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Abstract
Background: There is increasing awareness that meta-analyses require a sufficiently large
information size to detect or reject an anticipated intervention effect. The required information
size in a meta-analysis may be calculated from an anticipated a priori intervention effect or from an
intervention effect suggested by trials with low-risk of bias.

Methods: Information size calculations need to consider the total model variance in a meta-
analysis to control type I and type II errors. Here, we derive an adjusting factor for the required
information size under any random-effects model meta-analysis.

Results: We devise a measure of diversity (D2) in a meta-analysis, which is the relative variance
reduction when the meta-analysis model is changed from a random-effects into a fixed-effect
model. D2 is the percentage that the between-trial variability constitutes of the sum of the between-
trial variability and a sampling error estimate considering the required information size. D2 is
different from the intuitively obvious adjusting factor based on the common quantification of
heterogeneity, the inconsistency (I2), which may underestimate the required information size. Thus,
D2 and I2 are compared and interpreted using several simulations and clinical examples. In addition
we show mathematically that diversity is equal to or greater than inconsistency, that is D2 ≥ I2, for
all meta-analyses.

Conclusion: We conclude that D2 seems a better alternative than I2 to consider model variation
in any random-effects meta-analysis despite the choice of the between trial variance estimator that
constitutes the model. Furthermore, D2 can readily adjust the required information size in any
random-effects model meta-analysis.

Background
Outcome measures in a single randomised trial or a meta-
analysis of several randomised trials are typically dichoto-
mous, especially for important clinical outcomes such as
death, acute myocardial infarction, etc. Although meta-
analysts cannot directly influence the number of partici-

pants in a meta-analysis like trialists conducting a single
trial, the assessment of the meta-analytic result depends
heavily on the amount of information provided. A limited
number of events from a few small trials and the associ-
ated random error may be under-recognised sources of
spurious findings. If a meta-analysis is conducted before
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reaching a required information size (i.e., the required
number of participants in a meta-analysis) it should be
evaluated according to the increased risk that the result
may represent a chance finding. It has recently been sug-
gested that sample size estimation in a single trial may be
less important in the era of systematic review and meta-
analysis [1]. Therefore, the reliability of a conclusion
drawn from a meta-analysis, despite standardly calculated
confidence limits, may depend even more on the number
of events and the total number of participants included
than hitherto perceived [2-8]. Both numbers determine
the amount of available information in a meta-analysis.
The information size (IS) required for a reliable and con-
clusive meta-analysis may be assumed to be at least as
large as the sample size (SS) of a single well-powered ran-
domised clinical trial to detect or reject an anticipated
intervention effect [2-4].

The estimation of a required information size for a meta-
analysis in order to detect or reject an anticipated inter-
vention effect on a binary outcome measure should be
considered based on reasonable assumptions. These
assumptions may be derived from two kinds of informa-
tion. Firstly, by anticipating an a priori intervention effect,
most appropriately decided at the time when the protocol
for a systematic review is prepared. An a priori intervention
effect may be estimated by consulting related interven-
tions for the same disease or the same intervention for
related diseases suggesting a clinically relevant effect to be
detected or ruled out [2-4]. This situation would be
almost analogous to the hypothesis testing in a single ran-
domised trial. Secondly, an intervention effect estimated
by trials with low-risk of bias in the meta-analysis may
represent our best estimate, at a given time point, of a pos-
sible intervention effect knowing the available data [5].
This would be a kind of a post hoc analysis of the informa-
tion needed to detect or reject an intervention effect sug-
gested by data already available. When planning a new
trial it may be very important to estimate which IS is
needed for the updated meta-analysis to be conclusive. In
both instances the estimated required information size
may be applied to grade the evidence reported in a cumu-
lative meta-analysis adjusting for the risk of random error
due to repetitive testing on accumulating data [5,6]. If the
number of actually accrued participants falls short of the
required IS the meta-analysis may be inconclusive even
though the confidence interval is suggestive of a clinical
relevant effect or. Because if the confidence interval (or the
p-value) is appropriately adjusted with sequential meth-
ods, it may no longer show a statistically significant or
clinically relevant effect. Conversely, if the actually
accrued number of participants supersedes the required
information size without the meta-analysis becoming sta-
tistically significant we may be able to rule out the antici-
pated intervention effect size [5].

