test for spatial dependency
	Bayesian analysis results
	Poisson regression analysis results
	Weighted regression results
	Test for autocorrelation


	Discussion and conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

