Skip to main content

Table 6 ECPs of various confidence intervals under bivariate t-distribution with different ρ and δ, μ 1, μ 2, \({\sigma _{1}^{2}}\) and (n,n 1,n 2)=(5,5,5) and \({\sigma _{2}^{2}}=4\)

From: Confidence intervals construction for difference of two means with incomplete correlated data

ρ \({\sigma _{1}^{2}}\) δ μ 1 μ 2 T 1 T 2 T g W s W a B 1 B 2 B 3 B 4
-0.9 1 -0.25 0 0.25 0.9260 0.9750 0.9460 0.9510 0.9020 0.9470 0.9470 0.9500 0.9500
   0 1 1 0.9060 0.9590 0.9490 0.9340 0.8820 0.9450 0.9450 0.9510 0.9510
   0.5 2 1.5 0.9160 0.9710 0.9370 0.9480 0.8930 0.9490 0.9490 0.9530 0.9530
  8 -0.25 0 0.25 0.8950 0.9630 0.9380 0.9460 0.8920 0.9490 0.9380 0.9410 0.9410
   0 1 1 0.9030 0.9580 0.9430 0.9450 0.9020 0.9400 0.9410 0.9410 0.9410
   0.5 2 1.5 0.9080 0.9640 0.9370 0.9490 0.9070 0.9500 0.9480 0.9520 0.9520
-0.5 1 -0.25 0 0.25 0.9160 0.9700 0.9460 0.9380 0.8810 0.9440 0.9410 0.9430 0.9420
   0 1 1 0.9150 0.9670 0.9510 0.9380 0.8970 0.9470 0.9480 0.9480 0.9480
   0.5 2 1.5 0.9190 0.9650 0.9440 0.9440 0.8940 0.9480 0.9520 0.9540 0.9540
  8 -0.25 0 0.25 0.9160 0.9680 0.9490 0.9580 0.9160 0.9530 0.9480 0.9440 0.9510
   0 1 1 0.9080 0.9690 0.9510 0.9590 0.9200 0.9460 0.9450 0.9400 0.9480
   0.5 2 1.5 0.9130 0.9750 0.9400 0.9630 0.9200 0.9410 0.9410 0.9230 0.9460
-0.1 1 -0.25 0 0.25 0.9230 0.9660 0.9480 0.9500 0.9020 0.9530 0.9470 0.9410 0.9490
   0 1 1 0.9060 0.9600 0.9380 0.9370 0.8920 0.9430 0.9450 0.9390 0.9500
   0.5 2 1.5 0.9020 0.9660 0.9410 0.9400 0.8910 0.9530 0.9460 0.9350 0.9460
  8 -0.25 0 0.25 0.9110 0.9670 0.9450 0.9650 0.9290 0.9440 0.9420 0.8800 0.9470
   0 1 1 0.9190 0.9720 0.9360 0.9650 0.9270 0.9510 0.9450 0.8810 0.9470
   0.5 2 1.5 0.9140 0.9700 0.9390 0.9630 0.9270 0.9480 0.9440 0.8890 0.9470
0 1 -0.25 0 0.25 0.9180 0.9580 0.9430 0.9500 0.8980 0.9470 0.9390 0.7900 0.9420
   0 1 1 0.9150 0.9710 0.9550 0.9550 0.9130 0.9490 0.9500 0.8030 0.9500
   0.5 2 1.5 0.9180 0.9670 0.9500 0.9590 0.9200 0.9450 0.9510 0.7940 0.9540
  8 -0.25 0 0.25 0.9380 0.9660 0.9380 0.9560 0.9280 0.9510 0.9510 0.9380 0.9530
   0 1 1 0.9360 0.9650 0.9340 0.9530 0.9220 0.9560 0.9520 0.9370 0.9540
   0.5 2 1.5 0.9310 0.9540 0.9340 0.9510 0.9230 0.9450 0.9530 0.9400 0.9540
0.1 1 -0.25 0 0.25 0.9360 0.9640 0.9420 0.9530 0.9210 0.9480 0.9510 0.9430 0.9550
   0 1 1 0.9350 0.9620 0.9340 0.9520 0.9190 0.9560 0.9520 0.9400 0.9520
   0.5 2 1.5 0.9290 0.9600 0.9340 0.9440 0.9160 0.9440 0.9470 0.9340 0.9480
  8 -0.25 0 0.25 0.9300 0.9530 0.9330 0.9470 0.9190 0.9400 0.9380 0.9350 0.9400
   0 1 1 0.9340 0.9590 0.9310 0.9520 0.9160 0.9410 0.9410 0.9360 0.9420
   0.5 2 1.5 0.9390 0.9660 0.9330 0.9520 0.9210 0.9530 0.9500 0.9490 0.9530
0.5 1 -0.25 0 0.25 0.9370 0.9640 0.9370 0.9490 0.9120 0.9450 0.9440 0.9430 0.9470
   0 1 1 0.9450 0.9590 0.9360 0.9450 0.9080 0.9460 0.9420 0.9380 0.9440
   0.5 2 1.5 0.9430 0.9680 0.9400 0.9520 0.9200 0.9540 0.9480 0.9490 0.9540
  8 -0.25 0 0.25 0.9340 0.9580 0.9460 0.9520 0.9190 0.9420 0.9450 0.9470 0.9480
   0 1 1 0.9400 0.9630 0.9470 0.9530 0.9210 0.9550 0.9560 0.9580 0.9580
   0.5 2 1.5 0.9270 0.9610 0.9330 0.9470 0.9230 0.9420 0.9420 0.9470 0.9460
0.9 1 -0.25 0 0.25 0.9430 0.9660 0.9410 0.9500 0.9140 0.9470 0.9470 0.9480 0.9480
   0 1 1 0.9410 0.9530 0.9440 0.9400 0.9040 0.9470 0.9460 0.9510 0.9500
   0.5 2 1.5 0.9430 0.9660 0.9480 0.9490 0.9160 0.9540 0.9560 0.9550 0.9560
  8 -0.25 0 0.25 0.9320 0.9540 0.9520 0.9450 0.9200 0.9460 0.9460 0.9490 0.9490
   0 1 1 0.9460 0.9660 0.9470 0.9590 0.9300 0.9470 0.9470 0.9490 0.9490
   0.5 2 1.5 0.9410 0.9580 0.9460 0.9510 0.9200 0.9550 0.9550 0.9580 0.9580