It is not realistic to assume that the population of the
included trials in a meta-analysis is truly homogenous, as
it may be in a single clinical trial. Meta-analysis, therefore,
should not analyse included participants as if they are
coming from one trial [9]. Consequently the difference
between obtaining the required IS and SS is rooted in the
underlying assumption of between trial variability, and
thus, the chosen meta-analytical model.

If the between-trial variability of the outcome measure
estimates in a meta-analysis is incorporated into the
model using the traditional one-way random-effects
model, the required IS will be affected [5]. In this vein, the
required IS is a monotonically increasing function of the
total variability among the included trials. An estimate of
the required IS can therefore be derived once the degree of
variability is known or prespecified [5]. The test statistic
for heterogeneity in a meta-analysis, the inconsistency fac-
tor (I2) based on Cochran's Q proposed by Higgins and
Thompson [10], may seem an obvious quantity to use for
this purpose as it allow us to estimate the degree of the
variation, which is not covered by assumption of homo-
geneity [5]. However, I2 is derived using a set of general
assumptions that may be inappropriate in this context.

In this paper we derive a general expression for the
required IS in any random-effects model. We prove the
monotone relationship between IS and the degree of total
variability in a one-way random-effects meta-analysis. We
use our results to define a quantification of diversity (D2)
between included trials in a meta-analysis, which is the
relative model variance reduction when the model of
pooling is changed from a random-effects model into a
fixed-effect model. We analyse and discuss the differences
between our definition of diversity, D2, and the com-
monly used measure for heterogeneity, I2.

Methods
2.1 Deriving the required meta-analysis information size 
and diversity
If the required IS needed to detect or reject an intervention
effect in a meta-analysis should be at least the sample size
needed to detect or reject a similar effect in a single trial,
then the following scenario applies:

Let μF denote the weighted mean intervention effect to be
detected in a fixed-effect model meta-analysis and let μR
denote the weighted mean intervention effect to be
detected in a in a random-effects model meta-analysis
using generic inverse variance weighting. The information
size (NF) needed to reject an intervention effect μF in the
fixed-effect model (with a type I error less than α, a type II
error less than β, and equal group sizes) becomes [11,12]:
Page 2 of 12
(page number not for citation purposes)



BMC Medical Research Methodology 2009, 9:86 http://www.biomedcentral.com/1471-2288/9/86
and the information size (NR) needed to reject μR in the
random-effects model (with a type I error less than α, a
type II error less than β, and equal group sizes) becomes
[11,12]:

Where  and  are the variances in the

two models with wi and  being the weights in the fixed-

and random-effects model respectively. The ratio of infor-
mation sizes needed in the two models may be calculated
as:

under the assumption that μF = μR it follows that:

or

the relationship between the IS (NR) for a random-effects
model and the SS (NF) for a fixed-effect model is therefore
multiplicative by an adjustment factor ARF

Let τ2 denote the between-trial variance, k the number of

trials, and  the 'typical' moment-based sampling error

within the trials according to Higgins and Thompson
[10], then:

and combining 2.6 and 2.7:

This yields the intuitive interpretation that the required IS
in a random-effects model is a monotone increasing func-
tion of the degree of heterogeneity.

