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Abstract

Background: In a random effects meta-analysis model, true treatment effects for each study are routinely assumed
to follow a normal distribution. However, normality is a restrictive assumption and the misspecification of the random
effects distribution may result in a misleading estimate of overall mean for the treatment effect, an inappropriate
quantification of heterogeneity across studies and a wrongly symmetric prediction interval.

Methods: We focus on problems caused by an inappropriate normality assumption of the random effects
distribution, and propose a novel random effects meta-analysis model where a Box-Cox transformation is applied to
the observed treatment effect estimates. The proposed model aims to normalise an overall distribution of observed
treatment effect estimates, which is sum of the within-study sampling distributions and the random effects
distribution. When sampling distributions are approximately normal, non-normality in the overall distribution will be
mainly due to the random effects distribution, especially when the between-study variation is large relative to the
within-study variation. The Box-Cox transformation addresses this flexibly according to the observed departure from
normality. We use a Bayesian approach for estimating parameters in the proposed model, and suggest summarising
the meta-analysis results by an overall median, an interquartile range and a prediction interval. The model can be
applied for any kind of variables once the treatment effect estimate is defined from the variable.

Results: A simulation study suggested that when the overall distribution of treatment effect estimates are skewed,
the overall mean and conventional I2 from the normal random effects model could be inappropriate summaries, and
the proposed model helped reduce this issue. We illustrated the proposed model using two examples, which
revealed some important differences on summary results, heterogeneity measures and prediction intervals from the
normal random effects model.

Conclusions: The random effects meta-analysis with the Box-Cox transformation may be an important tool for
examining robustness of traditional meta-analysis results against skewness on the observed treatment effect
estimates. Further critical evaluation of the method is needed.

Keywords: Meta-analysis, Random effects model, Skewed data, Box-Cox transformation

Background
Meta-analysis is a useful statistical tool for combining
results from independent studies, for example where esti-
mates of a treatment effect (e.g odds ratio, mean differ-
ence or standardised mean difference) from randomised
controlled trials are pooled in order to make infer-
ences about an overall summary effect. A random effects
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meta-analysismodel that assumes different true treatment
effects underlying different studies is often needed as it
allows for unexplained heterogeneity across studies [1]. In
the random effects model, the true treatment effects for
each study are usually assumed to follow a normal distri-
bution; thus, an overall mean (summary) effect is obtained
by estimating the mean parameter of this distribution.
In this article, we focus on problems caused by an inap-

propriate normality assumption of the random effects
distribution, in particular in regard to the impact on
the mean effect estimate, quantification of heterogeneity
and prediction interval. Turner et al. [2] suggested that
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the misspecification of the random effects distribution
seriously affected the estimates of the random effects vari-
ances. Lee and Thompson [3] showed that the shape of the
predictive distributions of the treatment effect was sub-
stantially affected by the shape of the assumed random
effects distribution. The normality assumptionmay there-
fore be a restrictive assumption for meta-analysts who
are interested in producing a summary treatment effect,
quantifying heterogeneity and deriving a prediction inter-
val, especially if the true random effects distribution is
skewed.
Alternative parametric distributions have been consid-

ered for the random effects distribution in mixed mod-
els; for example, t-distribution [4], gamma or mirrored
gamma distribution [2], Laplace (double-exponential) dis-
tribution [5], skewed normal or skewed t-distribution [3],
mixture distributions [6]. And also, as an approach to out-
liers in meta-analysis, Baker and Jackson [7] proposed a
model that allows the random effects to be long-tailed,
which provides a down-weighting of outliers and removes
the necessity for an arbitrary decision to exclude the out-
liers. Gumedze and Jackson [8] used likelihood ratio test
statistics to detect and down-weight outliers in the meta-
analysis. However, each has disadvantages as discussed
in Lee and Thompson [3]; for example, the mixture dis-
tributions can fail in situations where there are a few
outliers. When assuming a skewed distribution for the
random effects in a meta-analysis, the mean and the vari-
ance are not appropriate representatives for summarising
the skewed true treatment effects. The overall mean for
the skewed treatment effects would be pulled in the direc-
tion of the extreme observed estimates; hence, it could
result in misleading conclusions from themeta-analysis. It
is also not straightforward to quantify the impact of het-
erogeneity, such as I2, if there is a non-normal random
effects distribution. Indeed, Higgins et al. [9] mentioned
that some alternative parametric distributions may not
have parameters that naturally describe an overall effect,
or the heterogeneity across studies.
Here, we propose a novel random effects meta-analysis

model, where a Box-Cox transformation [10] is applied
to the observed treatment effect estimates. The aim of
the Box-Cox transformation is to achieve approximate
normality of the overall distribution of the observed treat-
ment effect estimates after transformation. The use of
the Box-Cox transformation in linear models has been
studied extensively [11–14]. In particular, Gurka et al.
[15] provided an extension of the Box-Cox transformation
to linear mixed models and demonstrated that a sin-
gle transformation parameter would simultaneously help
achieve normality of both the random effects and the
residual error. However, the Box-Cox transformation has
not been used commonly in the context of meta-analysis.
Indeed, a work by Kim et al. [16] is the only meta-analytic

application of the Box-Cox transformation that we are
aware of. They proposed a multivariate response Box-Cox
regression model for modelling individual patient data
(IPD). However, the approach by Kim et al. [16] cannot
apply to the cases of more readily available aggregate data
(such as observed estimates of the treatment effect and
their standard errors), because their model just allows
the individual patient responses to be transformed and
thus requires IPD. We rather consider transforming the
observed treatment effect estimates using the Box-Cox
transformation and suggest summarising the overall effect
by an overall median rather than the overall mean, and
quantifying the impact of heterogeneity by an interquar-
tile range rather than commonly used I2. The method no
longer requires the IPD.
In this section, we introduce two motivating examples

which will be used for illustrating the proposed model.
In the “Methods” section, we introduce the standard nor-
mal random effects models, and describe how to make the
Bayesian inference in the random effects meta-analysis
from the following viewpoints: the overall mean effect,
the heterogeneity and the prediction interval. And then,
we describe our new random effects model with the Box-
Cox transformation. In the “Results” section, we conduct a
simulation study to examine the performance of our pro-
posed model under some situations where true random
effects follow non-normal distributions, and compare the
results with those from the standard normal random
effectsmodel.Moreover, we illustrate our proposedmodel
using the examples. Finally, we conclude this article with
some discussion.

Motivating examples
Example 1: Teacher expectancy on pupil IQ
Raudenbush [17] reviewed randomised experiments of
the effects of teacher expectancy on pupil IQ (see also
Raudenbush and Bryk [18] for the details). The research
question was: do pupils have a better performance if
their teacher expected them to perform well? In each of
19 experiments identified, after administering an intelli-
gence test to a sample of students, a randomly selected
portion of the students were identified to their teach-
ers as “likely to experience substantial intellectual growth"
(the treatment group). All students were tested again,
and the standardised mean difference between the test
scores of students in the treatment group and those of
the other students was evaluated as a treatment effect.
The data from the 19 experiments was obtained from
Table 18.2 in Hartung et al. [19]. Figure 1a shows a forest
plot and a histogram of the estimates of the standard-
ised mean differences, with positive values indicating a
higher mean score for the treatment (high-expectancy)
group. Although the histogram is a slightly naive dis-
play because it ignores the different weighting (number of
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(a) Example 1: Teacher expectancy on pupil IQ
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(b) Example 2: Antidepressants for reducing pain in fibromyalgia syndrome

Fig. 1 Forest plot and histogram. a 19 experiments investigating teacher expectancy on pupil IQ, b 22 studies investigating antidepressants for
reducing pain in fibromyalgia syndrome

participants) in the studies, it does suggest the presence
of positive skewness in the observed distribution of the
estimates.

Example 2: Antidepressants for reducing pain in fibromyalgia
syndrome
Hauser et al. [20] reported a meta-analysis of randomised
controlled trials to investigate the efficacy of antidepres-
sants for fibromyalgia syndrome, which is a chronic pain
disorder associated with multiple debilitating symptoms.
22 trials using different classes of antidepressants were
involved in the analysis, and estimates of the standard-
ised mean difference in pain (for the antidepressant group
minus the control group) were combined using a random
effects model. The data was obtained from Figure 3 in
Riley et al. [21]. Figure 1b shows a forest plot and a simple
histogram of estimates of the standardised mean differ-
ences, with negative values indicating a benefit for the
antidepressants. The histogram suggests the presence of
negative skewness on the estimates.

Methods
Normal random effects model
We first consider the standard normal random effects
model for a meta-analysis of k studies. Let yi and σ 2

i be
an estimate of a treatment effect and its variance observed
from the ith study (i = 1, . . . , k), respectively. Then the
normal random effects model is given by

yi = θi + εi, (1)
θi = θ + ui,

εi ∼ N
(
0, σ 2

i
)
, ui ∼ N

(
0, τ 2

)

where θi is the true (but unknown) treatment effect for
the ith study and is represented by the sum of θ and ui.
The ui is assumed to follow a normal distribution with
mean zero and variance τ 2, indicating that the true treat-
ment effect for the ith study, θi, is normally distributed
about θ with the between-study variance τ 2. εi is a sam-
pling error within the ith study and is assumed to follow
a normal distribution with mean zero and variance σ 2

i ,
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where the within-study variance σ 2
i is commonly consid-

ered to be known. Of key interest is an estimate of the
mean parameter of the random effects distribution, θ , as
this provides the mean treatment effect of the included
studies. Also of interest is an estimate of τ 2, to quantify
the amount of heterogeneity and to derive a 95 percent
prediction interval [9].

