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Abstract

Background: Joint models for longitudinal and time-to-event data are commonly used to simultaneously analyse
correlated data in single study cases. Synthesis of evidence from multiple studies using meta-analysis is a natural
next step but its feasibility depends heavily on the standard of reporting of joint models in the medical literature.
During this review we aim to assess the current standard of reporting of joint models applied in the literature, and
to determine whether current reporting standards would allow or hinder future aggregate data meta-analyses of
model results.

Methods: We undertook a literature review of non-methodological studies that involved joint modelling of
longitudinal and time-to-event medical data. Study characteristics were extracted and an assessment of whether
separate meta-analyses for longitudinal, time-to-event and association parameters were possible was made.

Results: The 65 studies identified used a wide range of joint modelling methods in a selection of software.
Identified studies concerned a variety of disease areas. The majority of studies reported adequate information to
conduct a meta-analysis (67.7% for longitudinal parameter aggregate data meta-analysis, 69.2% for time-to-event
parameter aggregate data meta-analysis, 76.9% for association parameter aggregate data meta-analysis). In some
cases model structure was difficult to ascertain from the published reports.

Conclusions: Whilst extraction of sufficient information to permit meta-analyses was possible in a majority of cases,
the standard of reporting of joint models should be maintained and improved. Recommendations for future
practice include clear statement of model structure, of values of estimated parameters, of software used and of
statistical methods applied.
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Background
Joint modelling of longitudinal and time-to-event data is
an area of increasing research [1–3], which allows the
simultaneous modelling of a longitudinal (repeatedly
measured over time) outcome such as weekly biomarker
measurements, and a time-to-event (survival) outcome
such as time to death. The model consists of two sub-
models; a longitudinal sub-model (such as a linear mixed
effects model) and a time-to-event sub-model (such as a
cox proportional hazards models) which are linked using

an association structure that quantifies the relationship
between the outcomes of interest.
Within a single study, joint models have the potential

to reduce parameter estimate bias, account for dropout
in longitudinal studies and enable the inclusion of longi-
tudinal covariates measured with error in time-to-event
models [1, 4]. These qualities often make joint models
preferable to separate longitudinal or time-to-event ana-
lyses. Joint models have been applied in the literature to
investigate links between biomarkers and certain disease
events (e.g. in cancer studies), and to account for in-
formative study dropout.
Glass 1976 [5] defined meta-analysis (MA) as the stat-

istical analysis or pooling of results from separate
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studies. Such analyses can increase power and precision
compared to original studies, or answer questions add-
itional to those originally posed [6]. MA can be performed
on the original Individual Participant Data (IPD), or on
the study level results (published in the literature or ob-
tained from authors) termed Aggregate Data (AD). Over-
views of MA methodology can be found in Whitehead
2002 [7] and in the Cochrane handbook [6].
Whilst the benefits of joint modelling methods for in-

dividual studies are well established, little attention has
been given towards the potential value of pooling esti-
mates across similar studies in an aggregate data meta-
analysis (AD-MA) of joint models. However before an
AD-MA using published data can be undertaken, rele-
vant studies must be identified, and the necessary infor-
mation must be extracted. We aim to investigate the
reporting of joint longitudinal and time-to-event models
applied to real medical data in the literature to establish
whether current reporting practices would allow suffi-
cient data to be extracted to undertake AD-MA.

Methods
Identification of papers
We performed our systematic review in accordance to
the guidelines of the Preferred Reporting of Items for
Systematic Reviews and Meta-Analyses (PRISMA) [8]. We
searched the Medline, Pubmed and Scopus datasets for
studies using joint models for longitudinal and time-to-
event data to analyse medical data (search strategies
available in the Additional file 1).
Papers mentioning joint models for longitudinal (or

repeated measures over time) data and time-to-event (or
survival, event time or event history) data were identified.
Duplicates were identified and removed. Abstracts and
keywords were then examined, and irrelevant papers were
removed. Examples of disregarded papers include papers
modelling body joints, papers discussing joint models as a
future extension or alternative to methods used, or papers
using two stage approaches rather than simultaneous esti-
mation of the longitudinal and time-to-event sub-models.
Papers not relating to medical or biostatistical datasets
were discarded (e.g. data from plant or animal subjects ex-
cept from modelling of human diseases input into animal
hosts). Additionally papers involving repeated measures
over space rather than time were discarded (e.g. repeated
measures across tumour sites). If study relevancy was
unclear from the abstract, the full text was obtained and
viewed after which the study was included or discarded.
Any retained papers were sorted into an applied and a

methodological group. Some methodology papers pre-
sented results from application to example datasets. These
were considered reanalyses of data or demonstrations of
methods rather than primary analyses to influence future
practice. Also, methodological papers might be expected to

better report results as their authors are experts in the area.
The aim of this review was to assess how well joint models
are reported in the general medical literature, so we fo-
cussed on the applied group only.