2.2 Limitations of a moment-based 'sampling error' in the 
definition of heterogeneity, I2

Higgins and Thompson [10] analysed candidate measures
of intertrial variability and decided on the inconsistency
factor I2 under the assumption that all weights wi were

approximately equal, that is,  for all k trials, that

is: ∀i ∈ {1,..., k} is . However, this assumption

may not be met in many meta-analyses. In the attempt to
generalise the use of I2 to the situation with trial weights

being unequal a 'typical' sampling error σ2 of the included

trials is assumed [10]. To use a 'typical' sampling error σ2

may not be appropriate in some meta-analyses as weight
percentages of the trials easily range from 0.5% to 50% or
wider without a known distribution (Table 1 and Table
2). The attempt to estimate the trials' 'typical' sampling
error as a moment-based sampling error

[10] may be misleading as it attributes

less emphasis to the trials with a very high number of par-

ticipants and events. I2 is interpreted as  and

intends to measure the percentage of total meta-analysis
variability explained by between-trial variation. In this
vein,I2 has been interpreted as the between trial variance
relative to the sum of the between-trial variance and a 'typ-
ical' moment-based sampling error or as it has been
phrased: "the between-trial variance rather than the sam-
pling error"[10]. I2 achieves some of the desired properties
to characterise between-trial variability. However, the
concept of a 'typical' sampling error is not relevant if it
provides a misleading estimate, seriously distorting the

I2calculation or interpretation. If  overestimates the

sampling error then I2 will be underestimated and vice
versa. In such instances it may in fact be wise to abandon
the concept of a 'typical' sampling error.
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Table 1: Meta-analyses examples

Meta-analysis Title Intervention Outcome measure Number of trials Number of 
participants

Afshari and others
2007 [16]

Antithrombin III for 
critically ill patients

Antithrombin III Mortality 20 3,458

Al-Inany and others,
2006 [17]

Cycle cancellations due 
to poor ovarian 

response

Gonadotropin releasing 
hormone for assisted 
reproductive therapy

Number of cycle 
cancellations

13 2,543

Soll and others,
1997 [18]

Prophylactic surfactant 
to prevent morbidity 

and mortality in preterm 
infants.

Surfactant Mortality or 
pneumothorax

8 988

Wetterslev and Juhl,
2006 [19]

Effect of perioperative β-
blockade on non-fatal 

perioperative AMI

Perioperative β-
blockers for non-
cardiac surgery

Perioperative 
myocardial infarction 

within 30 days of 
operation

11 2,211

Bury and Tudehope,
2000 [20]

Effect of antibiotics on
necrotizing enterocolitis 

in newborn

Enteral antibiotics in 
newborn

Necrotizing 
enterocolitis

5 458

Li and others,
2007 [21]

Intravenous magnesium 
for acute myocardial 

infarction

Magnesium Mortality 23 72,472

Meyhoff and others,
2008 [22]

Perioperative ventilation 
with 80% versus 30% 

oxygen during intestinal 
surgery

Perioperative 
ventilation with 80% 

oxygen

Wound infection within 
15 days of surgery

4 989

Table 2: Derived data from meta-analyses examples

Meta-
analysis

Range of weights 
wi (% weights) in 
the fixed-effect 

model

Inconsistency
(I2)%

Diversity
(D2)%

(D2 - I2)% A priori 
relative risk 
reduction %

(RRR)

Unadjusted 
information 

size
(SS)

Heterogeneity-
adjusted

information size
(HIS)

Diversity-
adjusted 

information 
size

(DIS)

Afshari and 
others

2007 [16]

0.2-281
(0.04-80%)

0.0 0.0 0.0 10 3,317 3,317 3,317

Al-Inany and 
others,

2006 [17]

0.2-3.9
(1-18%)

7.2 13.9 6.7 25 3,516 3,789 4,083

Soll and others,
1997 [18]

3.6-22.2
(6.2-38.1%)

22.9 37.3 14.3 60 193 250 307

Wetterslev 
and Juhl,

2006 [19]

0.3-10.4
(1-42%)

13.4 40.5 27.1 20 8,421 9,726 14,164

Bury and 
Tudehope,
2000 [20]

