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Abstract
Background: In a multicenter trial, responses for subjects belonging to a common center are
correlated. Such a clustering is usually assessed through the design effect, defined as a ratio of two
variances. The aim of this work was to describe and understand situations where the design effect
involves a gain or a loss of power.

Methods: We developed a design effect formula for a multicenter study aimed at testing the effect
of a binary factor (which thus defines two groups) on a continuous outcome, and explored this
design effect for several designs (from individually stratified randomized trials to cluster
randomized trials, and for other designs such as matched pair designs or observational multicenter
studies).

Results: The design effect depends on the intraclass correlation coefficient (ICC) (which assesses
the correlation between data for two subjects from the same center) but also on a statistic S, which
quantifies the heterogeneity of the group distributions among centers (thus the level of association
between the binary factor and the center) and on the degree of global imbalance (the number of
subjects are then different) between the two groups. This design effect may induce either a loss or
a gain in power, depending on whether the S statistic is respectively higher or lower than 1.

Conclusion: We provided a global design effect formula applying for any multicenter study and
allowing identifying factors – the ICC and the distribution of the group proportions among centers
– that are associated with a gain or a loss of power in such studies.

Background
Multicenter studies involve correlation in data because
subjects from the same center are more similar than are
those from different centers [1]. Such a correlation poten-
tially affects the power of standard statistical tests, and
conclusions made under the assumption that data are
independent can be invalidated.

A usual measure of the clustering effect on an estimator
(often a treatment or a group effect) is the design effect
(Deff). The Deff is defined as the ratio of two variances: the
variance of the estimator when the center effect is taken
into account over the variance of the estimator under the
hypothesis of a simple random sample [2,3]. The Deff rep-
resents the amount by which the sample size needs to be
multiplied to account for the design of the study. Ignoring
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clustering can lead to over- (Deff < 1) or underpowered
(Deff > 1) studies.

In cluster randomized trials, clustering produces a loss of
power and Donner and Klar proposed a method to inflate
the sample size to take data correlation into account [4].
On the contrary, in individually randomized trials with
equal treatment arm sizes, a center effect induces a gain in
power, and sample size can be reduced [5]. Thus, in some
situations, correlation in data induces a loss of power, and
in others, a gain in power. To our knowledge, complete
explanations for this striking discrepancy are lacking.

We aimed to produce a measure of clustering in multi-
center studies testing the effect of a binary factor on a con-
tinuous outcome. We first present the statistical model
used and the associated design-effect formula. Then we
explore the general form of this design effect under partic-
ular study designs. Finally, we give examples to illustrate
our results.

Methods and results
Theoretical Issues
The mixed-effects model
Let us consider a multicenter study aimed at comparing
two groups on a continuous outcome. Several situations
can be considered. If subjects are randomly assigned to a
group (e.g., a treatment arm), the study is a randomized
trial; otherwise, it is an observational study, and the group
data depicts exposure to a binary risk factor. Data are dis-
tributed as follows:

where Yijk denotes the response from the kth subject, of the

ith group, in the jth center. The overall response mean is

μ. Each center is of size mj = m1j + m2j, and each group is of

size , with N = n1 + n2 being the total number

of subjects in the study. The group effects {αi} are fixed,

with . We assume that centers are a random

sample of a large population of centers, so the center
effects {Bj} are independent and identically distributed

(iid) . The residual errors {εijk} are assumed to

be  and independent of {Bj}. The center effect,

quantified by the intraclass correlation coefficient (ICC),

ρ, and defined as the proportion of the total variance that
is due to the between-center variability, can be defined
from model (1) as follows [6]:

Group effect variance
Two-way ANOVA
The group effect variance can be shown to equal (Appen-
dix 1):

One-way ANOVA
Ignoring the center effect, model (1) reduces to:

where Yik represents the response from the kth subject in

the ith group. The random errors { } are iid .