Bayesian estimation ofmodel parameters
We here use a Bayesian approach for estimating param-
eters involved in the normal random effects model (1).
Marginalising the true treatment effect (θi) from a joint
distribution of yi and θi, we have yi ∼ N

(
θ , τ 2 + σ 2

i
)
.

Given θ and τ 2, the conditional density function of y =
(y1, . . . , yk) is written as

p(y|θ , τ 2) =
k∏

i=1

1√
2π

(
τ 2 + σ 2

i
)1/2 exp

{

− (yi − θ)2

2
(
τ 2 + σ 2

i
)

}

.

Then a posterior distribution of θ and τ 2 can be given as

p
(
θ , τ 2|y) ∝ p

(
y|θ , τ 2) p (

θ , τ 2
)

where p(θ , τ 2) is a prior density for θ and τ 2. Since min-
imally informative prior distributions are appropriate in
the absence of definite priori information, we here use the
following vague priors:

θ ∼ N(0, 10000), (2)
τ ∼ U(0, b)

where b is a constant value given by practitioners. It is well
known that the results from Bayesian meta-analyses could
be potentially sensitive to the choice of prior distributions,
especially to the prior of the between-study variance τ 2

(e.g. see Lambert et al. [22] for the details). Various non-
informative priors for τ 2 have been suggested in previous
researches; for example, a uniform prior on τ [23, 24], a
uniform prior on log(τ 2) [25], an inverse-gamma prior on
τ 2 [26] and a half-Cauchy prior on τ [24]. We consider the
uniform prior on τ in the range of (0, b), where the upper
limit, b, should be decided according to the individual
situations. The uniform prior on the standard deviation
increasingly becomes known as a reasonable alternative to
a more general inverse-gamma prior on variance (e.g. see
Gelman [24] for the details). In practice the sensitivity of
specified priors should be investigated by applying many
other priors for the parameters or by using prior distribu-
tion based on empirical evidence [27, 28], though we in
this article avoid the extensive discussion for the prior. In
the Bayesian framework, a posterior mean and a 95 per-
cent credible interval are commonly used for summarising
the posterior distribution. We implement our Bayesian
analysis by using Markov chain Monte Carlo (MCMC)

methods, with a free R software and its rstan package (see
the Stan Modelling Language User’s Guide and Reference
Manual [29] for the details). The source code for conduct-
ing meta-analyses with the normal random effects model
(1) is shown in Additional file 1.

Quantification of heterogeneity
The magnitude of heterogeneity across studies can be
quantified by the posterior estimate of the between-study
variance τ 2 or its square root. In the Bayesian framework,
we obtain the posterior distribution of τ 2 and its credible
interval, which can be used for quantifying the magnitude
of the between-study heterogeneity of the true treatment
effects. However, the between-study variance may be sen-
sitive to the metric of the treatment effect, and thus this is
not necessarily appropriate for the purpose of comparing
several meta-analyses in terms of the heterogeneity [30]. If
we are interested in what proportion of the observed vari-
ance reflects real differences in the treatment effect, the I2
proposed by Higgins and Thompson [30] is useful for this
purpose. Under the normal random effects model (1), the
I2 is expressed as a function of τ 2, given by

I2 = τ 2

τ 2 + s2
(3)

where

s2 = (k − 1)
∑k

i=1 1/σ 2
i(∑k

i=1 1/σ 2
i

)2 − ∑k
i=1

(
1/σ 2

i
)2
. (4)

Here, s2 is referred to as ‘typical’ within-study variance. In
this article, we calculate I2 based on the estimated τ 2 dur-
ing each sample of the Bayesian estimation process; that is,
we summarise the posterior distribution of I2 derived by
using samples of τ 2 drawn from its posterior distribution.

Prediction interval
In the Bayesian framework, a predictive distribution of the
treatment effect in a new study is given by

p(θnew|y) =
∫∫

p
(
θnew|θ , τ 2) p (

θ , τ 2|y) dθdτ 2. (5)

Following estimation of model (1) using the MCMC, a
(100 − q) percent prediction interval is obtained by tak-
ing (q/2)th and (100 − q/2)th quantiles of samples drawn
from the predictive distribution (5). For example, lower
and upper bounds of 95 percent prediction interval are
given by 2.5th and 97.5th quantiles of samples from the
predictive distribution, respectively. Note that this is just
one option for obtaining the 95 percent prediction inter-
val, and other ways of defining the interval can be chosen
depending on where we want to take the lower and upper
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limits. When interest lies in predicting probability that the
treatment is effective by more than a clinically important
difference in a new study, we can find this by calculat-
ing the proportion of samples drawn from the predictive
distribution which satisfy a specified criteria for the effec-
tiveness of the treatment (e.g. odds ratio < 80 percent).
The sampling can be achieved by first drawing samples
of parameters from the posterior distribution p

(
θ , τ 2|y)

and then drawing samples from p
(
θnew|θ , τ 2) with fixed

parameters obtained in the previous step [4]. In the sec-
ond step, the drawing is performed by θnew ∼ N

(
θ , τ 2

)
. In

this manner, the prediction interval accounts for the het-
erogeneity in true treatment effects and naturally incorpo-
rates all parameter uncertainty (e.g. in θ and τ 2). It should
be interpreted differently from the credible interval for
the mean effect, which only indicates the uncertainty in
the mean effect itself, not the entire distribution of true
treatment effects across studies [21].

Random effects model with Box-Cox transformation
Box-Cox transformation
Before giving our proposed model, we first introduce the
Box-Cox transformation for a standard consideration of
a continuous variable. The aim of the Box-Cox transfor-
mation is to achieve approximate normality of a variable
(say, yi) after transformation [10]. Roughly saying, it can
be used for changing scale of data so that the trans-
formed data are distributed symmetrically. In particular,
we consider a normalised shift transformation given by

yi(λ,α) =

⎧
⎪⎨

⎪⎩

(yi + α)λ − 1
λġ(α)λ−1 , λ �= 0

log(yi + α)ġ(α), λ = 0
(6)

for yi + α > 0 (i = 1, . . . , k), where we keep yi for ease of
notation, though yi could refer to any continuous measure
(not just an effect size). λ and α denote a transformation
and a shift parameter respectively, and these parameters
are estimated from the observed data. ġ(α) is a geomet-
ric mean of yi + α for i = 1, . . . , k. The normalisation
using the geometric mean ġ(α) could lead a stable estima-
tion of λ and α, in comparison with a standard Box-Cox
transformation without the normalisation.
To be exact, it is proper to assume that the transformed

variable yi(λ,α) follows a truncated normal distribution
except for the case of λ = 0, because of the condi-
tion that yi + α must be a positive value. When interest
lies in inference in original scale before transformation
(not in the scale after transformation), we need to specify
the distribution of the observed values before the Box-
Cox transformation and deal with the truncation precisely
[31–34]. However, these are beyond the scope of this
article. For mathematical convenience, we below assume

that the transformed variable yi(λ,α) follows a normal
distribution with no consideration of the truncation.

Proposedmeta-analysis model and its estimation
Let yi’s be the treatment effect estimates (e.g. log odds
ratio or mean difference) from the available studies in a
meta-analysis. We propose the following random effects
model for the Box-Cox transformed yi:

yi(λ,α) = μi + εi, (7)
μi = μ + ui,

εi ∼ N
(
0,φ2

i (λ,α)
)
, ui ∼ N(0, τ 2).

The model structure is basically same as the normal ran-
dom effects model (1), though now the Box-Cox trans-
formation (6) is applied to the observed treatment effect
estimates for each study and μi denotes a true effect of
the Box-Cox transformed variable yi(λ,α) which has a
‘known’ variance of φ2

i (λ,α) (see section below). The pro-
posed model aims to improve the overall normality of
the observed treatment effects estimates (yi) across stud-
ies; their overall distribution is the sum of the random
effects distribution of true effects and the within-study
sampling distribution of estimates. As long as the stud-
ies have reasonable sample size, the within-study sampling
distribution of yi will be approximately normal due to the
central limit theorem. However, there is no such guaran-
tee for the random effects distribution [7], and thus any
asymmetry in the random effects distribution will conse-
quently cause asymmetry in the overall distribution for
yi. The following processes are required to implement the
proposed random effects model (7).

