Skip to main content

Advertisement

Table 1 Simulation scenarios

From: A systematic comparison of recurrent event models for application to composite endpoints

Scenario \(\lambda _{0}^{MI}(t,t_{prev})\) \(\lambda _{0}^{D}(t,t_{prev})\) exp(βMI(t prev )) exp(βD(t prev ))
1a 0.25 0.25 0.5 0.5
1b 0.25 0.25 0.5 0.7
1c 0.25 0.25 0.7 0.5
1d 0.25 0.25 0.7 1.5
1e 0.25 0.25 1.5 0.7
2a \(0.25\cdot 1/\sqrt {t_{prev}}\) \(0.25\cdot 1/\sqrt {t_{prev}}\) 0.5 0.5
2b \(0.25\cdot 1/\sqrt {t_{prev}}\) \(0.25\cdot 1/\sqrt {t_{prev}}\) 0.5 0.7
2c \(0.25\cdot 1/\sqrt {t_{prev}}\) \(0.25\cdot 1/\sqrt {t_{prev}}\) 0.7 0.5
2d \(0.25\cdot 1/\sqrt {t_{prev}}\) \(0.25\cdot 1/\sqrt {t_{prev}}\) 0.7 1.5
2e \(0.25\cdot 1/\sqrt {t_{prev}}\) \(0.25\cdot 1/\sqrt {t_{prev}}\) 1.5 0.7
3a t 0.3 t 0.3 0.5 0.5
3b t 0.3 t 0.3 0.5 0.7
3c t 0.3 t 0.3 0.7 0.5
3d t 0.3 t 0.3 0.7 1.5
3e t 0.3 t 0.3 1.5 0.7
3f 1.5·t0.3 t 0.3 0.5 0.5
4a 0.25 0.25 0.5 exp(0.05ln(0.5)·t prev ) 0.5 exp(0.05ln(0.5)·t prev )
4b 0.25 0.25 0.5 exp(0.05ln(0.5)·t prev ) 0.7 exp(0.05ln(0.7)·t prev )
4c 0.25 0.25 0.7 exp(0.05ln(0.7)·t prev ) 0.5 exp(0.05ln(0.5)·t prev )
4d 0.25 0.25 0.7 exp(0.05ln(0.7)·t prev ) 1.5 exp(0.05ln(1.5)·t prev )
4e 0.25 0.25 1.5 exp(0.05ln(1.5)·t prev ) 0.7 exp(0.05ln(0.7)·t prev )
5a 0.25 0.25 0.5 exp(−0.05ln(0.5)·t prev ) 0.5 exp(−0.05ln(0.5)·t prev )
5b 0.25 0.25 0.5 exp(−0.05ln(0.5)·t prev ) 0.7 exp(−0.05ln(0.7)·t prev )
5c 0.25 0.25 0.7 exp(−0.05ln(0.7)·t prev ) 0.5 exp(−0.05ln(0.5)·t prev )
5d 0.25 0.25 0.7 exp(−0.05ln(0.7)·t prev ) 1.5 exp(−0.05ln(1.5)·t prev )
5e 0.25 0.25 1.5 exp(−0.05ln(1.5)·t prev ) 0.7 exp(−0.05ln(0.7)·t prev )
5f 0.25 0.25 0.5 exp(−0.5ln(0.5)·t prev ) 0.5 exp(−0.5ln(0.5)·t prev )
  1. \(\lambda _{0}^{MI}(t,t_{prev})\) baseline hazard function for the recurrent event (myocaridal infarction); \(\lambda _{0}^{D}(t,t_{prev})\) baseline hazard function for the fatal event (death); exp(βMI(t prev )) hazard ratio for the recurrent event (myocardial infarction); exp(βD(t prev )) hazard ratio for the fatal event (death)