Thus, the variance of the group effect is as follows:

and we have (Table 1):

The Design Effect
The Deff measures the effect of clustering on the group
effect variance. It is defined as the ratio of the group effect
variances (3) over (5). Using equation (6) we have:

Multicenter randomized trials often recruit a large
number of subjects. Then, assuming a large total sample
size and numerous centers, the {mij} are small in compar-

ison with N, and  can be approx-

imated by 1. Expression (7) then becomes:
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where ρ is the ICC as defined in (2) and

.

Simulation study
We first conducted a simulation study aiming validating
the approximate formula we proposed. We considered
equal and varying center sizes for 12 combinations of the
total sample size and number of centers (100 subjects for
5, 10 or 20 centers, 200 subjects for 5, 10, 20 or 50 centers,
500 subjects for 5, 10, 20, 50 or 100 centers), 4 group dis-
tributions (from balanced groups within centers to rand-
omization of centers, which are then nested within the
groups) and two ICC values (0.01 and 0.10). One thou-
sand simulations were conducted using SAS 9.1 (SAS
Institute, Cary, NC) for each combination of the parame-
ters. Table 2 presents the average exact design effect esti-
mate and average relative difference between exact and
approximate design effect calculations for all these situa-
tions, for varying center sizes (20% of centers recruit 80%
of subjects). Although such extreme imbalance in center
sizes is unlikely to occur (and not advisable, mainly in
cluster trial designs including very few centers, such as 5 or
10 centers), it allows testing the robustness of our formula
even in such extreme situations. Similar results were
found for equal center sizes (data not shown). Results
show that the approximate design effect formula always
slightly underestimates the exact formula since all relative

differences are positive. These differences increase with
the ICC and decrease, as expected, while the number of
centers increases but are not influenced by the total
number of subjects. Moreover, they globally increase with
the design effect. All of these results are below (or equal)
0.0771, indicating that our formula applies in the major-
ity of multicenter designs, with a better accuracy (relative
differences lesser than 0.052) for designs including more
than 10 centers.

Some specific designs
Stratified Multicenter Individually Randomized Trial

Assuming that randomization is balanced and stratified

on centers, we then have equal group size ( )

and equal number of subjects in the two groups in each

center (∀ j = 1,..., Q, ). The Deff reduces

to:

In a stratified multicenter individually randomized trial,
the Deff is smaller than 1 and its value decreases as the
ICC increases, which involves a gain in power allowing a
reduction in sample size, as shown by Vierron et al. [5].

Matched Pair Design
Some studies yield observations that are individually
matched, such as cross-over trials, trials on matched sub-
jects (which are, for example, matched by age or sex) or
data (e.g. two eyes from the same subject) or before-after
studies. Assuming pairs of matched data, pairs can be con-
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Table 1: One-way ANOVA for data distributed according to the two-way mixed-effects model (1).

Source DF SS E(MS)

Group 2 - 1

Residual N - 2

Total N - 1

When data are distributed according to the mixed model (1) but analyzed by performing a one-way ANOVA – as if data were distributed according 

to model (4) – the expectation of the residual mean squares (denoted  in the framework of model (4)) can actually be expressed as a function 

of  and , the variance components associated to the true underlying statistical model (i.e. the mixed model (1)).
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sidered as centers, thus leading to a particular case of the
stratified multicenter individually randomized trial with
m1j = m2j = 1. Then the Deff equals:

In a matched pair design, the variance of the differences
between paired responses equals:

where σ2 is the variance of observations in a standard par-
allel group design.

Then, correcting the classical sample size formula for two

independent samples with the Deff (1 - ρ) and replacing

the σ2(1 - ρ) term by  leads to the sample size for-

mula used for paired data studies [7]:

Deff = -1 r. (10)
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Table 2: Validation of the approximate design effect formula.