Definition of variance of the Box-Cox transformed
treatment effect estimate In the proposed model (7),
the variance of the Box-Cox transformed treatment effect
estimate, φ2

i (λ,α); i.e. the variance of yi(λ,α) given μi,
must be defined. Since the variance needs to be assigned
for each study separately, we here approximate the vari-
ance of yi by a first order Taylor series about yi(λ,α) =
E[ yi(λ,α)] as follows:

V [ yi] ≈ V [ yi(λ,α)]
{

∂yi
∂yi(λ,α)

∣∣
∣∣
yi(λ,α)=E[yi(λ,α)]

}2

=

⎧
⎪⎪⎨

⎪⎪⎩

V [ yi(λ,α)] ġ(α)2λ−2 {
λġ(α)λ−1E[ yi(λ,α)]+1

}2/λ−2 , λ �= 0

V [yi(λ,α)]
ġ(α)2

exp
{
2E[yi(λ,α)]

ġ(α)

}
, λ = 0

.

For V [yi]= σ 2
i , E [yi(λ,α)]= μ and V [yi(λ,α)]= φ2

i
(λ,α), we have an approximation of the variance of the
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Box-Cox transformed treatment effect estimate, written
by

φ2
i (λ,α) ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ 2
i

ġ(α)2λ−2
{
λġ(α)λ−1μ + 1

}2−2/λ , λ �= 0

σ 2
i ġ(α)2 exp

{
− 2μ
ġ(α)

}
, λ = 0

(8)

where recall α is the shift parameter, λ is the transfor-
mation parameter, ġ(α) is the geometric mean of yi + α

for i = 1, . . . , k, μ is the mean parameter of the random
effects distribution in the transformed scale and σ 2

i is the
within-study variance from the ith study. The relation-
ship between variances before and after transformation
has been applied for stabilising variance [35, 36] or rep-
resenting inhomogeneity variances in linear models with
Box-Cox transformation weighting [37].

Frequentist estimation of λ and α We treat the trans-
formation parameter λ and the shift parameter α as non-
stochastics; i.e. we first estimate these parameters by a
maximum likelihood estimation, and then make inference
about the other parameters μ and τ 2 conditioning on λ =
λ̂ and α = α̂, where λ̂ and α̂ are maximum likelihood esti-
mates of λ and α respectively. Maruo and Goto [34] has
investigated the influence of not considering the uncer-
tainty associated with estimation of λ, and showed the
confidence interval around the median from an univari-
ate analysis with the Box-Cox transformation was slightly
liberal (from two to three percent).
A log likelihood function for (μ, τ 2, λ,α) is given by

l(μ, τ 2, λ,α) =
k∑

i=1

[

− 1
2
log

(
τ 2 + φ2

i (λ,α)
)

− (yi(λ,α) − μ)2

2(τ 2 + φ2
i (λ,α))

]

.

(9)

A grid search procedure is one simple approach for find-
ing λ̂ and α̂ which maximises the log likelihood (9) with
respect to λ and α. For a large set of values for (λ,α),
the log likelihood can be rewritten as l(μ, τ 2, λ,α) =
lλ,α(μ, τ 2) where μ and τ 2 vary but λ and α are fixed.
Maximising lλ,α(μ, τ 2)with respect toμ and τ 2, we obtain
their estimates for the fixed λ and α as

(
μ̂(λ,α), τ̂ 2(λ,α)

) = argmax
μ, τ 2

lλ,α
(
μ, τ 2

)
.

Substituting the estimates μ̂(λ,α) and τ̂ 2(λ,α) into
lλ,α(μ, τ 2), then we have a log likelihood lλ,α(μ̂(λ,α),
τ̂ 2(λ,α)) for the fixed λ and α. Then, we obtain a set of

(λ,α) for which the log likelihood takes the largest value
as the approximate values of λ̂ and α̂.
An issue known as non-regular problem is caused in the

maximum likelihood estimation of α because the range
of the distribution is determined by the unknown shift
parameter α [38, 39]. For example, it is argued that the
likelihood function of α fails to have a local maximum
[38]. In this article, we focus on the inference in the orig-
inal scale before transformation; hence, we assume the
concern about the estimation of α would not have sub-
stantial impact than if we were interested in the exact
estimation of the transformation and the shift parameter
(λ and α) themselves. This could be an area of further
research.

Bayesian estimation of model parameters Given λ̂ and
α̂ (i.e. optimum transformation of the treatment effect,
yi(λ̂, α̂) for i = 1, . . . , k and their variances), we take a
Bayesian approach to estimation of the unknown param-
eters from the Box-Cox meta-analysis model (7), μ and
τ 2. Marginalising the true treatment effect (μi) from a
joint distribution of yi(λ̂, α̂) and μi, we have yi(λ̂, α̂) ∼
N(μ, τ 2 + φ2

i (λ̂, α̂)). The posterior distribution of μ and
τ 2 is given by

p(μ, τ 2|y; λ̂, α̂) ∝ p(y|μ, τ 2; λ̂, α̂)p(μ, τ 2)

where

p(y|μ, τ 2; λ̂, α̂) =
k∏

i=1

[
1√

2π(τ 2 + φ2
i (λ̂, α̂))1/2

exp
{

− (yi(λ̂, α̂) − μ)2

2(τ 2 + φ2
i (λ̂, α̂))

}]

.

(10)

We assume the vague priors for μ and τ 2 in the same
way as (2); i.e. μ ∼ N(0, 10000) and τ ∼ U(0, b),
where b is a constant value given by practitioners. It is
straightforward to draw samples from the posterior dis-
tribution (10) by MCMC. The source code for conducting
meta-analyses with the proposed model (7) is shown in
Additional file 1, which includes the step of finding the
maximum likelihood estimates of λ and α.

Interpretation of results
Amedian overall treatment effect We first define a true
effect of the untransformed variable yi as

θ∗
i ≡

⎧
⎨

⎩

{
λġ(α)λ−1μi + 1

}1/λ − α, λ �= 0

exp
{

μi
ġ(α)

}
− α, λ = 0

(11)

which is derived by back-transforming the μi. Since we
are interested in estimating an overall effect in original
scale before transformation (i.e. a centre of the distribu-
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tion of θ∗
i , not of μi), it is useful to consider statistical

measures induced from the distribution of θ∗
i . Note that

μi ∼ N(μ, τ 2), then the pth percentile of the distribu-
tion of μi is given by μ + τzp, where zp denotes the pth
percentile of a standard normal distribution. Thus, substi-
tuting μ + τzp into (11), we obtain the pth percentile of
the distribution of θ∗

i as

ξp =
⎧
⎨

⎩

{
λġ(α)λ−1(μ + τzp) + 1

}1/λ − α, λ �= 0

exp
{

μ+τzp
ġ(α)

}
− α, λ = 0

. (12)

And also, the median of the distribution of θ∗
i is given by

ξ50 =
⎧
⎨

⎩

{
λġ(α)λ−1μ + 1

}1/λ − α, λ �= 0

exp
{

μ
ġ(α)

}
− α, λ = 0

. (13)

The median (13) can now be used for the inference of an
overall (summary) treatment effect on the original scale.
We recommend using the median as a representative of
centre of skewed distributions, which is more robust than
the mean against the skewness and the outliers on the
observed treatment effect estimates.

Quantification of heterogeneity using the ratio of IQR
squares Under the normal random effects model (1), the
between-study variance τ 2 and the I2 can be used for
quantifying the magnitude and the impact of the het-
erogeneity across studies, respectively. However, when
considering skewed distributions, variance is not the most
appropriate measure for describing the spread of the
distributions. In general, the variance is defined as an
expected value of the squared deviation from the mean,
though in the skewed-data situation the data is no longer
distributed symmetrically around the mean. Due to the
skewness or the heavy-tailedness of the data, the variance
may lead a wrongly large spread of the distribution. That
is, under the proposed model (7), the variance of the dis-
tribution of θ∗

i does not provide appropriate information
about the heterogeneity across studies. For this reason, we
here use an interquartile range (IQR) instead of the vari-
ance, which is defined as the difference between 75th and
25th quantiles for the distribution of θ∗

i ; i.e. ξ75 − ξ25 from
(12). Against the skewness of the data, the IQR is known as
a more robust measure of spread than the variance. Note
that the IQR of a normal distribution is exactly equal to
the product of its standard deviation and z75 − z25. There-
fore, if we observe normally distributed treatment effect
estimates, a measure of

ξ75 − ξ25
z75 − z25

(14)

from the proposed model (7) would be close to the square
root of between-study variance from the normal random

effects model (1). For this comparability, we recommend
using the measure of (14), which is known as normalised
IQR, for quantifying the magnitude of the heterogeneity.
We also define a criteria for quantifying the impact of

the heterogeneity for the skewed treatment effects. Note
that yi(λ,α) ∼ N

(
μ, τ 2 + φ2

i (λ,α)
)
, then the pth per-

centile of the distribution of yi(λ,α) is given by μ + (τ 2 +
φ2
i (λ,α))1/2zp. Substituting a ‘typical’ within-study vari-

ance like (4) into the φ2
i (λ,α) and back-transforming the

pth percentile into the original scale, we obtain the pth
percentile of the distribution of yi as

νp =

⎧
⎪⎪⎨

⎪⎪⎩

{
λġ(α)λ−1(μ+(τ 2+d2)1/2zp)+1

}1/λ−α, λ �= 0

exp
{

μ + (τ 2 + d2)1/2zp
ġ(α)

}

− α, λ = 0

(15)

where

d2 = (k − 1)
∑k

i=1 1/φ2
i (λ,α)

(∑k
i=1 1/φ2

i (λ,α)
)2 − ∑k

i=1
(
1/φ2

i (λ,α)
)2

denotes the ‘typical’ within-study variance of the Box-Cox
transformed variables. Obviously from the definition by
(3), the I2 has an aspect of the proportion of the between-
study variation that is due to the heterogeneity across
studies (variance of θ∗

i ) to the total variation in the treat-
ment effect estimates (total variance of yi). In the similar
concept, we now consider using a ratio of IQR squares
alternative to the I2, which is defined as

(IQR of the distribution of θ∗
i )2

(IQR of the distribution of yi)2
= (ξ75 − ξ25)2

(ν75 − ν25)2
. (16)

The ratio of IQR squares would be comparable with the
I2 when the treatment effect estimates are normally dis-
tributed, because of the comparability between the IQR
and the between-study variance.