1.5 - 9.6
(7-38%)

40.2 57.7 17.5 45 440 736 1,039

Li and others,
2007 [21]

0.24-565.1
(0.02-42%)

61.9 89.9 28.0 10 31,094 81,466 306,276

Meyhoff and 
others,

2008 [22]

1.3-15.2
(4-47%)

74.2 79.4 5.2 30 1,699 6,581 8,239
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If the focus is shifted towards a sufficient IS estimation,
then adjusting factors based on I2 calculated from a
moment-based sampling error may be insufficient. We
therefore suggest to consider an alternative adjusting fac-
tor to obtain an adequate estimation of the required IS.

2.3 Defining and implementing a measure of diversity
Assume we are interested in showing or rejecting a signif-
icant intervention effect, μ, regardless of the choice of
meta-analysis model (fixed or random). That is, assume μ
= μF = μR. We then define diversity (D2) as the quantity
compelled to satisfy the following equation:

Solving the equation with respect to D2 we get the defini-
tion of D2 explicitly:

As long as we do not know what the difference between I2

and D2 covers, knowing now from 2.9 that D2 reflects the
total relative variance expansion changing from a fixed-
effect into a random-effects model meta-analysis, we find
it wise to denote D2 diversity instead of just another calcu-
lation of heterogeneity. ARF will be an adjustment of NF to

NR taking into account the total variance expansion

changing from a fixed-effect into a random-effects model.
Hereby, D2 expresses the relative variance reduction when
the model of meta-analysis is changed from a random-
effects model into a fixed-effect model. D2 is the percent-
age of change in variance when the model is changed. D2

becomes exactly the proportion that the between-trial var-

iance component (τ2 = k·(VR - VF)) constitutes of the sum

of variances ( ) in the variance compo-

nent model if and only if  (a sampling error originat-

ing from diversity or the required information size) is
defined as:

Diversity can then be expressed as:

This way, D2 in a meta-analysis may become a central
measure of the between-trial variability relative to the sum
of the between-trial variability with an estimate of the
sampling error basically originating from the required
information size.

As such, D2 is able to quantify the relative model variance
change from a random-effects into a fixed-effect model.
More importantly D2, in contrast to I2, is not based on
underlying assumptions of a 'typical' sampling error that
are violated in most meta-analyses. D2 is the percentage of
the total variance (the sum of between trial variance and
sampling error), in a random-effects model, contributed
by the between trial variance.

2.4 Simulating meta-analyses
In our simulations, we considered meta-analyses with k =
6 and k = 20 trials. For each k, we considered the four com-
binations from two different average control event pro-
portions, (PC) of 10% and 30%, and two true values of
the overall effect in terms of odds ratios of 1 and 0.7. The
above values were selected aiming to cover different plau-
sible meta-analytic scenarios. In total, these values make
up for 8 simulation scenarios.

For each combination of the above mentioned variables
we generated data for k 2×2 tables. For all k trials, within
group sample sizes were determined by sampling an inte-
ger between 20 and 500 participants. Group sizes were
equal in each simulated trial. We drew the trial specific
control group event rate, PCi, from a uniform distribution,
PCi~U(PC-0.15, PC+0.15). We drew the number of
observed events in the control group from a binomial dis-
tribution eiC ~bin(ni, PCi). For each meta-analysis scenario
we varied the degree of heterogeneity by sampling the
between-rial standard deviation, τ (not the between-trial
variance τ2), from a uniform distribution, τ ~U(10-10,
SQRT(0.60)). We simulated the underlying true trial
intervention effects, as log odds ratio ln(ORi)~N(OR, τ 2),
where OR is the true intervention effect expressed as an
odds ratio. We drew the observed number of events in the
intervention group from a binomial distribution
eiE~bin(ni,PEi), where PEi = PCiexp(ln(ORi))/(1 - PCi +
PCiexp(ln(ORi)))

For all meta-analysis scenarios we simulated 10,000 meta-
analyses and for each of these we calculated the

 and the . For each scenario we
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plotted D2 against I2 and incorporated the line of unity in
the scatter-plot.

