Number of studies Balanced direct comparisons KAB = KAC = KBC = 1, …, 7 Imbalanced direct comparisons KAB = 1, KAC = 4, KBC = 7 (and KAB = 1, KAC = 4, KBC = 3 for the typical loop) Treatment effects Comparison AB ORAB = 0.73 Comparison AC ORAC = 1 Comparison BC ORBC = exp{log(ORAC) - log(ORAB) + IFABC} Inconsistency in the network Inconsistency Factor IFABC = {0, 0.3, 0.45, 0.6, 1} Heterogeneity in the network Subjective outcome τ2 ~ LN(-2.13, 1.582) All-cause mortality outcome τ2 ~ LN(-4.06, 1.452) Trial arm size $\left({\mathrm{n}}_{\mathrm{A},{\mathrm{k}}_{1}}={\mathrm{n}}_{\mathrm{B},{\mathrm{k}}_{1}}=\mathrm{n}\right)$ Small n ~ U(20, 50) Moderate n ~ U(50, 150) Large n ~ U(150, 300) (and n ~ U(120, 160) for the typical loop) Frequency of events Average risk for frequent events ${\mathrm{AR}}_{\mathrm{AB},{\mathrm{k}}_{1}}~\mathrm{U}\left(0.25,0.75\right)$ Average risk for rare events ${\mathrm{AR}}_{\mathrm{AB},{\mathrm{k}}_{1}}~\mathrm{U}\left(0.05,0.15\right)$ Approaches to estimate the variances of the direct pairwise summary effects Inverse variance method Knapp-Hartung method