Prediction interval Under the proposed model (7), we
first consider a predictive distribution of the Box-Cox
transformed treatment effect which is given by

p(μnew|y; λ,α) =
∫∫

p(μnew|μ, τ 2)p(μ, τ 2|y; λ,α)dμdτ 2.

As described in the previous section, the sampling from
p(μnew|y; λ,α) can be achieved by first drawing samples of
parameters from the posterior distribution p(μ, τ 2|y; λ,α)

and then drawing samples from p(μnew|μ, τ 2) with fixed
parameters obtained in the previous step. In the second
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step, the drawing is performed by μnew ∼ N(μ, τ 2). Then,
we obtain the samples from the predictive distribution of
the treatment effect by back-transforming the samples of
μnew as

θ∗
new =

⎧
⎨

⎩

{
λġ(α)λ−1μnew + 1

}1/λ − α, λ �= 0

exp
{

μnew
ġ(α)

}
− α, λ = 0

. (17)

A (100 − q) percent prediction interval can be obtained
by taking (q/2)th and (100 − q/2)th quantiles of samples
drawn from the predictive distribution (17). Again, note
that this is just one option for obtaining the 95 percent
prediction interval as mentioned in the previous section.

Another transformation for dealing with the negative
skewness
As described in the previous section, the Box-Cox trans-
formation (6) requires the condition that yi + α must be a
positive value for i = 1, . . . , k, which can cause difficulty in
estimating the model parameters. This may also be more
problematic when the treatment effect estimates have
negative skewness, because the shift parameter is subject
to inflation in such situation. In order to avoid the negative
skewness on the treatment effect estimates, we here con-
sider another transformation using a sign inversion. The
transformation with the sign inversion described below
will be applied only when the observed treatment effect
estimates are negatively skewed.
We first distinguish which direction the skewness is in

on the treatment effect estimates. A sample skewness with
inverse-variance weightings defined as

∑k
i=1

(
yi−ȳw
sw

)3/
σ 2
i

∑k
i=1 1/σ 2

i
(18)

can be used for this, where

ȳw =
∑k

i=1 yi/σ 2
i∑k

i=1 1/σ 2
i
, s2w =

∑k
i=1(yi − ȳw)2/σ 2

i∑k
i=1 1/σ 2

i
.

If the weighted sample skewness (18) take a negative value,
we invert the sign of the treatment effect estimates (i.e.
multiply the estimates by −1) and then apply the Box-
Cox transformation to the inverted estimates. That is, we
use the following transformation for the negatively skewed
data:

yi(λ,α) =
{

(−yi+α)λ−1
λḣ(α)λ−1 , λ �= 0

log(−yi + α)ḣ(α), λ = 0
(19)

where ḣ(α) is now a geometric mean of −yi + α for i =
1, . . . , k. For each study, the same within-study variances
can be assigned to the inverted treatment effect estimates.

The random effects model (7) with the transformation
(19) is applied in the same manner as the implement-
ing procedures described in the previous section. And
also, instead of (11), the true effect of the untransformed
variable yi is now defined as

θ∗
i ≡

⎧
⎪⎨

⎪⎩

−
{
λḣ(α)λ−1μi + 1

}1/λ + α, λ �= 0

− exp
{

μi
ḣ(α)

}
+ α, λ = 0

.

Then, instead of (12) and (15), we have the pth percentiles
of the distribution of θ∗

i and yi as follows:

ξp =

⎧
⎪⎨

⎪⎩

−
{
λḣ(α)λ−1(μ + τzp) + 1

}1/λ + α, λ �= 0

− exp
{

μ+τzp
ḣ(α)

}
+ α, λ = 0

and

νp=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
{
λḣ(α)λ−1(μ+(τ 2+d2)1/2zp)+1

}1/λ+ α, λ �= 0

− exp
{

μ + (τ 2 + d2)1/2zp
ḣ(α)

}

+ α, λ = 0

which can be used for estimating the overall median effect
and the ratio of IQR squares. The prediction interval is
also obtained by the same procedure described in the pre-
vious section, except for the step of back-transforming the
samples of μnew. Instead of (17), we here use

θ∗
new =

⎧
⎪⎨

⎪⎩

−
{
λḣ(α)λ−1μnew + 1

}1/λ + α, λ �= 0

− exp
{

μnew
ḣ(α)

}
+ α, λ = 0

for obtaining samples from the predictive distribution.

Implementation of our proposedmodel
We here summarise an implementation procedure of our
proposed model using the Box-Cox transformation with
the sign inversion for negatively skewed data:

1. Calculate the weighted sample skewness (18).
2. If the weighted sample skewness calculated in Step 1

takes a negative value, invert the sign of observed
treatment effect estimates and then move to Step 3;
otherwise just move to Step 3.

3. Calculate the maximum likelihood estimates of the
transformation (λ) and the shift (α) parameter using
the log-likelihood function (9).

4. Perform the Bayesian estimation (MCMC sampling)
for the other parameters given the maximum
likelihood estimates of the transformation and the
shift parameter.

5. Calculate the measures of interest (overall median,
normalised IQR and ratio of IQR squares) using the
MCMC samples obtained in Step 4.
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6. Draw samples from the predictive distribution using
the MCMC samples obtained in Step 4, and calculate
the prediction interval.

Steps 1 and 2 are needed only when applying the sign
inversion. Without the sign inversion, we will begin the
procedure from Step 3.

Results
Simulation study
We conducted a simulation study to examine the compar-
ative performance of the standard normal random effects
model (1) and the proposed model (7). Since the proposed
model allows the presence of skewness on the treatment
effect estimates, we supposed some situations where the
true treatment effects had a skewed distribution, and
compared results from the two models in terms of the
estimation of overall effect and the quantification of het-
erogeneity. We also supposed another situation where the
treatment effect estimates were normally distributed. In
such situation, the two models are expected to provide
similar results.

Design
Table 1 shows an overview of the simulation study. Under
several scenarios of random effects distributions, we con-
sidered simulating 10,000 meta-analyses of k studies,
where the number of studies was fixed in each simulation
with k ∈ {5, 10, 20, 40}. A treatment effect estimate yi and
a within-study variance σ 2

i for the ith study (i = 1, . . . , k)
were randomly generated with the procedures of Steps 1-6
in Table 1. We below describe each step in detail.
In Step 1, a random effects distribution was chosen from

candidates. We considered a variety of random effects
distributions (normal distribution, skew-normal distribu-
tion [40, 41], shifted exponential distribution and shifted
log-normal distribution) which a true treatment effect θi
for the ith study was drawn from. The normal distribu-
tions were chosen for examining how the proposed model
worked in the case of symmetrically distributed data that
could be precisely fit by the normal random effects model.
The skew-normal distributions were chosen for imitating
situations with moderate to large skewness in a positive
and a negative directions. The shifted exponential and
the shifted log-normal distributions were chosen for imi-
tating situation with heavy-tailed data as well as positive
skewness. True parameters in the random effects distribu-
tions were specified so that the median of the distribution
became equal to zero, and the normalised IQR square of
the distribution became one of either (0.025, 0.067, 0.400).
The setting of zero overall medianmeans a null hypothesis
of no treatment effect. The scenario of the true normalised
IQR square is equivalent to setting the true ratio of the
IQR squares as (20.0%, 40.0%, 80.0%) which are obtained

Table 1 Overview of the simulation study

Step 1 Choose a random effects distribution f (ψ) from candidates
including normal distributions, skew-normal distributions,
shifted exponential distributions and shifted log-normal
distributions, where ψ represents a true parameter vector
of the random effects distribution.

Step 2 Choose the number of studies (k), mean of the distribution
for the within-study variance (σ 2) and true parameters of
the random effects distribution (ψ ).

Step 3 Draw a within-study variance of the treatment effect esti-
mate for the ith study (i = 1, . . . , k); σ̃ 2

i ∼ N(σ 2, 0.040)
conditioned on 0.010 < σ̃ 2

i < (2σ 2 − 0.010).