2.5 Selection of meta-analyses examples
We selected traditional random-effects meta-analyses to
cover a range of inconsistency I2 from 0% to 100% and to
come from a wide range of medical research fields.

Results
3.1 The relationship between diversity, D2, and 
heterogeneity, I2

We want to show that D2 ≥ I2 for all meta-analyses. This is
true if and only if:

According to a special case of the Chebyshev's inequality
[13] we arrange the weights so w1 ≥ w2 ≥ ...... wk., for any k
≥ 0 we then get that:

and hence:

and therefore

and subsequently:

We remember that Takouche et al. [14] proposed an esti-

mate of a 'typical' sampling error , which

yields the following relationship between  and :

So it follows from (3.5) that  for all meta-analy-

ses. Furthermore if we apply Chebyshev's inequality [13]

arranging the weights  and at the

same time w1 ≥ w2 ≥ ...... wk then:

 and as the random-effects weights are  and

the fixed-effect weights are  we get:

and hence:
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Remembering the definitions of  and  lead to:

and it appears from (3.7) that  for all meta-anal-

yses. As we have already shown in (3.5) that  it

becomes clear that  in all meta-analyses. As

 and with  it follows that:

and, finally, D2 ≥ T2 ≥ I2 in all meta-analyses.

3.2 Some useful properties of D2

Higgins and Thompson [10] specified three criteria that
should be met by any quantification of variability
between trials included in a meta-analysis: 1) the quantity
should be a monotonically increasing function of the

between-study variance, τ2; 2) the quantity should be
scale invariant; and 3) the quantity should be independ-
ent of the number of included trials. It is easily verified
that the D2 fulfils the first two of these criteria. The third
criterion may not be fulfilled, even by I2 (simulations by
K Thorlund, personal communication). However, D2

becomes independent of the numbers of trials included in

the meta-analysis, to the same degree as , because D2

is a transformation of  fulfilling the criterion accord-

ing to Higgins and Thompson [10]. Furthermore, it is easy
to show that:

demonstrating that the percentage of increase in variance
when the model of meta-analysis is changed from a fixed-
effect model into a random-effects model can, of course,
also be expressed in terms of diversity.

It is equally clear that D2 is always ≥ 0 as well as being < 1.
D2 is a fraction between 0 and 100% because:

as (1 + wi·τ2) ≥ 1 for all i and for all estimators of τ2

including the DerSimonian-Laird estimator

[15] with  being at least

greater than or equal to 0.

Furthermore, D2 = I2 when and only when all the weights
wi in the fixed-effect model are equal. D2is approximately
equal to I2 if:

Furthermore, D2 = 0 when and only when I2 = 0 because I2

= 0 when and only when τ2 = 0 the latter making  = 1

and hence .

3.3 Simulations of meta-analyses
We performed 8 simulation scenarios showing that D2

always exceeds I2 despite any assumptions. Meta-analyses
with all weights being equal corresponding to D2 = I2 were
rare. The pattern of data showed a greater degree of scatter
in the scenarios where k = 6. The results of the simulations
of 10 000 meta-analyses according to the combinations of
OR = 0.70, OR = 1.00 and PC = 30% with 6 and 20 trials,
respectively, are presented in figure 1 and figure 2. As seen
D2 exceeds I2 for all the simulated meta-analyses inde-
pendent of the chosen OR and number of trials in the
meta-analyses.