Data extraction
A blank data extraction form is presented in Additional
file 2. During the investigation we refer to references
identified as applying joint models to relevant datasets
as studies. Other publications (e.g. those cited by studies)
are referred to as papers. Information recorded from identi-
fied studies included publication year, author, journal, joint
model type, sharing structure between the longitudinal and
time-to-event sub-models, types of sub-models, Bayesian or
frequentist methods, and software used. Disease area was
recorded (with respect to the type of longitudinal and time-
to-event data, for example studies modelling biomarkers in
heart disease patients after a transplant operation were
classed as transplant data).
The sources of the methods used were recorded. Spe-

cifically if the study developed methods specific to their
dataset, “own methods developed” was recorded. If the
study referenced specific papers as the source of the
methods they used the papers referenced were recorded.
Availability of information required for a MA was also

recorded (including the number of participants, signifi-
cance level, and presence longitudinal, time-to-event
and association parameters along with their precision es-
timates). The significance level used was identified
through direct statement in the text, or specified confi-
dence interval sizes on tables, graphs, or footnotes relating
to the joint models fitted. For a MA to be considered pos-
sible, the number of participants and model coefficients
had to be reported, with either a standard error, or a confi-
dence interval with accompanying significance level.
We assume for an AD-MA of joint longitudinal and

time-to-event models that a separate MA would be con-
ducted for each of the longitudinal, the time-to-event
and the association parameters from the identified stud-
ies. Consequently when identified studies were assessed
for sufficient information to conduct a MA, they were
assessed separately for longitudinal, for time-to-event
and for association information. Ideally all three separate
groups of MA would be conducted, however if insuffi-
cient information was reported only a subset of these
MA might be feasible.
The reason for joint models use (see Henderson et al

[9) may influence what information is presented in the
study report. If joint models were used to account for
informative dropout, the study might not report the
time-to-event parameter information (although if the
time-to-event endpoint is clinically defined then time-
to-event estimates should be reported). Similarly if interest
was to include a longitudinal variable measured with error
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as a time-variable covariate in a time-to-event model, the
study may not clearly report longitudinal sub-model pa-
rameters. To investigate whether the reason for joint
model use affected the proportion of possible MA for each
of the longitudinal, time-to-event and association param-
eter components, we investigated the proportions of
possible MA for studies using joint models to account
for dropout, or to account for error in a time-varying
covariate.
The aim of this review was not to perform any MA,

solely to assess if MA were undertaken, what proportion
of the identified studies could contribute.

Results
Searches were conducted on the 15th September 2015.
The number of references identified is shown in Fig. 1.
Once duplicate references were removed, (and an erratum
paper correcting an author’s name), 618 references
remained. Of these, we identified 210 methodological
papers, and disregarded 343 references. In total 65
studies [9–73] remained that applied joint models to

data with the aim of influencing healthcare rather than
solely presenting new joint modelling methods.

Characteristics of identified studies
Year of publication
The distribution of publication year of the studies was
skewed towards more recent dates with median publica-
tion year 2014 (interquartile range (IQ) 2011–2014, range
2001–2015). Figure 2 indicates an overall trend (with vari-
ation between years) of increasing numbers of applied
joint modelling papers published (although the maximum
number published in a year was only 20). On this graph
we have included lines numbered 1–6 at times when
significant joint modelling papers were published. In 1997
Wulfsohn and Tsiatis published a paper commonly cited
as one of the first joint modelling papers [74] (line 1). In
2000, Henderson et al [9] extended this methodology, with
discussion of different sharing structures between the
sub-models (line 2). In 2004 two papers were published,
by Tsiatis and Davidian [1] (a review of joint modelling
methodology), and by Guo and Carlin [75] (examples of
implementation of joint modelling in current software)