Step 4 Draw a sampling error of the treatment effect estimate for
the ith study (i = 1, . . . , k); ε̃i ∼ N(0, σ̃ 2

i ), where σ̃ 2
i is

obtained in Step 3.

Step 5 Draw a true treatment effect for the ith study (i = 1, . . . , k);
θ̃i ∼ f (ψ), where f (ψ) is the specified random effects
distribution with the true parameter ψ .

Step 6 Obtain a treatment effect estimate for the ith study (i =
1, . . . , k); ỹi = θ̃i + ε̃i , where ε̃i and θ̃i are obtained in step 4
and step 5 respectively.

Step 7 Using ỹi and σ̃ 2
i for i = 1, . . . , k, fit the normal random

effects model (1) and the proposed model (7) separately.

Step 8 Obtain a posterior median and a 95 percent credible inter-
val of the overall mean from the normal random effects
model (1), and those of the overall median from the pro-
posed model (7). Check whether their credible intervals
contain the true overall median of 0.000.

Step 9 Obtain a posterior median and a 95 percent credible inter-
val of the I2 from the normal random effects model (1), and
those of the ratio of IQR squares from the proposed model
(7). Check whether their credible intervals contain the true
ratio of IQR squares given by one of either (20.0%, 40.0%,
80.0%).

Step 10 Repeat Steps 1 to Step 9 10,000 times.

Step 11 Using the posterior medians of the overall mean or the
overall median obtained in Step 8, compute a bias and a
root mean square error around the true overall median of
0.000.

Step 12 Obtain a coverage probability of the overall mean or the
overall median by computing the proportion of the time
that the 95 percent credible intervals contained the true
overall median of 0.000.

Step 13 Using the posterior medians of the I2 or the ratio of IQR
squares obtained in Step 9, compute a bias and a rootmean
square error around the true ratio of IQR squares given by
one of either (20.0%, 40.0%, 80.0%).

Step 14 Obtain a coverage probability of the I2 or the ratio of IQR
squares by computing the proportion of the time that the
95 percent credible intervals contained the true ratio of IQR
squares given by one of either (20.0%, 40.0%, 80.0%).

by plugging in the true normalised IQR squares under the
‘typical’ within-study variance of 0.100, such as 0.200 =
0.025/(0.025 + 0.100). Table 2 shows the values of true
parameters included in each random effects distribution.
And also, the random effects distributions are graphically
illustrated for each scenario in Additional file 2: Figure S1,
Figure S2, Figure S3, Figure S4, Figure S5, Figure S6 and
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Table 2 Scenarios of random effects distributions and their true parameters

Random effects Normalised Ratio of
distribution Scenario True parameter Median IQR IQR squares

Scenario 1-3: Normal distribution (N)

N(mean,variance) 1 N(0, 0.15812) 0.000 0.025 20.0%

2 N(0, 0.25822) 0.000 0.067 40.0%

3 N(0, 0.63252) 0.000 0.400 80.0%

Scenario 4-6: Skew-normal distribution with moderate positive skewness (pSN1)

SN(location,scale,slant) 4 SN(−0.1724, 0.2547, 5) 0.000 0.025 20.0%

5 SN(−0.2812, 0.4159, 5) 0.000 0.067 40.0%

6 SN(−0.6883, 1.0198, 5) 0.000 0.400 80.0%

Scenario 7-9: Skew-normal distribution with large positive skewness (pSN2)

SN(location,scale,slant) 7 SN(−0.1734, 0.2557, 20) 0.000 0.025 20.0%

8 SN(−0.2829, 0.4192, 20) 0.000 0.067 40.0%

9 SN(−0.6923, 1.0258, 20) 0.000 0.400 80.0%

Scenario 10-12: Skew-normal distribution with moderate negative skewness (nSN1)

SN(location,scale,slant) 10 SN(0.1715, 0.2546,−5) 0.000 0.025 20.0%

11 SN(0.2803, 0.4154,−5) 0.000 0.067 40.0%

12 SN(0.6874, 1.0195,−5) 0.000 0.400 80.0%

Scenario 13-15: Skew-normal distribution with large negative skewness (nSN2)

SN(location,scale,slant) 13 SN(0.1725, 0.2556,−20) 0.000 0.025 20.0%

14 SN(0.2820, 0.4191,−20) 0.000 0.067 40.0%

15 SN(0.6914, 1.0255,−20) 0.000 0.400 80.0%

Scenario 16-18: Shifted exponential distribution (EXP)

EXP(rate,shift) 16 EXP(5.1507,−0.1348) 0.000 0.025 20.0%

17 EXP(3.1542,−0.2202) 0.000 0.067 40.0%

18 EXP(1.2877,−0.5377) 0.000 0.400 80.0%

Scenario 19-21: Shifted log-normal distribution (LN)

LN(mean,variance,shift) 19 LN(0, 0.15782,−1) 0.000 0.025 20.0%

20 LN(0, 0.25692,−1) 0.000 0.067 40.0%

21 LN(0, 0.61472,−1) 0.000 0.400 80.0%

Figure S7 show density functions of the random effects
distribution for the scenarios 1-3, 4-6, 7-9, 10-12, 13-15,
16-18 and 19-21, respectively.
In Step 2, we set the number of studies, mean of the

distribution for the within study variance and true param-
eters of the random effects distribution. In Steps 3-6, we
obtained treatment effect estimates for each study. In par-
ticular, the within-study variance σ 2

i was drawn from a
normal distribution withmean σ 2 and variance 0.040 con-
ditioned on 0.010 < σ 2

i < (2σ 2 − 0.010). The mean of the
normal distribution, σ 2, was chosen so that the ‘typical’
within-study variance (4), which depended on the number
of studies involved in the meta-analysis, became 0.100 on
average. We set the value of σ 2 to either 0.1089, 0.1122,

0.1147, 0.1158 in each simulation with k = 5, 10, 20, 40,
respectively.
In Step 7, using the generated meta-analysis data, we fit

the normal random effects model (1) and the proposed
model (7) separately. In the proposed model, we also
applied the transformation with the sign inversion for the
negatively skewed data. Note that the transformation with
the sign inversion is applied only when the observed treat-
ment effect estimates are negatively skewed. And then, in
Steps 8-9, we computed the posterior medians and the
95 percent credible intervals of: the overall mean and the
I2 from the normal random effects model (1), the overall
median and the ratio of IQR squares from the proposed
model (7).
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In Steps 11-14, we calculated the following quantities
for comparing the two models (normal random effects
model/proposed model):

• Bias around the true overall median: (mean of the
posterior medians of the overall mean/the overall
median)−(true overall median of 0.000)

• Root mean square error (RMSE) around the true
overall median: ((standard deviation of the posterior
medians of the overall mean/the overall
median)2+(bias around the true overall median)2)1/2

• Coverage probability of the true overall median (%):
the proportion of the time that the 95 percent
credible intervals of the overall mean/the overall
median contained the true overall median of 0.000

• Bias around the true ratio of IQR squares: (mean of
the posterior medians of the I2/the ratio of IQR
squares)−(true ratio of IQR squares given by one of
either (20.0%, 40.0%, 80.0%))

• RMSE around the true ratio of IQR squares: ((mean
of the posterior medians of the I2/the ratio of IQR
squares)2+(bias around the true ratio of IQR
squares)2)1/2

• Coverage probability of the true ratio of IQR squares
(%): the proportion of the time that the 95 percent
credible intervals of the I2/the ratio of IQR squares
contained the true ratio of IQR squares given by one
of either (20.0%, 40.0%, 80.0%)

We notice that using the terms of bias, RMSE and cov-
erage probability for the results from the normal random
effects model is not necessarily correct. This is because
the normal random effects model provided the results of
overall mean and I2, which were not the targeted true
values (or the reference values). However, in this arti-
cle, the overall median and the ratio of IQR squares are
highly recommended for representing the overall effect
and quantifying the heterogeneity in the meta-analysis of
skewed data, respectively. Then, the above quantities are
useful for assessing how the findings under the two mod-
els can be different from the recommended inferential
measures in skewed-data situations.

Estimation
Before estimation of model (7) for a particular simulated
dataset, the grid search procedure was performed for esti-
mating λ and α for the dataset. The candidate values of
λ were specified in a range of −3.00 ≤ λ ≤ 6.00 with a
step size of 0.01. We considered constituting a subset of
α as the minimum values of {(yi + α) : i = 1, . . . , k}; i.e.
α∗ = α + min{yi : i = 1, . . . , k}. The candidate values of
α∗ were specified in a range of 0.01 ≤ α∗ ≤ 2.01 with a
step size of 0.10.
We used the normal and the uniform prior for the mean

and the variance parameter respectively, as described in

the previous section. The upper limit of the uniform prior
distribution on τ was given by b = 10 for each model.
For the Bayesian estimation of model (1) and (7), the iter-
ative process of the MCMC algorithm produced three
chains each with 20,000 samples of parameters. We dis-
carded the first 2,000 samples (so-called burn-in samples)
in order to prevent dependence on the starting values.
And also, we took a sample at only every 2nd itera-
tion (thinning) in order to avoid autocorrelation between
the samples taken. Therefore in total, 24,000 samples of
parameters were drawn. We graphically checked the con-
vergence of MCMC sampling using first 5 simulations for
each scenario, with no diagnostic methods.