ICC = 0.01

N subjects 100 200 500
N centers 5 10 20 5 10 20 50 5 10 20 50 100

S1 Deff 0.9969 0.9938 0.9921 0.9966 0.9936 0.9922 0.9911 0.9965 0.9933 0.9919 0.9913 0.9908
rdiff 0.0065 0.0032 0.0016 0.0065 0.0032 0.0016 0.0006 0.0065 0.0032 0.0016 0.0006 0.0003

S2 Deff 0.9972 0.9949 0.9928 0.9972 0.9956 0.9938 0.9917 0.9980 0.9989 0.9956 0.9931 0.9918
rdiff 0.0065 0.0032 0.0014 0.0065 0.0032 0.0016 0.0005 0.0065 0.0033 0.0016 0.0006 0.0003

S3 Deff 1.0102 1.0306 1.0147 1.0217 1.0622 1.0431 1.0132 1.0575 1.1788 1.1143 1.0487 1.0204
rdiff 0.0066 0.0035 0.0016 0.0066 0.0036 0.0018 0.0006 0.0066 0.0036 0.0019 0.0007 0.0003

S4 Deff 1.1038 1.0323 1.0285 1.2026 1.0538 1.0604 1.0184 1.4788 1.1290 1.1588 1.0559 1.0186
rdiff 0.0077 0.0051 0.0027 0.0077 0.0052 0.0030 0.0011 0.0077 0.0053 0.0030 0.0013 0.0006

ICC = 0.10

N subjects 100 200 500
N centers 5 10 20 5 10 20 50 5 10 20 50 100

S1 Deff 0.9655 0.9356 0.9197 0.9642 0.9337 0.9209 0.9105 0.9631 0.9313 0.9177 0.9124 0.9076
rdiff 0.0643 0.0318 0.0155 0.0649 0.0320 0.0160 0.0061 0.0649 0.0324 0.0161 0.0063 0.0031

S2 Deff 0.9709 0.9469 0.9269 0.9696 0.9547 0.9359 0.9171 0.9793 0.9827 0.9549 0.9300 0.9174
rdiff 0.0656 0.0318 0.0142 0.0648 0.0323 0.0157 0.0053 0.0651 0.0325 0.0161 0.0063 0.0028

S3 Deff 1.1101 1.3018 1.1721 1.2095 1.6471 1.4256 1.1337 1.6662 2.7175 2.1685 1.4965 1.2049
rdiff 0.0654 0.0349 0.0166 0.0659 0.0354 0.0182 0.0063 0.0662 0.0358 0.0185 0.0074 0.0034

S4 Deff 2.0718 1.3360 1.2725 3.1669 1.5750 1.6252 1.1934 6.2708 2.5759 2.5886 1.5687 1.2017
rdiff 0.0768 0.0507 0.0272 0.0770 0.0517 0.0299 0.0110 0.0771 0.0513 0.0299 0.0126 0.0059

ICC: Intraclass Correlation Coefficient
Simulations are conducted with varying center sizes: 20% of centers recruit 80% of subjects. Average exact design effect estimate (Deff) and average 
relative difference (rdiff) between exact and approximate design effect formula are given for 4 situations (Si, i = 1,2,3,4), two ICC values, and 
obtained for 1000 simulations.
S1: Equal group sizes. In each center, the probability, for a subject, to be in group 1 is 1/2
S2: Slight variations in group 1 proportions among centers. The ratio between the sizes of group 1 and group 2 varies uniformly between 0.8 and 
1.25 among centers
S3: Important variations in group 1 proportions among centers. The ratio between the sizes of group 1 and group 2 varies uniformly between 0.1 
and 10 among centers
S4: "Cluster design". The center is nested within the group and the probability, for each center, to be in group 1 is 1/2
Page 4 of 9
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where d is the difference in mean responses from the two
groups.

Cluster Randomized Trial and Expertise-based Randomized Trial
In a cluster randomized trial, clusters rather than subjects
are randomly assigned to a treatment group. Considering
centers as clusters, for each center we then have m1j = 0 or
m2j = 0. Such a design is also encountered in individually
randomized trials in which clustering is imposed by the
intervention design and is nested within groups, such as
when subjects are assigned to two treatment arms for
which the intervention is delivered by several physicians,
each participating in only one arm of the study [8,9]. In
this case, equation (8) reduces to:

where . With roughly equal

cluster sizes and assuming the same number of subjects in

each arm ( ), the Deff can be approximated as

follows:

where  is the mean cluster size. This value is the

inflation factor [4], used for sample size calculation in
cluster randomized trials.