Fig. 1 Flowchart of study identification
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(line 3). In 2010 Rizopoulos published a paper detailing
the R joint modelling package JM [76] (line 4), and
2012 saw the publication of a joint modelling textbook
[77], and papers describing joint modelling options in
Stata (Crowther et al [78]) and the joineR package in R
(Philipson et al [79]) (line 5). Also Crowther et al pub-
lished further papers on joint modelling in Stata in 2013
[80, 81] (line 6). In addition to these events the number of
joint modelling workshops, talks and related conferences
has increased in recent years (see https://www.liverpool.
ac.uk/translational-medicine/departmentsandgroups/joine-
r/workshops/, http://eur.academia.edu/DimitrisRizopoulos/
Talks, http://www2.le.ac.uk/departments/health-sciences/
research/biostats/staff-pages/mjc76, accessed 28 Nov 2016).
Whilst it is unclear which of these publications or events
contributed to increases in use of joint modelling methods,
an increase is noticeable in the application of joint model-
ling after 2012.

Full text or abstract
Full articles were obtained for 63 studies (96.9%) [9–21,
23–54, 56–73], with abstracts available for 2 studies
(3.1%) [22, 55]. Of the identified studies, some individuals
were listed as authors on multiple studies, suggesting that
the group of individuals applying joint modelling methods
may be limited.

Disease area
The disease areas of the studies were wide ranging
(Table 1), with the most common including Cancer,
HIV/AIDs, transplant data and cognitive decline. This
wide range of disease areas demonstrates the applicability
of joint modelling methods to a variety of medical fields,
however also indicates that currently finding multiple joint

Fig. 2 Year of publication of identified studies. Line numbers
identify possibly influential publications (see main text)

Table 1 Characteristics of identified studies

N (%)

Full text or abstract available

Full text 63 (96.9)

Abstract 2 (3.1)

Disease Area

Cancer related data 10 (15.4)

HIV/AIDS 9 (13.8)

Patient status after transplants 8 (12.3)

Cognitive decline 7 (10.8)

Glaucoma 4 (6.2)

Renal disease 4 (6.2)

Disability in the elderly 3 (4.6)

Heart related data 3 (4.6)

Schizophrenia 3 (4.6)

Sclerosis 3 (4.6)

Other 11 (16.9)

Journal

Statistics in Medicine 5 (7.7)

Journal of the Royal Statistical Society. Series C:
Applied Statistics

4 (6.2)

Ophthalmology 3 (4.6)

Quality of Life Research 3 (4.6)

Journal of the American Geriatrics Society 2 (3.1)

Journal of the American Statistical Association 2 (3.1)

Journals of Gerontology - Series B Psychological
Sciences and Social Sciences

2 (3.1)

Statistical Methods in Medical Research 2 (3.1)

Other (only one study per journal) 45 (64.6)

Reason for joint modelling use*

To investigate the link between longitudinal and
time-to-event outcomes

43 (66.2)

To account for dropout 22 (33.8)

To include longitudinally measured variable in
time-to-event model

4 (6.2)

To increase efficiency 3 (4.6)

To reduce bias 2 (3.1)

Easier to interpret 1 (1.5)

To use of all available data 1 (1.5)

*Note for “disease area” and “journal” only one value was recorded per
included study giving total N = 65, however for “reason for joint modelling
use” multiple reasons could be recorded per included study giving total N ≥ 65

Sudell et al. BMC Medical Research Methodology  (2016) 16:168 Page 4 of 11

https://www.liverpool.ac.uk/translational-medicine/departmentsandgroups/joine-r/workshops/
https://www.liverpool.ac.uk/translational-medicine/departmentsandgroups/joine-r/workshops/
https://www.liverpool.ac.uk/translational-medicine/departmentsandgroups/joine-r/workshops/
http://eur.academia.edu/DimitrisRizopoulos/Talks
http://eur.academia.edu/DimitrisRizopoulos/Talks
http://www2.le.ac.uk/departments/health-sciences/research/biostats/staff-pages/mjc76
http://www2.le.ac.uk/departments/health-sciences/research/biostats/staff-pages/mjc76


modelling studies applied to the same area to pool in an
AD-MA could be problematic.

Journal
The studies identified were published in a range of jour-
nals, with 8 journals occurring more than once (Table 1),
indicating that there may not currently a preferred jour-
nal to present joint modelling studies in.