Results
Additional file 2: Table S1, Table S2, Table S3 and Table S4
show results from the twomodels, for each scenario of the
number of studies k = 5, 10, 20 and 40, respectively. And
also, Additional file 2: Table S5 and Table S6 show sum-
mary statistics of estimates for the transformation (λ) and
the shift (α) parameter, for the scenario of the number of
studies k = 40. Note that the summary statistics were cal-
culated using 10,000 estimates of the parameters for each
scenario of random effects distribution. To make clear the
differences between the two models, we depicted the bias,
the RMSE and the coverage probability in the following
figures:

• Figure 2 plots the results for the overall mean or the
overall median, with the between-study variation (the
true ratio of IQR squares: Small = 20.0%, Moderate =
40.0%, Large = 80.0%) on the horizontal axis. The
number of studies was fixed as k = 20.

• Figure 3 plots the results for the I2 or the ratio of IQR
squares, with the between-study variation (the true
ratio of IQR squares: Small = 20.0%, Moderate =
40.0%, Large = 80.0%) on the horizontal axis. The
number of studies was fixed as k = 20.

• Figure 4 plots the results for overall mean or the
overall median, with the number of studies (k = 10,
20 and 40) on the horizontal axis. The true ratio of
IQR squares was fixed as 80.0% (i.e. the scenario of
large between-study variation).

• Figure 5 plots the results for the I2 or the ratio of IQR
squares, with the number of studies (k = 10, 20 and
40) on the horizontal axis. The true ratio of IQR
squares was fixed as 80.0% (i.e. the scenario of large
between-study variation).

The nominal level of coverage probability is 95 per-
cent. All the scenarios of the random effects distributions
are displayed in the same panels in order of the normal
(N), the skew-normal with moderate positive skew-
ness (pSN1), the skew-normal with large positive skew-
ness (pSN2), the skew-normal with moderate negative
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Fig. 2 Bias, RMSE and coverage probability of the overall mean or the overall median for the scenario of the number of studies k = 20. The overall
mean from the normal random effects model (cross/solid line), and those of the overall median from the proposed model (black circle/broken line:
Box-Cox transformation, black triangle/dotted line: Box-Cox transformation with the sign inversion)

skewness (nSN1), the skew-normal with large negative
skewness (nSN2), the shifted exponential (EXP) and the
shifted log-normal (LN) from left to right. And also, in
each figure, (i) cross marks and solid lines represent the
normal random effects model, (ii) black circle marks and
broken lines represent the proposedmodel using Box-Cox
transformation (6), (iii) black triangle marks and dotted
lines represent the proposed model using Box-Cox trans-
formation with the sign inversion (19) for the negatively
skewed data.We below refer to the normal random effects
model, the proposed model without and with the sign
inversion as NRE, BC and BC-SI respectively.

Overall treatment effect When the normal distributions
were assumed as the true random effects distribution,
the NRE and the BC-SI provided unbiased estimations
of the overall effect, regardless of the scenarios of the

between-study variation and the number of studies. The
overall median from the BC was subject to a negative bias
in the scenario of the large between-study variation and
the small number of studies, though this bias decreased as
the number of studies increased. The NRE, the BC and the
BC-SI provided similar RMSEs, except for the scenario of
the small number of studies where the RMSEs from the
NRE were smaller than those from the BC and the BC-
SI. The coverage probabilities from the NRE were slightly
larger than those from the BC and the BC-SI in all the sce-
narios, but all these coverage probabilities were close to
the nominal level of 95 percent.
When the skew-normal distributions were assumed as

the true random effects distribution, the overall means
from theNREwere pulled in the direction of skewness and
substantially different from the true zero overall median,
especially in the scenarios of the large between-study
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Fig. 3 Bias, RMSE and coverage probability of the I2 or the ratio of IQR squares for the scenario of the number of studies k = 20. The I2 from the
normal random effects model (cross/solid line), and those of the ratio of IQR squares from the proposed model (black circle/broken line: Box-Cox
transformation, black triangle/dotted line: Box-Cox transformation with the sign inversion)

variation. In the scenarios of the positive skewness (pSN1
and pSN2), the biases of the overall mean from the NRE
increased positively; conversely in the scenarios of neg-
ative skewness (nSN1 and nSN2), those increased nega-
tively. The degree of bias was larger in the scenario of
the large skewness (pSN2 and nSN2). And also, regard-
ing the overall means from the NRE in the scenarios of
the large between-study variation and the large number of
studies, the RMSEs were inflated and the coverage prob-
abilities were substantially below the nominal level of 95
percent. On the other hand, the overall medians from the
BC and the BC-SI had the smaller biases regardless of the
scenarios of the between-study variation and the num-
ber of studies. In the scenario of the negative skewness
(nSN1 and nSN2) and the large between-study variation,
the BC was subject to a negative bias, though this bias
decreased as the number of studies increased. The BC

and the BC-SI provided quite similar RMSEs and cover-
age probabilities in the scenarios of the positive skewness
(pSN1 and pSN2); while, in the scenarios of the negative
skewness (nSN1 and nSN2) and the large between-study
variation, the coverage probabilities from the BC were
below the nominal level of 95 percent. This indicates that
the BC could have difficulty in dealing with the negatively
skewed data as expected, but the BC-SI performs well.
When the shifted exponential and the shifted log-

normal distributions were assumed as the true random
effects distribution, the overall means from the NRE were
substantially different from the true zero overall median,
especially in the scenarios of the large between-study vari-
ation. And also, in such situation, the RMSEs were seri-
ously inflated and the coverage probabilities were below
the nominal level of 95 percent, which became more
noticeable as the number of studies increased. This would
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be because the scenarios including larger number of stud-
ies tended to generate more heavy-tailed data. On the
other hand, the overall medians from the BC and the
BC-SI were similar and had much smaller biases in com-
parison with the overall means from the NRE. The BC and
the BC-SI also provided similar results of the RMSE and
the coverage probability, which were much better than
those from the NRE especially in the scenarios of the large
between-study variation and the large number of studies.
In summary, we found that the overall mean from the

NRE could be substantially influenced by the skewness on
the random effects distribution. Taking into account that
the overall mean from the NRE was pulled in the direc-
tion of skewness and had the lower coverage probability,
the NRE might therefore produce overall effect estimates
that do not reflect the median treatment effect if the over-
all distribution of treatment effect estimates is skewed
or heavy-tailed. Moreover, it was indicated that the sign
inversion in the Box-Cox transformation could be an

effective way for precisely estimating the overall median
of the negatively skewed treatment effect estimates.

Quantification of heterogeneity When the normal dis-
tributions were assumed as the true random effects distri-
bution, the NRE, the BC and the BC-SI provided similar
results of the bias, the RMSE and the coverage probability,
regardless of the scenarios of the between-study variation
and the number of studies.
When the skew-normal distributions were assumed as

the true random effects distribution, the NRE, the BC
and the BC-SI provided similar results in almost all of
the scenarios. In the scenarios of the large between-study
variation, the coverage probabilities of I2 from the NRE
were slightly lower than those of the ratios of IQR squares
from the BC-SI. In the scenarios of the negative skew-
ness (nSN1 and nSN2), the ratios of IQR squares from
the BC were subject to negative biases and had the larger
RMSEs in comparisonwith theNRE and BC-SI. This again
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indicates that the BC could have difficulty in dealing with
the negatively skewed data.
When the shifted exponential and the shifted log-

normal distributions were assumed as the true random
effects distribution, the I2 values from the NRE were
larger than the ratios of IQR squares from the BC and the
BC-SI in the scenarios of the large between-study varia-
tion. The RMSEs from the NRE, the BC and the BC-SI
were quite similar, though the coverage probabilities of I2
from the NREwere seriously below the nominal level of 95
percent in the scenarios of the large between-study vari-
ation, compared with those of the ratios of IQR squares
from the BC and the BC-SI. This became more noticeable
as the number of studies increased, which would be again
because the scenarios including larger number of stud-
ies tended to generate more heavy-tailed data. The BC
and the BC-SI provided quite similar results of the bias,
the RMSE and the coverage probability, regardless of the
scenarios of the between-study variation and the number
of studies.

In summary, we found that the I2 from the NRE was
influenced by the skewness on the random effects dis-
tribution. In particular, the heavy-tailed data seriously
affected the estimation of I2 in the NRE. Moreover, it was
again indicated that the sign inversion in the Box-Cox
transformation could be an effective way for precisely esti-
mating the ratios of IQR squares of the negatively skewed
treatment effect estimates.