Multicenter Observational Study
In a multicenter observational study, group sizes are likely
to differ, at the level of the center (i.e., m1j ≠ m2j) or glo-
bally (i.e., n1 ≠ n2). Nevertheless, with identical group dis-
tributions among centers (i.e., the proportion of subjects
in group 1 is p ∈ ]0;1[, whatever the center is), the design
effect reduces to:

Thus, in an observational study, with all centers having
identical group distributions – even if the global group
sizes are not equal (i.e., even if n1 ≠ n2) – taking into
account the center effect leads to increased power, as with
stratified individually randomized trials.

No design effect: Deff = 1.

From formula (8), Deff = 1 leads to:

Rewriting S as , we obtain a

statistic that estimates, for group 1, the difference between
the observed group size (i.e., m1j) and its expected value

under the assumption of centers having identical group

proportions (i.e., ). Therefore, when this statistic –

providing a measure of heterogeneity of the group distri-
butions among centers (thus the level of association
between the group and the center) – is below 1, the Deff is
also below 1 and using a statistical model that takes into
account the center effect leads to increased power. On the
contrary, when the group distributions differ strongly
among centers, the S statistic, and then the Deff, is greater
than 1, thus leading to a loss of power. At the extreme case
where centers are totally nested within groups, the loss of
power can be very important and it has been shown that
omitting the center effect in analyzes leads to type I error
[4]. The link between the power of multicenter studies
and the design effect can be established as follows. Be ni

the size of group i, ES the expected effect size and zγ the

quantile of the standard normal distribution such that

P(Z ≤ zγ) = γ (Z being N(0,1)). The sample size calculation

formula allowing testing the group effect on a continuous
outcome and corrected for the design effect is [7,10]:

Then, the power of any multicenter study depends on the
design effect according to the following relation:

where Φ(·) is defined as the cumulative density function
of N(0,1). As the design effect increases and exceeds 1, the
power decreases and sample size has to be inflated to
reach the nominal power. On the contrary, when the
design effect value is below 1, the power is larger than the
nominal one, allowing reducing the required sample size.
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Example
Table 3 presents data for hypothetical studies of 10 centers
of unequal sizes. In each case, the proportion of subjects
in group 1 equals 25% but this proportion varies more or
less among centers according to the design of the study.
The center sizes imbalance is voluntary less important
than in the simulation study and represents a more likely
study design. This example shows clearly that, when the
proportion of subjects in group 1 varies slightly around
the global proportion (the "quite homogeneous" col-
umn) the design effect is below 1 then indicating a gain in
power. On the contrary, when this proportion varies
strongly (the "heterogeneous" column), the design effect
exceeds 1, involving a loss of power. In the last column,
we present the extreme case where centers are nested
within the groups. This situation, which can be identified
with that of a cluster randomized trial, leads to an impor-
tant loss in power as shown by the very large design effect.

To illustrate the impact of heterogeneity between the glo-
bal group sizes on the design effect, we considered hypo-
thetical situations, less likely to occur, where 10 centers
recruit 20 subjects each, for balanced designs (i.e., n1 = n2,
Table S4a in Additional file 1) and imbalanced designs
(i.e., n1 ≠ n2, Table S4b in Additional file 1), and for differ-
ent levels of heterogeneity of group distributions among
centers and two ICC values. As expected, the Deff increases
with S and increases with the ICC. Moreover, if we focus
on the "strongly heterogeneous" column, we observe a
higher Deff with imbalance between the two groups
(Table S4b in Additional file 1, Deff = 1.757 for ρ = 0.1)
than with balance between the groups (Table S4a in Addi-
tional file 1, Deff = 1.620 for ρ = 0.1), which can be ana-
lytically explained (Appendix 2). Thus, the impact of
heterogeneity of the group distributions among centers is

greater with increased imbalance between the two group
sizes. See additional file 1 for results from this example.

