Skip to main content

Table 10 ECW of various confidence interals with different ρ and δ, μ 1, μ 2, (n,n 1,n 2)=(5,5,2), when \({\sigma _{1}^{2}}={\sigma _{2}^{2}}=4\)

From: Confidence intervals construction for difference of two means with incomplete correlated data

Bivariate normal distribution
ρ δ μ 1 μ 2 T 3 T 4 T 5 W s W a B 1 B 2 B 3 B 4
-0.9 -0.25 0 0.25 6.350 7.032 5.019 3.821 3.148 5.150 5.370 5.149 5.368
  0 1 1 6.389 7.038 5.047 3.833 3.162 5.151 5.370 5.151 5.370
  0.5 2 1.5 6.447 7.052 5.060 3.947 3.290 5.152 5.370 5.152 5.370
-0.5 -0.25 0 0.25 5.883 6.473 4.610 3.503 2.894 4.800 4.881 4.799 4.880
  0 1 1 5.885 6.436 4.606 3.510 2.903 4.800 4.881 4.799 4.879
  0.5 2 1.5 5.877 6.413 4.606 3.655 3.078 4.802 4.883 4.802 4.882
-0.1 -0.25 0 0.25 5.282 5.891 4.187 3.198 2.651 4.333 4.337 4.333 4.338
  0 1 1 5.318 5.898 4.186 3.213 2.670 4.335 4.340 4.334 4.338
  0.5 2 1.5 5.270 5.888 4.183 3.397 2.893 4.336 4.340 4.336 4.339
0 -0.25 0 0.25 5.114 5.733 4.046 3.096 2.571 4.190 4.190 4.189 4.189
  0 1 1 5.147 5.729 4.076 3.139 2.614 4.190 4.190 4.190 4.190
  0.5 2 1.5 5.123 5.763 4.069 3.337 2.849 4.191 4.191 4.189 4.189
0.1 -0.25 0 0.25 4.869 5.519 3.921 3.004 2.500 4.033 4.037 4.032 4.037
  0 1 1 4.870 5.550 3.899 3.004 2.504 4.032 4.037 4.033 4.038
  0.5 2 1.5 4.849 5.636 3.926 3.254 2.795 4.031 4.036 4.033 4.037
0.5 -0.25 0 0.25 3.805 5.050 3.412 2.608 2.188 3.202 3.360 3.202 3.360
  0 1 1 3.811 5.019 3.398 2.624 2.213 3.201 3.360 3.199 3.357
  0.5 2 1.5 3.857 5.211 3.401 2.955 2.583 3.200 3.359 3.200 3.360
0.9 -0.25 0 0.25 1.776 5.606 2.702 2.133 1.832 1.537 2.505 1.537 2.505
  0 1 1 1.766 5.561 2.676 2.147 1.853 1.539 2.503 1.538 2.503
  0.5 2 1.5 1.784 5.548 2.689 2.554 2.303 1.537 2.505 1.536 2.504
Bivariate t-distribution
-0.9 -0.25 0 0.25 35.039 42.148 28.140 21.360 17.207 30.479 31.779 31.062 32.486
  0 1 1 35.226 42.660 28.523 21.569 17.374 30.470 31.763 31.048 32.470
  0.5 2 1.5 34.854 42.020 28.032 21.260 17.135 30.472 31.771 31.038 32.484
-0.5 -0.25 0 0.25 32.156 38.993 25.809 19.534 15.765 28.402 28.881 28.936 29.495
  0 1 1 33.177 39.103 26.338 19.953 16.106 28.417 28.901 28.961 29.518
  0.5 2 1.5 31.999 38.876 25.558 19.403 15.677 28.393 28.870 28.941 29.480
-0.1 -0.25 0 0.25 28.753 36.668 23.542 17.849 14.456 25.621 25.643 26.126 26.164
  0 1 1 28.672 36.649 23.652 17.809 14.435 25.637 25.661 26.146 26.184
  0.5 2 1.5 29.087 35.900 23.651 17.894 14.523 25.622 25.645 26.140 26.175
0 -0.25 0 0.25 27.123 35.382 22.633 17.113 13.892 24.786 24.786 25.284 25.284
  0 1 1 27.852 35.371 23.033 17.424 14.146 24.797 24.797 25.292 25.292
  0.5 2 1.5 27.607 34.434 22.581 17.116 13.919 24.786 24.786 25.288 25.288
0.1 -0.25 0 0.25 26.299 34.969 22.037 16.679 13.565 23.842 23.869 24.322 24.332
  0 1 1 26.797 35.384 22.411 16.960 13.787 23.854 23.882 24.349 24.365
  0.5 2 1.5 26.420 34.911 22.164 16.798 13.679 23.864 23.891 24.357 24.372
0.5 -0.25 0 0.25 20.192 32.428 19.137 14.443 11.860 18.938 19.877 19.369 20.262
  0 1 1 20.217 32.478 19.118 14.526 11.942 18.950 19.891 19.385 20.271
  0.5 2 1.5 20.314 30.975 18.783 14.325 11.783 18.928 19.869 19.361 20.257
0.9 -0.25 0 0.25 9.426 36.100 15.345 11.627 9.744 9.094 14.818 9.355 15.174
  0 1 1 9.491 34.843 15.055 11.622 9.750 9.090 14.804 9.352 15.167
  0.5 2 1.5 9.569 35.234 15.210 11.735 9.875 9.098 14.813 9.353 15.176