Performance when the number of studies is small
Additional file 2: Table S1 shows results for the scenario
of the number of studies k = 5. In regard to the estima-
tion of the overall treatment effect, having small number
of studies had a limited influence on bias. Indeed, the
biases on the overall median from the BC and the BC-SI
as well as the overall mean from the NRE were similar to
those for the scenario of the number of studies k = 10,
except for the overall median from the BC for the sce-
nario of the negative skewness (nSN1 and nSN2) where
the negative biases were increased. However, the coverage
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probabilities from the BC and the BC-SI were below nom-
inal level of 95 percent for almost all the scenarios. In
particular, the BC-SI provided around 90 percent cover-
age probabilities for the scenarios of the small and the
moderate between-study variation. In contract, the cover-
age probabilities from the NRE were substantially above
the nominal level of 95 percent. These indicate an issue
of meta-analysing the small number of studies. In regard
to the quantification of heterogeneity, the NRE, the BC
and the BC-SI were subject to large positive bias of the I2
or the ratio of IQR squares, which inflated their RMSEs.
From these findings, we conclude our proposed model is
applicable even when the number of studies is 5, but may
have difficulty in ensuring sufficient accuracy in estima-
tion of the overall treatment effect and quantification of
heterogeneity.

Application
Consider now application to the examples described in
the previous section. We applied the normal random
effects model (1) and the proposed model (7) to each
example, and estimated the posterior distributions of
parameters of interest in each model. The transforma-
tion with the sign inversion was also applied to example 2
(the weighted sample skewnesses were 2.123 and −1.847
in example 1 and 2 respectively). Note that the trans-
formation with the sign inversion is applied only when
the observed treatment effect estimates are negatively
skewed.

Estimation
Before estimation of model (7) for each example, the grid
search procedure was performed for estimating λ and α.
The candidate values of λ were specified in a range of
−3.00 ≤ λ ≤ 6.00 with a step size of 0.01. We consid-
ered constituting a subset of α as the minimum values of
{(yi+α) : i = 1, . . . , k}; i.e. α∗ = α+min{yi : i = 1, . . . , k}.
The candidate values of α∗ was specified in a range of
0.01 ≤ α∗ ≤ 2.01 with a step size of 0.10.
We used the normal and the uniform prior for the mean

and the variance parameter respectively, as described in
the previous section. The upper limit of the uniform
prior distribution on τ was given by b = 10 for each
model. For the Bayesian estimation, the iterative process
of the MCMC algorithm produced three chains each with
2,000,000 samples of parameters. We discarded the first
5000 samples (so-called burn-in samples) in order to pre-
vent dependence on the starting values. And also, we took
a sample at only every 5th iteration (thinning) in order to
avoid autocorrelation between the samples taken. There-
fore in total, 1,185,000 samples of parameters were drawn.
We again graphically checked whether the burn-in sam-
ples were sufficient and that theMCMC chains converged,
with no diagnostic methods.

Overall treatment effect and quantification of heterogeneity
Table 3 shows the posterior median and the 95 per-
cent credible interval of: the overall mean and the square
root of between-study variance from the NRE, the overall
median and the normalised IQR from the BC and the BC-
SI. In example 1, the posterior median of the overall mean
from theNREwas noticeably larger than that of the overall
median from the BC. In example 2, the posterior medi-
ans of the overall mean from the BC and the BC-SI were
quite similar to each other, but noticeably larger than that
of the overall mean from the NRE. Note that the observed
treatment effect estimates in example 1 were subject to
the positive skewness, in contrast we observed the nega-
tively skewed treatment effect estimates in example 2; this
causes the overall means from NRE to be forced toward
the direction of skewness in each example.
In both examples, the 95 percent credible intervals of

the overall median from the BC and the BC-SI were sub-
stantially narrower than those of the overall mean from
the NRE, indicating the misspecification of the random
effects distribution led to the inflation of the between-
study variance in the NRE. Indeed, in both examples,
we found larger posterior medians of the square root of
between-study variance from the NRE in comparison with
the normalised IQRs from the BC and the BC-SI. Figure 6a
shows the posterior distributions of the overall mean from
the NRE and those of the overall median from the BC
and the BC-SI for each example. The overall medians had
sharper peak of posterior densities than the overall mean
in both examples.
Table 4 shows the posterior medians and the 95 per-

cent credible intervals of the I2 from the NRE, and the
ratio of IQR squares from the BC and the BC-SI. In exam-
ple 2, the results from the BC and the BC-SI were quite
similar. The ratios of IQR squares from the BC and the
BC-SI were substantially smaller than the I2’s from the
NRE in both examples. The NRE would conclude moder-
ate heterogeneity for the meta-analyses of the examples;
however, taking into account the inflation of the between-
study variance from the NRE, the I2’s are more likely to be
overestimated. On the other hand, the BC and the BC-SI
would conclude low heterogeneity for the same examples.

Prediction interval and predictive probability
Table 4 also shows the 95 percent prediction intervals
from the two models. In example 2, the results from the
BC and the BC-SI were quite similar. In both examples,
the prediction intervals from the BC and the BC-SI were
substantially narrower than those from the NRE. This is
likely due to the inflation of the between-study variance
from the NRE. Especially in example 2, the BC and the
BC-SI provided much stronger evidence of efficacy of the
treatment, with the upper bound of the 95 percent predic-
tion interval now much further below 0. Figure 6b shows
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Table 3 Posterior median and 95 percent credible interval of: overall mean and square root of between-study variance from the
normal random effects model, overall median and normalised IQR from the proposed model

NRE BC BC-SI

Square root of

between-study Normalised Normalised

Overall mean variance Overall median IQRa Overall median IQRa

Post. (s.d.) Post. (s.d.) Post. (s.d.) Post. (s.d.) Post. (s.d.) Post. (s.d.)

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Example 1: Teacher expectancy on pupil IQ

0.083 (0.061) 0.146 (0.087) 0.030 (0.051) 0.084 (0.074) n/a n/a

(−0.021,0.222) (0.011,0.344) (−0.058,0.144) (0.004,0.278)

Example 2: Antidepressants for reducing pain in fibromyalgia syndrome

−0.418 (0.067) 0.164 (0.097) −0.369 (0.056) 0.094 (0.077) −0.361 (0.057) 0.098 (0.081)

(−0.567,−0.298) (0.013,0.384) (−0.489,−0.267) (0.005,0.291) (−0.484,−0.259) (0.005,0.306)

aNormalised IQR = (ξ75 − ξ25)/(z75 − z25)
Post.: posterior median, s.d.: standard deviation, CI: credible interval
NRE: normal random effects model, BC: proposed model using Box-Cox transformation
BC-SI: proposed model using Box-Cox transformation with the sign inversion for negatively skewed data

the predictive distributions from the NRE, the BC and the
BC-SI for each example. The 95 percent prediction inter-
vals were also depicted on the same panel, where the cross,
the black circle and the black triangle represent the medi-
ans of predictive distribution from the NRE, the BC and

the BC-SI, respectively. We found the BC and the BC-
SI provided skewed prediction intervals, which reflects
the asymmetry detected and the asymmetric predictive
distribution; whereas the NRE method gave symmetrical
prediction intervals in both examples.

(a) Posterior distribution of overall mean
and overall median

(b) Predictive distribution with
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Table 4 Posterior median and 95 percent credible interval of: I2 from the normal random effects model, ratio of IQR squares from the
proposed model; 95 percent prediction intervals from each model

NRE BC BC-SI

Ratio of IQR Ratio of IQR

I2 (%) 95% squaresa (%) 95% squaresa (%) 95%

Post. (s.d.) prediction Post. (s.d.) prediction Post. (s.d.) prediction

(95% CI) interval (95% CI) interval (95% CI) interval

Example 1: Teacher expectancy on pupil IQ

44.9 (24.0) (−0.284,0.500) 20.9 (21.9) (−0.179,0.393) n/a n/a

(0.5,81.9) (0.1,73.6)

Example 2: Antidepressants for reducing pain in fibromyalgia syndrome

39.1 (22.7) (−0.879,−0.001) 17.3 (19.1) (−0.732,−0.118) 18.4 (19.8) (−0.753,−0.112)

(0.4,78.0) (0.1,65.7) (0.1,67.9)

aRatio of IQR squares = (ξ75 − ξ25)
2/(ν75 − ν25)

2

Post.: posterior median, s.d.: standard deviation, CI: credible interval
NRE: normal random effects model, BC: proposed model using Box-Cox transformation
BC-SI: proposed model using Box-Cox transformation with the sign inversion for negatively skewed data

We computed the predictive probability that the treat-
ment is truly effective in a new study. Figure 7 shows the
results from the NRE, the BC and the BC-SI. Note that the
predictive probability is a kind of cumulative probability
and is defined for each example as follows: P(θnew > x)
or P(θ∗

new > x) for example 1 (larger is more beneficial),
and P(θnew < x) or P(θ∗

new < x) for example 2 (smaller
is more beneficial) where x is a specified value of treat-
ment effect and is represented on the horizontal axis in
Fig. 7. We below describe the details of computation and
the results for each example:

Example 1. Since a positive value indicates a highermean
score for the treatment group, we obtained the predic-
tive probability of a beneficial treatment by counting the
number of samples drawn from the predictive distribution

which were larger than specified values on the horizon-
tal axis. The probability curve from the NRE was located
entirely over those from the BC. That is, the NRE pre-
dicted larger probabilities of the true effect being in favour
of treatment than the BC. For instance, the probability of
the true treatment effect being above 0.1 was 0.428 for the
NRE but 0.221 for the BC.