Discussion and conclusion
In a multicenter study, the design effect measures the
effect of clustering due to multisite recruitment of sub-
jects. As shown in formula (18), the power of such a study
is directly affected by the design effect value. Our work
aimed explaining why some situations of multicenter
studies, such as individually randomized trials, lead to a
gain in power whereas others, such as cluster randomized
trials lead to a loss of power.

We derived a simple formula assessing the clustering effect
in a multicenter study aiming to estimate the effect of a
binary factor on a continuous outcome, through an indi-
vidual level analysis with a mixed effect model: Deff =
1+(S-1)ρ. The design effect depends on ρ, the correlation
between observations from the same center. It also
depends on S, a statistic that quantifies the degree of het-
erogeneity of group distributions among centers, and in
other words, the level of association between the binary
factor and the center. S increases with the heterogeneity of
the group distributions among centers, which leads to an
increased Deff and a loss of power, and falls below 1 when
the group distributions are identical between centers, thus
leading to a Deff below 1 and a gain in power. It is now
known that balanced designs such as individually rand-
omized trials increase their power when including the
center effect in analyses [5], and that cluster randomized
trials should increase their sample size to reach the nomi-
nal power and account for the center effect in the analyses
to protect against type I error inflation [4]. Our simple for-
mula throws light on the relation between these two situ-

Table 3: Design effects calculations for three different group distributions among centers.

Group distribution among centers Quite homogeneous Heterogeneous Cluster design

Group size per center m1j m2j %* m1j m2j %* m1j m2j %*

Center 1 (n = 57) 16 41 28 11 46 19 0 57 0
Center 2 (n = 38) 10 28 26 24 14 63 38 0 100
Center 3 (n = 44) 11 33 25 7 37 16 0 44 0
Center 4 (n = 15) 3 12 20 1 14 7 0 15 0
Center 5 (n = 41) 9 32 22 8 33 20 0 41 0
Center 6 (n = 19) 5 14 26 10 9 53 19 0 100
Center 7 (n = 37) 8 29 22 9 28 24 0 37 0
Center 8 (n = 52) 12 40 23 4 48 8 0 52 0
Center 9 (n = 12) 3 9 25 1 11 8 0 12 0
Center 10 (n = 28) 8 20 29 10 18 36 28 0 100

S 0.14 5.79 33.77
Deff (ρ = 0.10) 0.91 1.48 4.28

*group 1 proportion in each center
The global proportion of subjects in group 1 is 25%, for each group distribution, and the Intraclass Correlation Coefficient is equal to 0.10.
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ations and allows calculating the design effect for any
multicenter design.

We used in our developments a weighted method to
assess the group effect: this method gives equal weight to
each subject, whatever the size of his/her center is. Differ-
ent methods of analysis could be used. In the frame of
multicenter randomized trials, Lin et al. and Senn et al.
discuss this point and show that a weighted analysis is
more powerful than an unweighted one, particularly
when there is unbalance in sample sizes between centers
[11,12]. The weighted method is then often recom-
mended for analyses of data from multicenter rand-
omized trials, what justifies our choices for model (1)
[13]. However, in clusters randomized trials, Kerry et al.
show that the minimum variance weights are the most
efficient weights in the estimation of the design effect in
the presence of important imbalance between the clusters
sizes, but that weighting the clusters by their sizes give
similar – though over estimated – results, except when
clusters are large [14]. Our formula aims to apply to any
multicenter study, whatever its design is, from individu-
ally to cluster randomized trials. Then, it may not use the
most powerful method of calculation for some particular
multicenter designs but has the great advantage to be sim-
ple and general.

Apart from the mixed effect model (1) we described, we
did not develop the practical aspect of the analysis stage of
a multicenter study. Several statistical software packages
are available to perform analyses of correlated data, such
as data from multicenter designs. Zhou et al. and Murray
et al. review many of these programs and detail, among
others, appropriate procedures and available options
allowing specifying data modeling [15,16]. Moreover,
some tutorials present step-by-step illustrations of the use
of SAS and SPSS mixed model procedures [17,18]. Lastly,
Pinheiro and Bates provide an overview of the application
of mixed-effects models in S and S-PLUS which are easily
transposable to the R software [19].