Reason for use of joint model
The reasons given for using joint models are summarised
in Table 1 (with some studies providing multiple reasons
giving a total greater than 65). The two most common
reasons for joint model use were to investigate the link be-
tween the outcomes, or to account for dropout. Only 4
studies stated that they used a joint model to include a
time varying covariate in the time-to-event sub-model.

Source of methods used
Of the included studies 18 (27.7%) used study specific
modelling methods, whilst the remainder cited methods
described in other papers. In total 38 unique papers
were cited for methods, with ten cited by more than one
study (see Table 2, references included in table). Some
papers were software specific (e.g., Rizopoulos 2010 [76]
and 2012 [77] are R related, whilst Crowther et al 2013
[81] is Stata related). Others provided methodology and
implementation overviews (e.g., Proust-Lima et al [82]
and Guo-Carlin [75]).

Modelling approach
Of the 65 included studies, 45 (69.2%) took a frequentist
approach, 17 (26.2%) took a Bayesian approach, 1 (1.5%)
took both (in separate model fits) and in 2 (3.1%) studies
it was unclear (these were the two abstracts). The larger
proportion of frequentist approaches may be attributable
to the larger number of papers and based on frequentist
methods. Additionally the main joint modelling textbook
[77] deals with frequentist methods.
There were 21 unique model types recorded for the lon-

gitudinal sub-model (plus 1 study with unclear type). Linear
mixed effects models were most common (35 studies,
53.8%), followed by mixed effect models with splines (6
studies, 9.2%) or mixed models with unspecified structure
(5 studies, 7.7%). Other methods used included different
mixed models dependent on latent class, non-linear models
with or without splines, and models with change points.
The methods used for the time-to-event sub-model

varied widely (and were unclear in 4 studies). The Cox
proportional hazards (PH) model was most common (8
studies, 12.3%). Other methods included models with
parametric baselines, such as a Weibull PH model (5
studies, 7.7%), a PH model with piecewise constant base-
line (4 studies, 6.2%), or a spline modelled baseline

hazard (2 studies, 3.1%). Parametric models included the
Weibull (5 studies, 7.7%) and the exponential (1 study,
1.5%), and 1 study (1.5%) examined both Weibull and
exponential models.

Sharing structure between longitudinal and time-to-event
sub-models
The structures used to link the longitudinal and time-to-
event sub-models are listed in Table 2. Some studies

Table 2 Methods used in identified studies

N (%)

Source of joint modelling methods used

Own methods developed 18 (27.7)

Guo-Carlin 2004 [75] 13 (20.0)

Rizopoulos 2010 JM R package [76] 10 (15.4)

Henderson et al 2000 [9] 7 (10.8)

Tsiatis and Davidian 2004 [1] 7 (10.8)

Rizopoulos 2012 [77] 6 (9.2)

Wulfsohn and Tsiatis 1997 [88] 6 (9.2)

Diggle et al 2008 [89] 3 (4.6)

Crowther et al 2013 [81] 2 (3.1)

Proust-Lima et al 2009 [82] 2 (3.1)

Rizopoulos 2011 [90] 2 (3.1)

Approach

Frequentist 45 (69.2)

Bayesian 17 (26.2)

Both 1 (1.5)

Unclear 2 (3.1)

Sharing structure

Fixed and Random Effects 33 (50.8)

Current Value of Fixed and Random Effects 24 (36.9)

Current Slope (first derivative) of Fixed and
Random Effects

3 (4.6)

Current Value of Fixed and Random Effects and
Current Slope (first derivative) of Fixed and Random
Effects

5 (7.7)

Fixed and random effects without covariates 1 (1.5)

Random Effects only 27 (41.5)

Intercept only 5 (7.7)

Random Effects with covariates 7 (10.8)

Random Effects without covariates 9 (13.8)

Random Effects unclear with or without covariates 6 (9.2)

Latent Class 3 (4.6)

Specialist sharing structure 4 (6.2)

Unclear 4 (6.2)