Example 2. Since a negative value indicates a benefit for
the antidepressants, we obtained the predictive probabil-
ity by counting the number of samples drawn from the
predictive distribution which were smaller than specified
values on the horizontal axis. The results from the BC and
the BC-SI were quite similar. When the size of specified
difference was small (e.g. from −0.3 to 0.0), the pre-
dictive probabilities from the NRE were slightly smaller
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Fig. 7 Predictive probability. The normal random effect model (solid line) and the proposed model (broken line: Box-Cox transformation, dotted line:
Box-Cox transformation with the sign inversion)



Yamaguchi et al. BMCMedical ResearchMethodology  (2017) 17:109 Page 19 of 21

than those from the BC and the BC-SI. In contrast, when
the size of specified difference was large (e.g. from −0.8
to −0.4), the predictive probabilities from the NRE were
larger than those from the BC and the BC-SI.

Discussion
We proposed a new random effects model based on the
Box-Cox transformation to deal with skewness in the
overall distribution of the observed treatment effect esti-
mate for meta-analysis. The simulation study shows that
the proposed model has the potential to provide more
appropriate inferences in the presence of skewness, espe-
cially in regard to the estimation of the overall treatment
effect and the quantification of heterogeneity. The sim-
ulation study indicates that the normal random effects
model gives an overall mean that is pulled in the direc-
tion of skewness, and is thus an inappropriate summary
for representing the centre of skewed data. Similarly, I2
from the normal random effects model can be inflated
given skewed treatment effect estimates, because it over-
estimates the random effects variance. This also causes
prediction intervals that are too wide.
Our proposed model substantially reduces these prob-

lems. It is flexible that the observed data determine the
shape of distribution and thus the required Box-Cox
transformation to ensure the normality of transformed
treatment effect estimates. We suggest using the overall
median effect to summarise the proposed meta-analysis
model, back on the original scale of interest. Themedian is
known as a more robust summary measure than the mean
against the skewness and the outliers on the observed
data. We also defined the ratio of IQR squares under
the proposed model for quantifying the impact of het-
erogeneity in the meta-analysis. When considering the
skewed data, the variance is no longer the best measure
for describing the spread of the distribution. We recom-
mend the (normalised) IQR of the true effects distribution
as a measure for quantifying the extent of the hetero-
geneity. The ratio of IQR squares has an aspect of the
proportion of the between-study variation that is due to
the heterogeneity across studies to the total variation in
the treatment effect estimates, which is the same concept
as I2 from the normal random effects model. In the simu-
lation study, the ratio of IQR squares reduced the inflation
of I2 when the treatment effect estimates were skewed or
heavy-tailed.
We note that our simulation assumes that sample sizes

in each study are large enough for the central limit
theorem to apply, such that (a) treatment effect esti-
mates do have a normal distribution within studies, (b)
the variance of the estimate is well-estimated (such that it
can essentially be assumed known). Thus, situations with
small studies are not considered, but this would be useful
for further research.

The application to the two examples illustrated the two
models could provide different conclusions for the sum-
mary effect and the amount of heterogeneity for the same
meta-analysis data. In addition, given skewness the appli-
cations indicate the proposed model better predicts the
treatment effect in a new study over the normal random
effects model. The normal random effects model provided
symmetric predictive distributions and its 95 percent pre-
diction interval; on the other hand, the proposed model
provided the skewed shape of predictive distributions and
its asymmetric 95 percent prediction interval as expected.
The difference in the shape of predictive distributions had
a significant impact on the predictive probabilities that
the treatment is effective in a new study. Another lim-
itation is that, although our simulations covered a wide
range of scenarios and were computationally intensive,
other scenarios still need to be investigated. In particular,
we did not consider when sample sizes within studies are
small, and we only considered when it could be correctly
assumed that study estimates were normally distributed
and their variances were known. This allowed any asym-
metry to be due to the random effects distribution, rather
than the within-study distributions. Further research in
situations of small trials and/or rare events would be
welcome.
Note that the parameters included in our proposed

model are estimated by two stages. We first get the point
estimates of the transformation and the shift parameter (λ
and α) using the profile likelihood function, and then esti-
mate the other parameters (μ and τ ) using the Bayesian
approach conditioned on λ = λ̂ and α = α̂. Although
a simultaneous estimation of all parameters (λ, α, μ and
τ ) within the framework of Bayesian approach is more
straightforward, we have had a difficulty in the conver-
gence of MCMC sampling for this. Therefore, we take a
procedure of first finding a transformation to normalise
the treatment effect estimates (i.e. the transformation and
the shift parameter are dealt with as non-stochastics),
and then making inferences conditioned on the maximum
likelihood estimates of the transformation and the shift
parameter.
However, there are some limitations of the proposed

model and further research is required. For interpretation
and presentation of themeta-analysis results, the Bayesian
approach is used for estimating the model parameters.
We are interested in functions of the estimated param-
eters rather than the estimated parameters themselves;
i.e. (i) the overall median (13) which represents a sum-
mary treatment effect, (ii) the normalised IQR (14) which
quantifies the magnitude of heterogeneity, (iii) the ratio
of IQR squares (16) which quantifies the impact of het-
erogeneity. The Bayesian approach using the MCMC
method is straightforward enough to estimate these mea-
sures with variability, because uncertainty (i.e. variance
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estimation) of the estimated measures can be obtained by
using MCMC samples directly (e.g. mean, median, stan-
dard deviation, 2.5th and 97.5th quantiles of the MCMC
samples), without additional distributional assumptions
or asymptotic approximations. The 95 percent predic-
tion interval is also computed in a simple manner by the
Bayesian approach, which can be obtained by taking 2.5th
and 97.5th quantiles of samples drawn from the predictive
distribution (17). However, a frequentist approach may be
another useful option in some situations. When consider-
ing the frequentist estimation for the proposed model, it
is not straightforward to derive asymptotic distributions
(and also the 95 percent confidence intervals) of the max-
imum likelihood estimators for the measures of interest.
We expect a bootstrap method can be used for solving
this issue. In addition, it is not necessarily clear how the
choice of prior for the between-study variance parameter
makes impact on the results from our proposed model.
The uniform prior on the standard deviation scale has
been known as a reasonable non-informative prior for
the conventional normal random effects model, though
this may not be the case for our proposed model. Further
extensive simulation studies will be needed for assessing
this.
Finally, we note that our proposed model assumes the

meta-analysis data available is representative of the pop-
ulations of interest (like all meta-analysis models). In
particular, if asymmetry in the observed treatment effect
estimates is due to bias, for example publication bias and
selective reporting, then the summary result, the het-
erogeneity measures and the predictive inference may
be inappropriate (as then the random effects distribu-
tion is inappropriately captured). Then, a concern may
arise when it is difficult to distinguish possible causes of
skewness on the observed treatment effect estimates. Sev-
eral scenarios can be considered for the reason why the
treatment effect estimates are skewed across studies; for
example, (i) the treatment effect distribution suffers from
the publication bias and/or the selective reporting, (ii) the
treatment effect distribution is a mixture of two different
distributions, (iii) the treatment effect distribution is truly
skewed, (iv) the treatment effect distribution is skewed
simply due to estimation errors. It should be performed
first to explore the possible causes of skewness. When the
scenario (i) or (ii) is true, our proposed model may not be
appropriate, but is likely to be more robust than the nor-
mal random effects model. This is because extreme study
results locating on one side are expressed as the tail of
the treatment effect distribution in our proposed model.
Therefore, we conclude our proposed model is applica-
ble for all the scenarios and to is likley to produce more
suitable meta-analysis results in comparison to the con-
ventional normal random effects model. However, further
research and extended simulations are needed to critically

examine this in more detail, especially in situations where
publication and selection biases are causing the asymme-
try. Our proposed model aims to reduce non-normality
in the random effects distribution by observing the non-
normality in the overall distribution of the yi’s. Therefore,
it is likely to perform best when the between-study hetero-
geneity is large relative to the within-study variability, such
that skewness in the overall distribution can be detected
and will be due to asymmetry in the true treatment effects.
Further research may also consider applying the Box-Cox
transformation to just the random effects distribution in
model (1) (i.e. to just the θi’s). Although Gurka et al.
[15] suggests that the Box-Cox transformation in a mixed
effects model should be viewed in terms of their success in
normalising the total error, the yi themselves do not need
to be transformed, and thus left on their original scale
familiar to meta-analysts.

Conclusions
We proposed a random effects meta-analysis with Box-
Cox transformation to deal with the skewness in meta-
analysis data. The proposed meta-analysis model has the
potential to provide more robust inferences for summary
treatment effects when the random effects distribution is
skewed. It could be used to examine the robustness of
traditional meta-analysis results, heterogeneity measures,
and predictive inferences to skewed random effects distri-
butions. However, further research would be welcome to
examine the method in further simulated and empirical
examples.
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