3.4 Examples

We used the expression of D2 to calculate this quantity in
seven traditional random-effects meta-analyses [16-22]
listed in Table 1. These meta-analyses cover a range of
inconsistency, I2, from 0% to 74.2% and come from dif-
ferent medical research fields: intensive care [16], assisted
reproductive technology [17], perioperative medicine
[19,22], neonatology [18,20], and cardiology [21]. The
results of the calculations of I2,D2, inconsistency-adjusted

information size HIS ( ), and diversity-
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adjusted information size DIS ( ) from these

meta-analyses are shown in Table 2. The range of the cal-
culated unadjusted SS range from 440 to 31,094 partici-
pants.

Figure 3 shows the relationship between D2, I2, and unity.
All the meta-analyses examples are shown as open circles
above the line of unity as D2 ≥ I2. The difference (D2 - I2)
increases with heterogeneity until a certain point, after
which the difference again regresses to 0.

Discussion
Using a mathematical derivation, meta-analyses simula-
tions, and examples of meta-analyses we derive a concept
of diversity, D2. D2 may be used for adjustment of the
required information size in any random-effects model
meta-analysis once the between trial variance is estimated.
Focusing on the required information size estimation in a
random-effects meta-analysis, D2 seems less biased com-
pared to I2. The D2 is directly constructed to fulfil the
requirements of the information size calculation and is
subsequently independent of any 'typical' a priori sam-
pling error estimate, whereas the I2 is influenced by an a
priori 'typical' sampling error estimate. We therefore find
that it is possible and appropriate taking D2 into consider-
ation to calculate the required IS in meta-analyses as DIS.

DIS has several advantages. It measures the required IS
needed to preserve the anticipated risk of type I and type
II errors in a random-effects model meta-analysis. DIS
considers total variance change when the model shifts
from a fixed-effect into a random-effects model. DIS is a
model dependent and derived estimate of the required IS.
The adjustment is dependent only on the anticipated
intervention effect and on the model used to incorporate

the between-trial variance estimate . D2 applies to ran-
dom-effects models other than that proposed by DerSi-
monian-Laird [16] as long as the between-trial estimator,

, is specified. The adjustment of IS does not depend on
the level of type I and II errors, as (Z1-α/2 + Z1-β)2 is levelled

out during the derivation of the adjustment factor ARF (see

equation 2.1, 2.2, and 2.5). The relationship D2 ≥ I2 in all
the simulations and in all the examples (shown as points
above the line of unity in figure 1, 2, and 3) are in accord-
ance with the properties of D2 compared to I2 derived in
section 3.1.

There are limitations of DIS. Like HIS the use of DIS can-
not compensate for systematic bias such as selection bias,
allocation bias, reporting bias, collateral intervention
bias, and time lag bias [5,23-28]. Furthermore, DIS is
always greater than or equal to HIS, which may emphasise

DIS SS

D
=

−1 2

t̂ 2

t̂ 2

Diversity (D2) compared to inconsistency (I2) in 10,000 simu-lations of meta-analyses with number of trials included k = 6Figure 1
Diversity (D2) compared to inconsistency (I2) in 
10,000 simulations of meta-analyses with number of 
trials included k = 6. Odds ratio = 1.00 and proportion of 
events in control group PC = 0.30. Meta-analyses depicted as 
open circles. D2 nears asymptotically to I2 when heterogene-
ity nears 0% or 100%. Line of unity, D2 = I2 black line.

Diversity (D2) compared to inconsistency (I2) in 10,000 simu-lations of meta-analyses with number of trials included k = 20Figure 2
Diversity (D2) compared to inconsistency (I2) in 
10,000 simulations of meta-analyses with number of 
trials included k = 20. Odds ratio = 0.70 and proportion of 
events in control group PC = 0.30. Meta-analyses depicted as 
open circles. D2 nears asymptotically to I2 when heterogene-
ity nears 0% or 100%. Line of unity, D2 = I2 black line.
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that caution is needed when interpreting meta-analysis
before the required DIS has been reached [2-8].