Note for “Approach” only one value was recorded per included study giving
total N = 65, however for “Source of joint modelling methods used” and
“Sharing structure” multiple reasons could be recorded per included study
giving total N ≥ 65
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fitted multiple joint models, with varying sharing struc-
tures, allowing a total of more than 65 recorded sharing
structures.
Any sharing structure (also termed association structure)

involving a function of both fixed and random effects is
designated “Fixed and Random effects” whereas those in-
volving random effects but no fixed effects are termed
“Random Effects only”. Fixed and random effects sharing
structures (33 studies, 50.8%) model effects of aspects of
the overall longitudinal outcome value on the time-to-
event outcome. The random effects only sharing structures
(27 studies, 41.5%) model the effect of individual deviation
from the population mean longitudinal outcome on the
time-to-event outcome. A description of fixed and random
effects sharing structures is given in Rizopoulos 2012 [77],
whilst Henderson et al [4] discuss random effects only shar-
ing structures. Additionally Rizopoulos and Ghosh [83] and
Gould [84] discuss a range of association structures.
The fixed and random effect sharing structures can be

subdivided further. Current value refers to models insert-
ing the current longitudinal trajectory value into the time-
to-event sub-models, and is used when the current overall
value of the longitudinal trajectory affects the risk of an
event. The current slope or first derivative of the popula-
tion trajectory could also be inserted into the time-to-
event sub-model, in conjunction with the current value or
alone, and is used to model the effect of rate of change of
the longitudinal variable on the risk of an event. Another
fixed and random effects sharing structure identified in
one study, inserted the fixed and random effects coeffi-
cients of the longitudinal trajectory into the time-to-event
sub-model without their related covariates.
Random effects only sharing structures can also be

grouped. We define a random effects only sharing
structure to contain covariates if it is of format such as
α(U0 +U1t) or α1U0 + α2U1 + α3(U0 +U1t) where the α
terms are association parameters, the U terms are ran-
dom effects, and t represents a covariate such as time.
Alternatively, if the structure is similar to α(U0 +U1),
where the random effect U1 had a covariate t in the
longitudinal sub-model, we define the random effects
only sharing structure to not contain covariates (see
Henderson et al [9] for further examples).
The specialist sharing structure group (4 studies

(6.2%)) contained less common sharing structures such
as associating the time-to-event and longitudinal sub-models
through a multivariate distribution. Another option was the
latent class structure [3, 82], used in at least one joint model
in 3 studies (4.6%). Finally 4 (6.2%) studies, including the 2
abstracts, had unclear sharing structures.
We should note that choice of association structure

should be driven by the data itself, and so it is expected
to see a range of sharing structures given the range of
disease areas of the identified studies.

Software
The software and package used in the included studies is
listed in Table 3. Packages/methods have been stated in
Table 3 even if no identified studies currently used them.

Table 3 Software used in joint model fits in included studies

Software N (%)

R [91] 21 (32.3)

R (JM) [76] 15 (23.1)

R (JMBayes) [92] 0 (0)

R (joineR) [79] 1 (1.5)

R (frailtypack) [93] 0 (0)

R (JM and joineR) [76, 79] 1 (1.5)

R (unspecified package) 2 (3.1)

R (own code developed, unclear if available) 2 (3.1)

SAS [94] 13 (20.0)

SAS (PROC NLMIXED) 10 (15.4)

SAS (own code available) 1 (1.5)

SAS (unspecified) 2 (3.1)

JM Macro [95] 0 (0)

JMFit Macro [96] 0 (0)

Stata [97] 5 (7.7)

Stata (stjm) [80] 2 (3.1)

Stata (unspecified) 3 (4.6)

WinBUGS [98] 4 (6.2)

WinBUGS (own code available) 2 (3.1)

WinBUGS (no available code) 1 (1.5)

WinBUGS (unspecified) 1 (1.5)

OpenBUGS (no available code) 1 (1.5)

Fortran 3 (4.6)

Fortran (code available, not study specific) 1 (1.5)

Fortran (own code developed) 1 (1.5)

Fortran (study states code available) 1 (1.5)

NONMEM (unspecified) [99] 2 (3.1)

C++ (own code unclear if available) [100] 1 (1.5)

Mplus (unspecified) [101] 1 (1.5)

More than one software listed/potentially used 4 (6.2)

R (JM) or SAS (unspecified) 1 (1.5)

R or SAS (unspecified) 1 (1.5)

WinBUGS and R (Directed Acyclic Graph provided) 1 (1.5)

WinBUGS and R (own code available) 1 (1.5)

Unclear 10 (15.4)

