Skip to main content

Table 4 Results simulation study IIb

From: No rationale for 1 variable per 10 events criterion for binary logistic regression analysis

Estimator \({\beta _{1}^{F}}\) \(\beta _{1}^{ML} \) \(\beta _{1}^{ML} \) \(\beta _{1}^{ML} \) \(\beta _{1}^{ML} \) \(\beta _{1}^{ML} \) \(\beta _{1}^{ML} \)
Separation detection NA Tracingb Estimatec None None None None
Convergence criteriona Default Default Default Default Type I Type II Type III
Data sets removed (%) 0 8.06 16.64 5.12 0.34 6.29 0.09
Bias 0.012 0.569 0.186 1.672 17.5 0.856 41.3
Coverage 90% CI 0.919 0.949 0.937 0.944 0.947 0.944 0.947
Mean width 90% CI 4.32 4.50 3.64 5018 13620 6.03 1135784
MSE 1.080 2.681 0.904 71.563 11532 319 173726
  1. adefault: tol: 1e-8, max-iter: 25, Type I: tol: 1e-6, max-iter: 25, Type II: tol: 1e-10, max-iter:25, Type III: tol: 1e-10, max-iter:50
  2. bcriterion: re-estimation process, variance of scaled standard errors >20 (see Appendix)
  3. acriterion: if for any parameter \(j \neq 0, |\hat {\beta }_{j}|\) >log(50)