In the field of cluster randomized trials, several authors
worked on the planning of studies through the design
effect and sample size calculations and proposed exten-
sions of classical formula, for example to account for
imbalance in cluster sizes [20,21]. Our formula does not
aim to substitute for these more specific and precise for-
mula but to connect several multicenter designs through a
design effect formula. This result helps in understanding
the impact of the correlation on power of multicenter
studies, whatever their designs are, and is particularly use-
ful for observational studies where the center effect ques-
tion is not often taken into account at the planning and/
or at the analysis stages [22,23]. However, when extended
design effects formulas exist, dealing with a particular

problem such as that of imbalance cluster sizes in cluster
randomized trials, we recommend using them.

This simple result could now be extended to designs
including, for example, several nested or crossed levels of
correlation. One can then consider cluster-cluster rand-
omization, or cluster then individual randomization and
all observational designs including multiple levels of cor-
relation between outcomes. Such designs could bring
mixture of gain and loss of power, according to the multi-
ple correlation levels considered. For example, Diehr et al.
studied the case of matched-pair cluster designs and
Giraudeau et al. the case of cluster randomized cross-over
designs [24,25]. A lot of situations like these ones could
be explored to extend our result to more complex designs.

To conclude, clustering of data is a logical consequence of
multicenter designs [26,27]. Some designs allow for con-
trolling some factors (e.g., balancing and homogenizing
the treatment distribution in individually randomized tri-
als), whereas others exclude such possibility. This latter
situation occurs mainly in observational studies, for
which there is no way to control the prevalence or distri-
bution of any factor. Since multicenter studies range in
design, from homogeneous and balanced designs to
"cluster" distribution designs, the design effect can induce
a gain or a loss of power as we described. The main advan-
tage of the design effect formula we proposed is its sim-
plicity and its ability to apply to any multicenter study. Its
potential weakness would be the difficulty, for an investi-
gator who plans a multicenter study, to obtain an accurate
estimate of S, the degree of heterogeneity of the group dis-
tributions between centers, and of the ICC. In the field of
cluster randomized trials, important efforts have been
done to improve ICC estimates reporting, which should
now be followed for any multicenter study [28,29]. In the
same way, recommendations should be made for encour-
aging the reporting of Deff calculation, or of the S statistic,
from any multicenter study publication. Associated with
an ICC estimate, this information could help researchers
in planning new multicenter – particularly observational
– studies.
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Appendix 1
Calculation of the group effect variance with a two-way 
ANOVA
In the mixed-effects model (1), the variance of the mean
response in group i is as follows:
Page 7 of 9
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The group effect variance is defined as follows:

Since the centers are independent, we have:

corr(Yijk; Yi'j'k') = 0 for j ≠ j' and

corr(Yijk; Yi' jk') = ρ for responses from the same center.
Then:

which leads to:

Appendix 2
Rewriting the S statistic with the between-center group 
size variances

Assuming centers are of equal sizes, ∀ j = 1,..., Q, 

and we have:

where V1 is the between-center variance for sizes of group

1. Let  be the mean size for group i, then V1 can

be rewritten as follows:

where  is the center size variance

and  is the between-center vari-

ance for sizes of group 2. Assuming centers are of equal

sizes, we have ∀ j = 1,..., Q, ; thus Vm = 0 and V1 =

V2. The statistic is then:

Hence, assuming centers are of equal sizes, for a given
total sample size N, number of centers Q, and between-
center group size variance Vi, the higher the difference

between  and 1 the higher the statistic S. Then, the Deff

increases with the degree of imbalance between the two
group sizes. This result generalizes to designs with une-
qual center sizes, because the S statistic always depends on

. However, quantitative prediction of the impact of

the  ratio on the Deff is not straightforward because

the center size variance, Vm, and the covariance term

between Vm and V2 are, in this case, not null.
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