The calculation of HIS and DIS may seem to contrast the
SS calculation in a single trial where no adjustment for
heterogeneity or diversity is performed. However, Fedorov
and Jones [29] advocated the necessity of adjusting SS for
heterogeneity arising from different accrual numbers
among centres in a multi-centre trial in order to avoid the
trial being underpowered. If such an adjustment seems
fair for a single trial, it also appears appropriate for a meta-
analysis of several trials. As an example, we calculated the
DIS to 14,164 participants for a meta-analysis of the effect
on mortality of perioperative beta-blockade in patients for
non-cardiac surgery (Table 2). This may explain why a
recent meta-analysis of seven randomised trials with low-
risk of bias including 11,862 participants indicates, but
still does not convincingly show, firm evidence for harm
[30]. The actual accrual of 11,862 participants is beyond
the HIS of 9,726 participants, but below the DIS of 14,164
participants, and the meta-analysis [30] may still be
inconclusive. This suggest that HIS is not a sufficiently
adjusted meta-analytic information size. Furthermore, the
example demonstrates the important question of the sta-
bility of I2 and D2 beyond a certain number of trials in a

meta-analysis as I2 was 13.4% in the meta-analysis after
2,211 participants [19] and has now doubled to I2 =
27.0% after 11,862 accrued participants in the meta-anal-
ysis of seven trials with low-risk of bias [30]. The assump-
tion of I2 and D2 becoming stable after five trials is
probably wrong and illustrates the moving target concept,
which we have to face doing cumulative meta-analysis as
evidence accumulates. Although a moving target may
cause conceptual problems, a moving target may be better
than no target at all.

The assumption that the IS required for a reliable and con-
clusive fixed-effect meta-analysis should be as large as the
SS of a single well-powered randomised clinical trial to
detect or reject an anticipated intervention effect [2-4]
may not be necessary in some instances. The statistical
information (SINF) required in a meta-analysis could ulti-

mately be expressed as [31], with

δ being the effect size. As SINF is the reciprocal of the var-

iance in the meta-analysis, say , it follows that

in meta-analyses with , the amount

of information may eventually suffice to detect, or reject,

an effect size of δ, without yet having reached HIS or DIS.
This criterion, however, is not a simple one and may only
be fulfilled occasionally. Furthermore, it seems impossi-
ble to forecast or even to get an idea of the magnitude of

 in the beginning of a series of trials as well as along

the course of trials being performed.

D2 offers a number of useful properties compared to I2. In
contrast to I2, D2 reflects the relative variance expansion

due to the between trial variance estimate  without

assuming an estimate of a 'typical' sampling error σ2. D2 is

reduced when the estimate  is reduced, even for the
same set of trials. In case diversity is larger than inconsist-
ency this may be an indication that total variability
among trials in the meta-analysis is even greater than sug-
gested by I2. I2 is intrinsically influenced by a potentially

overestimated sampling error ( ), thereby underesti-

mating  and inherently placing less weight on

large trials with many events. On the other hand a 'typical'
sampling error originating from the required information
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size, , could be deduced from the D2. We would, how-

ever, advise great cautiousness in such an attempt. The dif-
ference (D2 - I2) reflects the difference of the moment-
based and the information size-based 'typical' sampling
error estimate. The calculation of diversity and (D2 - I2)
may serve as supplementary tools to the assessment of var-
iability in a meta-analysis. D2 is a transformation of the
variance ratio of the variances from the random-effects
model and the fixed-effect model. This variance ratio was
a candidate for the quantification of heterogeneity [10].

D2 may vary within the same set of trials when different

between trial variance estimators  are used in the corre-
sponding random-effects model. On the contrary, I2 is
intimately linked to the specific between trial variance
estimator in the DerSimonian-Laird random-effects

model as I2 by definition is [10] and Q is

used to estimate a moment-based between trial variance

[15]. The interpretation of heterogene-

ity  is obviously dependent on the variance esti-

mator  as well. An estimate of τ2 is a prerequisite for
any random-effects model and the actual estimated value,

together with the way  is incorporated into the model,
actually constitutes the model [32]. Therefore, a quantifi-
cation of the between-trial variability rather than sam-
pling error which is independent of the specific random-
effects model is impossible, as it is constituted by the
between trial variance estimator [32]. D2 adapt automati-
cally to different between trial variance estimators [32]
while I2 is linked to the estimator from the DerSimonian-
Laird random-effects model.

