Skip to main content

Table 1 Scheme of the 27 data generated cases

From: On the censored cost-effectiveness analysis using copula information

Generating copula Costs distribution Censoring level DGP
Gaussian copula \(F_{C} \sim \mathcal {N}(\mu _{C}=1500, \sigma _{C}=400)\) 15% DGP 1
θ≈0.809   30% DGP 2
   70% DGP 3
  F C Γ(shape C =12,scale C =125) 15% DGP 4
   30% DGP 5
   70% DGP 6
  \(F_{C} \sim log\mathcal {N}(\nu _{C}=7.30,\tau _{C}=0.25)\) 15% DGP 7
   30% DGP 8
   70% DGP 9
Clayton copula \(F_{C} \sim \mathcal {N}(\mu _{C}=1500, \sigma _{C}=400)\) 15% DGP 10
θ=3   30% DGP 11
   70% DGP 12
  F C Γ(shape C =12,scale C =125) 15% DGP 13
   30% DGP 14
   70% DGP 15
  \(F_{C} \sim log\mathcal {N}(\nu _{C}=7.30,\tau _{C}=0.25)\) 15% DGP 16
   30% DGP 17
   70% DGP 18
Gumbel copula \(F_{C} \sim \mathcal {N}(\mu _{C}=1500, \sigma _{C}=400)\) 15% DGP 19
θ≈0.809   30% DGP 20
   70% DGP 21
  F C Γ(shape C =12,scale C =125) 15% DGP 22
   30% DGP 23
   70% DGP 24
  \(F_{C} \sim log\mathcal {N}(\nu _{C}=7.30,\tau _{C}=0.25)\) 15% DGP 25
   30% DGP 26
   70% DGP 27