Note that studies could report multiple joint fits using different software, so
total N ≥ 65. For Mclain [43] R code is stated as available in supplementary
material, which was missing when accessed. Lawson [37] may have used
WinBUGS but without seeking confirmation from the authors this was classed
as unclear software. For Fortran see http://www.fortran.com/, accessed 28
Nov 2016)
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Software used was not always stated by identified studies,
a potential issue for future MA when determining exact
modelling structure used. The most mentioned software
was R, although SAS and Stata were also common. Some
of the software identified requires more coding from users
(such as C++ WinBUGs), which might explain the prefer-
ence for software with specific joint modelling packages.
The current preference in R is for the JM package [76]

(implements frequentist joint models that insert the
fixed and random effects of the longitudinal sub-model
into the time-to-event sub-model), and PROC NLMIXED
in SAS (allows fitting of a range of non-linear mixed
models). The popularity of JM might be explained by the
availability of a textbook with worked examples of joint
model implementation using the package [77].
In four studies (6.2%) more than one software was

stated, it was unclear which implemented the joint model
fit.

Did studies report sufficient information to contribute to
meta-analyses?
For an identified study to contain sufficient information
to contribute to a MA, it must report a sample size. For
each meta-analysis group (longitudinal, time-to-event,
association), the relevant parameter estimates must be
reported with a precision estimate (a standard error, or a
confidence interval with related significance level). A
summary of this information is given in Table 4.
The sample size was reported in the majority (98.5%)

of the identified studies, with median sample size of 514
(IQR 277–1054.5, range 46–3814).
The association parameters were more commonly re-

ported (51 studies (78.5%)) than those of the longitu-
dinal and time-to-event sub-models (45 (69.2%) and 46
(70.8%) respectively). This could be attributable to the
high proportion of identified studies that stated that
joint models were used to investigate the link between
longitudinal and time-to-event outcomes.

The number of studies where a precision measure was
available was comparable to the number of studies that re-
ported coefficients, across the three MA categories. Whilst
a MA would be possible for each category if the param-
eter, the standard error and the sample size were reported,
if the only available precision estimate was the confidence
interval then the significance level was also required. In
the studies we identified, the significance level was unclear
for 8 (12.3%) studies, was 0.05 for 53 (81.5%) studies, 0.01
for 3 (4.6%) studies, 0.1 for 1 (1.5%) study.
Overall, a MA would be possible for the association

parameter in 50 (76.9%) studies, for the longitudinal
parameters in 44 (67.7%) studies, and for time-to-event
parameters in 45 (69.2%) studies.
Ideally, a study would provide enough information to

perform MA in all three separate groups. Sufficient in-
formation to allow all three MA to be undertaken was
available from 38 (58.5%) of the studies. Only two MA
were possible in 6 studies (9.2%), only 1 in 13 studies
(20.0%) and in 8 studies (12.3%) there was not sufficient
information to complete any MA.
The reasons for joint model use may affect the informa-

tion stated in the study report. We re-examined the pro-
portions of studies in which the three groups of MA could
take place, dependent on the reason for joint model use
(Table 4).
For the 22 studies which stated accounting for dropout

as a reason for joint model use, we saw a much higher
percentage (81.8%) for which MA of longitudinal sub-
model parameters was possible, compared to for all stud-
ies (67.7%). However percentages of MA possible for the
time-to-event coefficients or association parameters were
smaller. This could be explained by studies using joint
models to account for dropout being mainly interested in
the parameters from the longitudinal sub-model.
Only 4 studies stated inclusion of a time varying co-

variate in a time-to-event model as one of their reasons
for using joint models. There was a slight indication that

Table 4 Summary of information available to contribute to meta-analysis

Longitudinal MA Time-to-event MA Association MA

Coefficients reported (%) 45 (69.2) 46 (70.8) 51 (78.5)

Precision reported (%) 44 (67.7) 45 (69.2) 50 (76.9)

Standard Errors reported (%) 22 (33.8) 23 (35.4) 25 (38.5)

Confidence Intervals (CI) reported (%) 30 (46.2) 32 (49.2) 36 (55.4)

Significance level reported (%) 57 (87.7) 57 (87.7) 57 (87.7)

Sample size reported (%) 64 (98.5) 64 (98.5) 64 (98.5)

MA possible given reported information (%)

All identified studies (N = 65) 44 (67.7) 45 (69.2) 50 (76.9)

Studies using joint models to account for dropout (N = 22) 18 (81.8) 14 (63.6) 15 (68.2)

Studies using joint models to include time varying covariate
in time-to-event sub-model (N = 4)

2 (50.0) 3 (75.0) 3 (75.0)
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the longitudinal coefficients for studies using joint models
to include time varying covariates in time-to-event models
are worse reported than for all identified studies, possibly
because the longitudinal component of the joint model is
of interest as a covariate rather than an outcome in these
cases, however more information is needed before this
relationship can be fully investigated.