D2 may have some limitations too. The derivation of D2

depends on the assumption that the point estimate of the
intervention effect in the fixed-effect model and the point
estimate of the intervention effect in the random-effects
model are approximately equal. Meta-analyses with con-
siderable difference of the point estimate in the fixed-
effect model and the point estimate in the random-effects
model represent specific problems. Probably more infor-

mation is needed when μF >> μR since the formula

 yields higher values for NR under the

assumption of a constant variance ratio. On the other

hand less information may be needed when μF<<μR since

the formula  then yields lower values

for NR under the assumption of a constant variance ratio.

However, examples with considerable differences of the
point estimates in a fixed- and random-effects model pre-
sumably represent meta-analyses of interventions with
considerable between trial variance due to small trial bias.
The meta-analysis of the effect of magnesium in patients
with myocardial infarction is such an example [21] where
one large trial totally dominate the result in the fixed-
effect model but are unduly down-weighted in the ran-
dom-effects model. Care should be taken to interpret the
random-effects model despite any calculated information
size in such a situation. Further, to foresee a priori the size

of the difference between μF and μR seems impossible and

the calculation may then degenerate exclusively to a post
hoc analysis.

Second, D2, though potentially unbiased with respect to
information size calculations, could come with a greater
variance than I2 when both are calculated in the same set
of meta-analyses. This latter situation presents a poten-
tially unfavourable 'bias-variance-trade off' but an esti-
mate of its magnitude will have to await simulation
studies addressing the issue.

It may seem an advantage that I2 is always reported in
meta-analysis and therefore readily available to adjust the
expected information size. On the other hand

 is also calculable for meta-

analysis of ratio measures (e.g, RR or OR), widthF and

widthR refers to the widths of the confidence intervals for

the logarithmic transformed measures in the fixed-effect
and the random-effects models, respectively.

Last but not least the decision to pool intervention effect
estimates in meta-analysis should be the clinical relevance
of any inconsistency or diversity present. The between
trial variance,τ2, rather than I2 or D2, may be the appropri-
ate measure for this purpose [33-35].

The estimation of a required IS for a meta-analysis to
detect or reject an anticipated intervention effect on a
binary outcome measure should be considered based on
reasonable assumptions. Accordingly, it may not be wise
to assume absence of heterogeneity in a meta-analysis
unless the intervention effect is anticipated to be zero
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[36,37]. On the contrary it may be wise to anticipate mod-
erate to substantial heterogeneity (e.g., more than 50%)
in an a priori adjustment of the required IS [37]. The con-
cept of diversity points to the fact that an adjustment
based on the experience with inconsistency would result
in underestimated heterogeneity and hence an underesti-
mated required IS [37]. Alternatively for a future updated
meta-analysis to become conclusive we may apply the
actual estimated heterogeneity of the available trials in a
meta-analysis as the best we have for the adjustment of
the required IS. D2 seems more capable than I2 in obtain-
ing such an adequate adjustment.

Conclusion
A quantity to characterise the proportion of between trial
variation in any meta-analysis relative to the total model
variance of the included trials is needed. Diversity, D2,
may be such a quantity. D2 describes the relative model
variance reduction changing from a random-effects model
into a fixed-effect model. Diversity may be described as
the proportion of the total variance in a random-effects
model contributed by the between trial variation despite
the chosen between trial variance estimator. Furthermore,
D2 can adequately adjust the required information size in
any random-effects meta-analysis irrespective the meta-
analytic model.
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ŝ D
2
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