Discussion
Joint models for longitudinal and time-to-event data are
often stated as beneficial compared to separate longitu-
dinal or time-to-event analyses, as they can reduce bias
and increase efficiency in model estimation (see Ibrahim
et al 2010 [85] for example). Additionally Powney et al
2014 [86] discuss a study where joint models showed a
significant difference between treatment groups that was
not identified by separate analyses [87]. These benefits
of joint models reinforce the suggestion that in certain
circumstances MA of joint models may be more appro-
priate than MA of separate models.
We aimed through our search strategy to identify all

studies that implemented joint models to influence future
healthcare, and believe that the studies identified are rep-
resentative of the current literature. However if studies
did not state the key search terms used in this review (see
Additionnal file S1 for search strategies) in text accessible
to the search, the study may not have been identified. For
example, from Powney et al [86] we know that the
MAGNETIC trial [87] utilised joint models, however
this is not mentioned in the abstract. When joint models
are not used as part of the primary analyses, their use may
be unclear from the abstract or keywords. Therefore we
include statement of statistical methods used in text ac-
cessible to search engines to our recommendations for fu-
ture reporting of joint models, stated in Table 5.
With the increasing use of joint models in the litera-

ture, ensuring they are well reported is vital so that the
analyses can be interpreted fully and that the published
data can be used in future evidence synthesis. We have
identified that for the scenario of AD-MA of the results
of joint models published in the literature, it was pos-
sible to perform MA from a high proportion but not all
studies. We would recommend for future practice that
regardless of the reason for joint model use, full model

covariates with precision estimates be reported either in
the study report or supplementary materials (Table 5)
not only to aid interpretation within the study itself, but
to ensure that future MA would be possible.
Additionally it is important that model structure (both

sub-models and the sharing structures that link them)
are clearly reported (Table 5). However in some cases
model formulae were not reported, a particular issue
identified for association parameters. We have noted the
multiple association structures available to researchers.
Due to the different interpretation of each, it may not
make sense to pool association parameters from radically
different sharing structures. Without clear statement of
the model structure it may be difficult to conduct a future
MA. It would be beneficial if studies applying joint models
included statement of the model structure as standard to
give clarity to the methods used.
Also, it is important especially in joint modelling to state

the software and packages or functions used, as the soft-
ware used could indicate the model structure, as well as
methods used to obtain the parameter estimations
(Table 5).
Consistently, the proportion of studies where association

parameter MA was possible was higher than the propor-
tion where MA was possible for longitudinal or time-to-
event parameters. The association information may have
been more commonly reported than the longitudinal or
time-to-event information because the association parame-
ters in shared random effect models quantify the link be-
tween the sub-models. It can be expected therefore that
studies aiming to quantify the link between the sub-models
report the association information more prominently than
other model parameters.

Conclusion
Overall, this investigation has highlighted the need to fully
report the coefficients and precision estimates in studies
applying joint models to datasets. Whilst this review iden-
tified a limited number of studies that fulfilled our criteria,
the range of disease areas covered by the studies was large
with applications using a wide range of sub-models and
association structures being published in an assortment of
journals by a range of authors. It may be some years be-
fore there are sufficient studies published in one area to
conduct a meta-analysis of joint models. Nevertheless our
review has demonstrated that the use of joint models is in-
creasing every year and the availability of software to fit a
range of flexible models is likely to facilitate their applica-
tion even further.
In the future the current standard of joint modelling

should be maintained and improved upon, following the
recommendations given in this paper, in order that in-
formation from published studies can be used for the
purpose of MA.

Table 5 Recommendations for future reporting of joint models

1. Model structure (longitudinal and time-to-event sub-models, and
association structure) be clearly stated

2. Estimates of all model coefficients and their precisions be available
in main or supplementary material

3. Software (and packages) used to fit models be stated, or code
available on request from author

4. Statistical methods should be mentioned in text accessible to search
engine to aid identification of papers in meta-analyses
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